Расчетного сопротивления растяжению бетона

Расчетного сопротивления растяжению бетона thumbnail

Любая бетонная конструкция должна переносить определенные в технической документации нагрузки в течение длительного времени без разрушений. В строительных проектах указываются основные характеристики, к которым относятся плотность, показатели расчетного сопротивления бетона, морозоустойчивость, водонепроницаемость. Проблема состоит в том, что даже самый качественный бетон неоднороден. Элементы имеют различные геометрические размеры и сечения, поэтому разные участки сооружения могут иметь неодинаковые свойства. Для уточнения характеристик материала вводится методика вычисления прочности.

Что такое расчетное сопротивление?

Расчетное сопротивление бетонной смеси – характеристика отражающая свойство материала противостоять внешним механическим нагрузкам. Его применяют при проектировании зданий и сооружений. Данный показатель получают из нормативных значений противодействия конкретной марки раствора делением на специальный коэффициент.

Этот коэффициент, применяемый для вычисления расчетного сопротивления бетона на сжатие обозначается γb и может принимать значения:

  • 1,3 – для максимальных возможных величин по несущей способности;
  • 1 – для максимальных значений по пригодности к эксплуатации.

Коэффициенты надежности материала при механическом растяжении обозначаются γbt, они могут быть равны:

  • 1,5 – для максимальных показателей несущей способности во время определения класса на сжатие;
  • 1,3 – для максимальных значений несущей способности на осевое растяжение;
  • 1 – для максимальных величин по пригодности к эксплуатации.

Классы бетонов обозначаются от В10 до В60, значения их нормативного противодействия приводятся в специальных таблицах.

Как получить расчетное сопротивление?

Для получения расчетного сопротивления бетона по осевому сжатию определяется класс материала, из таблицы берутся его нормативные данные и производится вычисление по формуле:

Rb=Rbn/γb,

где Rb – расчетные данные на осевое сжатие, множитель Rbn – нормативные , γb – коэффициент.

Аналогично рассчитывают расчетное сопротивление бетона осевому растяжению:

Rbt=Rbtn/γbt,

где Rbt – расчетные значения на осевое растяжение, множитель Rbtn – нормативные показатели на растяжение, γbt – коэффициент для растяжения.

Учитывая условия, в которых будут эксплуатироваться бетонные конструкции, вводятся и другие коэффициенты γbi, учитывающие эти особенности:

  • для непродолжительных статических нагрузок 1;
  • для длительных статических нагрузок 0,9;
  • элементы, заливаемые вертикально 0,9;
  • коэффициенты, отражающие климатические особенности, назначение сооружения, площадь сечения указываются в документации отдельно.

Нормативное сопротивление

До 2001 года единственной характеристикой бетона указывающей на противодействие механической силе, считалась марка, обозначавшаяся буквой «М». Теперь, согласно СНиП 2.03.01 введена другая характеристика, так называемый класс прочности, обозначающаяся буквой «В». Для определения свойств железобетонных и бетонных конструкций были предложены нормативы, согласно СП 52-101-2003.

Для определения класса раствор заливают в куб с ребром 150 мм. Уплотняют его в форме и дают полностью затвердеть при температуре 18-20ºС в течение 28 суток. После этого образец поступает на испытание, и разрушается на специальном прессе. Сопротивление бетона осевой нагрузке, выраженное в МПа и является свойством, по которому определяется данная характеристика. Иногда для определения класса берется призменный образец, высота которого в четыре раза больше ребра основания.

Дополнительно образец подвергается проверке на осевое растяжение, который тоже необходимо учитывать при проведении вычислений.

При правильном определении класса не требуется делать дополнительных испытаний, поскольку они уже занесены в специализированные таблицы.

Используя эти таблицы можно, имея данные на сжатие, сразу определить показатели и на растяжение. По ним ясно видно – этот параметр для любого бетона на растяжение гораздо меньше, чем на сжатие, это обязательно учитывается при проектировании.

Эти параметры для различного класса прочности сводятся в специальную таблицу. Значения могут меняться в зависимости от условий определяемых соответствующими коэффициентами:

Из таблицы видно, что расчетное значение ниже нормативного, поскольку учитывает сторонние факторы, тип воздействия на бетонную конструкцию, возможную неоднородность материала, центр тяжести контура.

При определении противодействия бетона силовому воздействию учитывается его деформация. Для этого берется начальный параметр данной величины и делится на коэффициент, включающий в себя ползучесть, а также поперечную деформацию массива, его температурную деформацию в диапазоне -40 — +50ºС. При вычислении свойств напряженно деформированного элемента используют специальные диаграммы, демонстрирующие предельную нагрузку в зависимости от сечений и расположения детали и вида материала. Эта методика позволяет рассчитывать факторы, приводящие к появлению трещин.

График Зависимости напряжений от деформаций

При определении характеристик железобетонных конструкций применяют методику моделирования наклонных сечений. Учитывается толщина и тип арматуры, отдельно рассчитывается ее прочность.

Заключение

Сопротивление бетона рассчитывается в зависимости от действия на него различных сил, которые могут быть сжимающими, поперечными, изгибающими, а также под местным сжатием. Для внецентренно сжатых и растянутых элементов, находящихся под изгибом, момент рассчитывается для сечений, перпендикулярных их продольной оси.

Для элементов с сечениями в виде прямоугольника, квадрата или тавра применяются формулы, предельной нагрузки каждого элемента, для других сечений используются специальные нелинейные диаграммы.

Расчетное сопротивление позволит подобрать класс прочности и марку этого материала для получения оптимальных эксплуатационных свойств массива, элемента или детали. В отличие от нормативных показателей, данные учитывают геометрические особенности, условия эксплуатации, виды деформаций. Вводятся коэффициенты надежности по бетону, разновидности используемой арматуры и другие характеристики, влияющие на конечную прочность зданий и сооружений, где применяется литой бетон или конструктивные элементы из этого материла.

Источник

Вернуться на страницу «Расчеты КМ и КЖ»

Сопротивление бетона на сжатие и растяжение

СП 63.13330.2012

Читайте также:  Как долго может держаться отек при растяжении связок голеностопа

6.1.11 Расчетные значения сопротивления бетона осевому сжатию Rbи осевому растяжению Rbtопределяют по формулам:

Расчетного сопротивления растяжению бетона

Значения коэффициента надежности по бетону при сжатии γbпринимают равными:

для расчета по предельным состояниям первой группы:

1,3 — для тяжелого, мелкозернистого, напрягающего и легкого бетонов;

1,5 — для ячеистого бетона;

для расчета по предельным состояниям второй группы: 1,0.

Значения коэффициента надежности по бетону при растяжении γbtпринимают равными:

для расчета по предельным состояниям первой группы при назначении класса бетона по прочности на сжатие:

1,5 — для тяжелого, мелкозернистого, напрягающего и легкого бетонов;

2,3 — для ячеистого бетона;

для расчета по предельным состояниям первой группы при назначении класса бетона по прочности на растяжение:

1,3 — для тяжелого, мелкозернистого, напрягающего и легкого бетонов;

для расчета по предельным состояниям второй группы: 1,0.

Расчетные значения сопротивления бетона Rb, Rbt, Rb,ser, Rbt,ser(с округлением) в зависимости от класса бетона по прочности на сжатие и осевое растяжение приведены: для предельных состояний первой группы — в таблицах 6.8, 6.9, второй группы — в таблице 6.7.

Таблица 6.7

ВидБетонНормативные сопротивления бетона Rb,n, Rbt,n, МПа, и расчетные сопротивления бетона для предельных состояний второй группы Rb,serи Rbt,ser, МПа, при классе бетона по прочности на сжатие
В1,5В2В2,5В3,5В5В7,5В10В12,5В15В20В25В30В35В40В45В50В55В60В70В80В90В100
Сжатие осевое (призменная прочность) Rb,n, Rb,serТяжелый, мелкозернистый и напрягающий2,73,55,57,59,5111518,52225,529323639,54350576471
Легкий1,92,73,55,57,59,5111518,52225,529
Ячеистый1,41,92,43,34,66,99,010,511,5
Растяжение осевое Rbt,n и Rbt,serТяжелый, мелкозернистый и напрягающий0,390,550,700,851,001,101,351,551,751,952,102,252,452,602,753,003,303,603,80
Легкий0,290,390,550,700,851,001,101,351,551,751,952,10
Ячеистый0,220,260,310,410,550,630,891,001,05
Примечания

1 Значения сопротивлений приведены для ячеистого бетона средней влажностью 10 %.

2 Для мелкозернистого бетона на песке с модулем крупности 2,0 и менее, а также для легкого бетона на мелком пористом заполнителе значения расчетных сопротивлений Rbt,n, Rbt,serследует принимать с умножением на коэффициент 0,8.

3 Для поризованного бетона, а также для керамзитоперлитобетона на вспученном перлитовом песке значения расчетных сопротивлений Rbt,n, Rbt,serследует принимать как для легкого бетона с умножением на коэффициент 0,7.

4 Для напрягающего бетона значения Rbt,n, Rbt,serследует принимать с умножением на коэффициент 1,2.

Таблица 6.8

ВидБетонРасчетные сопротивления бетона Rb, Rbt, МПа, для предельных состояний первой группы при классе бетона по прочности на сжатие
В1,5В2В2,5В3,5В5В7,5В10В12,5В15В20В25в30B35В40В45В50В55В60В70В80В90В100
Сжатие осевое (призменная прочность)Тяжелый, мелкозернистый и напрягающий2,12,84,56,07,58,511,514,517,019,522,025,027,530,033,037,041,044,047,5
Легкий1,52,12,84,56,07,58,511,514,517,019,522,0
Ячеистый0,951,31,62,23,14,66,07,07,7
Растяжение осевоеТяжелый, мелкозернистый и напрягающий0,260,370,480,560,660,750,901,051,151,301,401,501,601,701,801,902,102,152,20
Легкий0,200,260,370,480,560,660,750,901,051,151,301,40
Ячеистый0,090,120,140,180,240,280,390,440,46
Примечания

1 Значения сопротивлений приведены для ячеистого бетона средней влажностью 10 %.

2 Для мелкозернистого бетона на песке с модулем крупности 2,0 и менее, а также для легкого бетона на мелком пористом заполнителе значения расчетных сопротивлений Rbtследует принимать с умножением на коэффициент 0,8.

3 Для поризованного бетона, а также для керамзитоперлитобетона на вспученном перлитовом песке значения расчетных сопротивлений Rbtследует принимать как для легкого бетона с умножением на коэффициент 0.7.

4 Для напрягающего бетона значения Rbtследует принимать с умножением на коэффициент 1,2.

5 Для тяжелых бетонов классов В70 — В100 расчетные значения сопротивления осевому сжатию Rbи осевому растяжению Rbtприняты с учетом дополнительного понижающего коэффициента γb,br, учитывающего увеличение хрупкости высокопрочных бетонов в связи с уменьшением деформаций ползучести и равного , где В — класс бетона по прочности на сжатие.

Читайте также:  Жесткость при осевом растяжении

Таблица 6.9

Вид сопротивленияБетонРасчетные значения сопротивления бетона для предельных состояний первой группы Rbt, МПа, при классе бетона по прочности на осевое растяжение
Вt 0,8Вt 1,2Вt 1,6Вt 2,0Вt 2,4Вt 2,8Вt 3,2
Растяжение осевое RbtТяжелый, мелкозернистый, напрягающий и легкий0,620,931,251,551,852,152,45

Источник

Любое изделие из бетона должно выдерживать существенные нагрузки и при этом не поддаваться разрушительному воздействию внешних факторов. Параметры конструкций, при создании которых используется бетон, определяются еще во время проектирования. Перед началом проведения работ специалисты устанавливают расчетное сопротивление бетона.

Расчетного сопротивления растяжению бетона

Строители утверждают, что бетонные конструкции делаются из неоднородного стройматериала. Прочность нескольких образцов, при изготовлении которых использовалась одна и та же смесь, может быть совершенно разной. Именно поэтому перед специалистами встает вопрос определения прочности при помощи расчетных данных. За счет этих значений определяется сопротивление бетона сжатию. Что собой представляют расчетные показатели, и каким образом можно их определить? Какие дополнительные параметры и характеристики важно учитывать при проведении строительных работ?

Что такое расчетное сопротивление?

Специалисты получают показатели сопротивления строительного материала, разделяя нормативные сопротивления на коэффициенты. При определении прочности деталей конструкций к расчетному сопротивлению некоторых бетонных растворов иногда уменьшают либо увеличивают за счет умножения на определенные коэффициенты, учитывающие ряд факторов: многократные нагрузки, длительность воздействия нагрузок, способ изготовления изделия, его размеры и пр.

Вернуться к оглавлению

Как производить расчеты?

Каким образом нужно производить расчеты прочности конструкции, например, на ее сжатие? С этой целью строители используют специальные расчетные показатели. Для обеспечения достаточной устойчивости бетонных изделий при проведении расчетов, пользуются параметрами прочности стройматериала, которые чаще всего ниже параметров самих конструкций. Такие значения именуют расчетными. Они зависят непосредственно от нормативных (фактических) значений.

Вернуться к оглавлению

Нормативные показатели

Расчетного сопротивления растяжению бетона

Несколько десятилетий тому назад основным показателем прочности бетонных конструкций была их марка. При помощи данного параметра обозначают среднюю устойчивость стройматериала на сжатие. Однако после появления новых Строительных норм и правил возникли и классы прочности изделий на их сжатие.

Класс — нормативное сопротивление стройматериала осевому сжатию кубов, эталонные размеры которых составляют 15 на 15 на 15 сантиметров. Стоит отметить, что пользоваться средними расчетными показателями прочности рискованно, поскольку существует вероятность, что в одном из сечений конструкции этот параметр может оказаться ниже. Вместе с тем выбирать наименьший показатель накладнее, ведь это неоправданно увеличит сечение изделия.

Главным параметром долговечности в бетоне считается класс. В то же время помимо сжатия, значение придается и осевому растяжению. Растяжение учитывается при проведении расчетов. Таким образом, устойчивость к этому показателю (если показатель не может контролироваться) строители определяют по классу B. Для этого существует специальная таблица, в которой указаны необходимые значения с сопротивлением. В таблице указан класс и устойчивость изделий к растяжению.

Вернуться к оглавлению

Характеристики расчетного значения

Чтобы сделать надежные и долговечные конструкции, рассчитывают значения с запасом. Для получения этого значения строители прибегают к удельным сопротивлениям изделий: они разделяют их на коэффициент. Сопротивление стройматериала растяжению либо сжатию вычисляют при помощи формулы, которая выглядит следующим образом: R = Rn /g (g – коэффициент прочности). Чаще всего этот параметр равняется одному. От однородности материала зависит величина коэффициента. При этом выполнять соответствующие расчеты необязательно, поскольку получить необходимые параметры можно при помощи таблицы.

Вернуться к оглавлению

Другие характеристики

Помимо вышеуказанных параметров для выполнения определенных расчетов, понадобится ряд дополнительных характеристик:

  1. Определение удельного электрического сопротивления бетонного раствора может понадобиться, если вы решили самостоятельно осуществить обогрев смеси при помощи электродов. И чем больше показатель, тем сильнее будет нагреваться цементный раствор.
  2. Влагопроницаемость смесей позволяет определить самое сильное давление жидкости, которому способен противостоять стройматериал. Иными словами, это значение показывает, может ли влага проникнуть сквозь бетон. Водонепроницаемыми марками считаются с W2 по W20. При этом цифры указывают на давление воды, которое способна выдержать конструкция.
  3. Воздухонепроницаемость бетонного состава будет зависеть от прочности изделия. Согласно государственному стандарту, сопротивление бетона проникновению воздуха составляет 3-130 с/см3.
  4. Морозоустойчивость позволяет конструкциям из бетона выдерживать многократное замерзание, оттаивание с сохранением свойств. На рынке строительных материалов представлены марки F50-F1000 (цифры означают число циклов, которые выдерживает строительный материал). Как показывает практика, в среднем морозостойкость изделий равна показателю F200.
  5. Теплопроводимость – важная характеристика изделий, от которой будет зависеть плотность строения. Материалы, содержащие больше пор, обладают меньшей теплопроводностью, поскольку воздух, который их заполняет, является прекрасным теплоизолятором. Лучше всего теплоизоляцию обеспечивают газоблоки или пеноблоки, в структуре которых есть множество пор.
Читайте также:  Через сколько пройдет растяжение руки

Вернуться к оглавлению

Заключение

Прочность изделий способна отличаться в зависимости от компонентов, входящих в состав материала и их пропорций. Также это объясняется тем, что стройматериал представляет собой неоднородную смесь. Вне зависимости от способа перемешивания бетонного раствора, невозможно равномерно распределить компоненты. Поэтому при проведении работ необходимо учитывать расчетное сопротивление.

Этот параметр является важным для проектирования несущих стен и других конструкций. Расчеты значений просты: они сводятся к делению нормативных значений на определенные коэффициенты.

Источник

расчетные сопротивления строительных материалов

При расчете строительных конструкций нужно знать расчетное сопротивление и модуль упругости для того или иного материала. Здесь представлены данные по основным строительным материалам.

Таблица 1. Модули упругости для основных строительных материалов

МатериалМодуль упругости
Е, МПа
  Чугун белый, серый(1,15…1,60) · 105
  Чугун ковкий1,55 · 105
  Сталь углеродистая(2,0…2,1) · 105
  Сталь легированная(2,1…2,2) · 105
  Медь прокатная1,1 · 105
  Медь холоднотянутая1,3 · 103
  Медь литая0,84 · 105
  Бронза фосфористая катанная1,15 · 105
  Бронза марганцевая катанная1,1 · 105
  Бронза алюминиевая литая1,05 · 105
  Латунь холоднотянутая(0,91…0,99) · 105
  Латунь корабельная катанная1,0 · 105
  Алюминий катанный0,69 · 105
  Проволока алюминиевая тянутая0,7 · 105
  Дюралюминий катанный0,71 · 105
  Цинк катанный0,84 · 105
  Свинец0,17 · 105
  Лед0,1 · 105
  Стекло0,56 · 105
  Гранит0,49 · 105
  Известь0,42 · 105
  Мрамор0,56 · 105
Песчаник0,18 · 105
  Каменная кладка из гранита(0,09…0,1) · 105
  Каменная кладка из кирпича(0,027…0,030) · 105
  Бетон (см. таблицу 2) 
  Древесина вдоль волокон(0,1…0,12) · 105
  Древесина поперек волокон(0,005…0,01) · 105
  Каучук0,00008 · 105
  Текстолит(0,06…0,1) · 105
  Гетинакс(0,1…0,17) · 105
  Бакелит(2…3) · 103
  Целлулоид(14,3…27,5) · 102

Нормативные данные для рассчетов железобетонных конструкций

Таблица 2. Модули упругости бетона (согласно СП 52-101-2003)

Значения начального модуля упругости бетона при сжатии и растяжении Eb, МПа · 10-3,
при классе бетона по прочности на сжатие
B10B15B20B25B30B35B40B45B50B55B60
19,024,027,530,032,534,536,037,038,039,039,5

Таблица 2.1 Модули упругости бетона согласно СНиП 2.03.01-84*(1996)
свойства материалов

Примечания:

1. Над чертой указаны значения в МПа, под чертой — в кгс/см&sup2.

2. Для легкого, ячеистого и поризованного бетонов при промежуточных значениях плотности бетона начальные модули упругости принимают по линейной интерполяции.

3. Для ячеистого бетона неавтоклавного твердения значения Еb принимают как для бетона автоклавного твердения с умножением на коэффициент 0,8.

4. Для напрягающего бетона значения Еb принимают как для тяжелого бетона с умножением на коэффициент
a = 0,56 + 0,006В.

Таблица 3. Нормативные значения сопротивления бетона (согласно СП 52-101-2003)
свойства материалов

Таблица 4. Расчетные значения сопротивления бетона сжатию (согласно СП 52-101-2003)
свойства материалов
Таблица 4.1 Расчетные значения сопротивления бетона сжатию согласно СНиП 2.03.01-84*(1996)
свойства материалов
Таблица 5. Расчетные значения сопротивления бетона растяжению (согласно СП 52-101-2003)
свойства материалов
Таблица 6. Нормативные сопротивления для арматуры (согласно СП 52-101-2003)
свойства материалов
Таблица 6.1 Нормативные сопротивления для арматуры класса А согласно СНиП 2.03.01-84* (1996)
свойства материалов
Таблица 6.2 Нормативные сопротивления для арматуры классов В и К согласно СНиП 2.03.01-84* (1996)
свойства материалов

Таблица 7. Расчетные сопротивления для арматуры (согласно СП 52-101-2003)
свойства материалов
Таблица 7.1 Расчетные сопротивления для арматуры класса А согласно СНиП 2.03.01-84* (1996)
свойства материалов
Таблица 7.2 Расчетные сопротивления для арматуры классов В и К согласно СНиП 2.03.01-84* (1996)
свойства материалов

Нормативные данные для расчетов металлических контрукций

Таблица 8. Нормативные и расчетные сопротивления при растяжении, сжатии и изгибе (согласно СНиП II-23-81 (1990)) листового, широкополосного универсального и фасонного проката по ГОСТ 27772-88 для стальных конструкций зданий и сооружений
свойства материалов

Примечания:

1. За толщину фасонного проката следует принимать толщину полки (минимальная его толщина 4 мм).

2. За нормативное сопротивление приняты нормативные значения предела текучести и временного сопротивления по ГОСТ 27772-88.

3. Значения расчетных сопротивлений получены делением нормативных сопротивлений на коэффициенты надежности по материалу, с округлением до 5 МПа (50 кгс/см&sup2).

Таблица 9. Марки стали, заменяемые сталями по ГОСТ 27772-88 (согласно СНиП II-23-81 (1990))
свойства материалов

Примечания:

1. Стали С345 и С375 категорий 1, 2, 3, 4 по ГОСТ 27772-88 заменяют стали категорий соответственно 6, 7 и 9, 12, 13 и 15 по ГОСТ 19281-73* и ГОСТ 19282-73*.

2. Стали С345К, С390, С390К, С440, С590, С590К по ГОСТ 27772-88 заменяют соответствующие марки стали категорий 1-15 по ГОСТ 19281-73* и ГОСТ 19282-73*, указанные в настоящей таблице.

3. Замена сталей по ГОСТ 27772-88 сталями, поставляемыми по другим государственным общесоюзным стандартам и техническим условиям, не предусмотрена.

Расчетные сопротивления для стали, используемой для производства профилированных листов здесь не показаны.

Источник