Расчетное сопротивление бетона при осевом растяжении
Вернуться на страницу «Расчеты КМ и КЖ»
Сопротивление бетона на сжатие и растяжение
СП 63.13330.2012
6.1.11 Расчетные значения сопротивления бетона осевому сжатию Rbи осевому растяжению Rbtопределяют по формулам:
Значения коэффициента надежности по бетону при сжатии γbпринимают равными:
для расчета по предельным состояниям первой группы:
1,3 — для тяжелого, мелкозернистого, напрягающего и легкого бетонов;
1,5 — для ячеистого бетона;
для расчета по предельным состояниям второй группы: 1,0.
Значения коэффициента надежности по бетону при растяжении γbtпринимают равными:
для расчета по предельным состояниям первой группы при назначении класса бетона по прочности на сжатие:
1,5 — для тяжелого, мелкозернистого, напрягающего и легкого бетонов;
2,3 — для ячеистого бетона;
для расчета по предельным состояниям первой группы при назначении класса бетона по прочности на растяжение:
1,3 — для тяжелого, мелкозернистого, напрягающего и легкого бетонов;
для расчета по предельным состояниям второй группы: 1,0.
Расчетные значения сопротивления бетона Rb, Rbt, Rb,ser, Rbt,ser(с округлением) в зависимости от класса бетона по прочности на сжатие и осевое растяжение приведены: для предельных состояний первой группы — в таблицах 6.8, 6.9, второй группы — в таблице 6.7.
Таблица 6.7
Вид | Бетон | Нормативные сопротивления бетона Rb,n, Rbt,n, МПа, и расчетные сопротивления бетона для предельных состояний второй группы Rb,serи Rbt,ser, МПа, при классе бетона по прочности на сжатие | |||||||||||||||||||||
В1,5 | В2 | В2,5 | В3,5 | В5 | В7,5 | В10 | В12,5 | В15 | В20 | В25 | В30 | В35 | В40 | В45 | В50 | В55 | В60 | В70 | В80 | В90 | В100 | ||
Сжатие осевое (призменная прочность) Rb,n, Rb,ser | Тяжелый, мелкозернистый и напрягающий | — | — | — | 2,7 | 3,5 | 5,5 | 7,5 | 9,5 | 11 | 15 | 18,5 | 22 | 25,5 | 29 | 32 | 36 | 39,5 | 43 | 50 | 57 | 64 | 71 |
Легкий | — | — | 1,9 | 2,7 | 3,5 | 5,5 | 7,5 | 9,5 | 11 | 15 | 18,5 | 22 | 25,5 | 29 | — | — | — | — | — | — | — | — | |
Ячеистый | 1,4 | 1,9 | 2,4 | 3,3 | 4,6 | 6,9 | 9,0 | 10,5 | 11,5 | — | — | — | — | — | — | — | — | — | — | — | — | — | |
Растяжение осевое Rbt,n и Rbt,ser | Тяжелый, мелкозернистый и напрягающий | — | — | — | 0,39 | 0,55 | 0,70 | 0,85 | 1,00 | 1,10 | 1,35 | 1,55 | 1,75 | 1,95 | 2,10 | 2,25 | 2,45 | 2,60 | 2,75 | 3,00 | 3,30 | 3,60 | 3,80 |
Легкий | — | — | 0,29 | 0,39 | 0,55 | 0,70 | 0,85 | 1,00 | 1,10 | 1,35 | 1,55 | 1,75 | 1,95 | 2,10 | — | — | — | — | — | — | — | — | |
Ячеистый | 0,22 | 0,26 | 0,31 | 0,41 | 0,55 | 0,63 | 0,89 | 1,00 | 1,05 | — | — | — | — | — | — | — | — | — | — | — | — | — | |
Примечания 1 Значения сопротивлений приведены для ячеистого бетона средней влажностью 10 %. 2 Для мелкозернистого бетона на песке с модулем крупности 2,0 и менее, а также для легкого бетона на мелком пористом заполнителе значения расчетных сопротивлений Rbt,n, Rbt,serследует принимать с умножением на коэффициент 0,8. 3 Для поризованного бетона, а также для керамзитоперлитобетона на вспученном перлитовом песке значения расчетных сопротивлений Rbt,n, Rbt,serследует принимать как для легкого бетона с умножением на коэффициент 0,7. 4 Для напрягающего бетона значения Rbt,n, Rbt,serследует принимать с умножением на коэффициент 1,2. |
Таблица 6.8
Вид | Бетон | Расчетные сопротивления бетона Rb, Rbt, МПа, для предельных состояний первой группы при классе бетона по прочности на сжатие | |||||||||||||||||||||
В1,5 | В2 | В2,5 | В3,5 | В5 | В7,5 | В10 | В12,5 | В15 | В20 | В25 | в30 | B35 | В40 | В45 | В50 | В55 | В60 | В70 | В80 | В90 | В100 | ||
Сжатие осевое (призменная прочность) | Тяжелый, мелкозернистый и напрягающий | — | — | — | 2,1 | 2,8 | 4,5 | 6,0 | 7,5 | 8,5 | 11,5 | 14,5 | 17,0 | 19,5 | 22,0 | 25,0 | 27,5 | 30,0 | 33,0 | 37,0 | 41,0 | 44,0 | 47,5 |
Легкий | — | — | 1,5 | 2,1 | 2,8 | 4,5 | 6,0 | 7,5 | 8,5 | 11,5 | 14,5 | 17,0 | 19,5 | 22,0 | — | — | — | — | — | — | — | — | |
Ячеистый | 0,95 | 1,3 | 1,6 | 2,2 | 3,1 | 4,6 | 6,0 | 7,0 | 7,7 | — | — | — | — | — | — | — | — | — | — | — | — | — | |
Растяжение осевое | Тяжелый, мелкозернистый и напрягающий | — | — | — | 0,26 | 0,37 | 0,48 | 0,56 | 0,66 | 0,75 | 0,90 | 1,05 | 1,15 | 1,30 | 1,40 | 1,50 | 1,60 | 1,70 | 1,80 | 1,90 | 2,10 | 2,15 | 2,20 |
Легкий | — | — | 0,20 | 0,26 | 0,37 | 0,48 | 0,56 | 0,66 | 0,75 | 0,90 | 1,05 | 1,15 | 1,30 | 1,40 | — | — | — | — | — | — | — | — | |
Ячеистый | 0,09 | 0,12 | 0,14 | 0,18 | 0,24 | 0,28 | 0,39 | 0,44 | 0,46 | — | — | — | — | — | — | — | — | — | — | — | — | — | |
Примечания 1 Значения сопротивлений приведены для ячеистого бетона средней влажностью 10 %. 2 Для мелкозернистого бетона на песке с модулем крупности 2,0 и менее, а также для легкого бетона на мелком пористом заполнителе значения расчетных сопротивлений Rbtследует принимать с умножением на коэффициент 0,8. 3 Для поризованного бетона, а также для керамзитоперлитобетона на вспученном перлитовом песке значения расчетных сопротивлений Rbtследует принимать как для легкого бетона с умножением на коэффициент 0.7. 4 Для напрягающего бетона значения Rbtследует принимать с умножением на коэффициент 1,2. 5 Для тяжелых бетонов классов В70 — В100 расчетные значения сопротивления осевому сжатию Rbи осевому растяжению Rbtприняты с учетом дополнительного понижающего коэффициента γb,br, учитывающего увеличение хрупкости высокопрочных бетонов в связи с уменьшением деформаций ползучести и равного , где В — класс бетона по прочности на сжатие. |
Таблица 6.9
Вид сопротивления | Бетон | Расчетные значения сопротивления бетона для предельных состояний первой группы Rbt, МПа, при классе бетона по прочности на осевое растяжение | ||||||
Вt 0,8 | Вt 1,2 | Вt 1,6 | Вt 2,0 | Вt 2,4 | Вt 2,8 | Вt 3,2 | ||
Растяжение осевое Rbt | Тяжелый, мелкозернистый, напрягающий и легкий | 0,62 | 0,93 | 1,25 | 1,55 | 1,85 | 2,15 | 2,45 |
Источник
Любая бетонная конструкция должна переносить определенные в технической документации нагрузки в течение длительного времени без разрушений. В строительных проектах указываются основные характеристики, к которым относятся плотность, показатели расчетного сопротивления бетона, морозоустойчивость, водонепроницаемость. Проблема состоит в том, что даже самый качественный бетон неоднороден. Элементы имеют различные геометрические размеры и сечения, поэтому разные участки сооружения могут иметь неодинаковые свойства. Для уточнения характеристик материала вводится методика вычисления прочности.
Что такое расчетное сопротивление?
Расчетное сопротивление бетонной смеси – характеристика отражающая свойство материала противостоять внешним механическим нагрузкам. Его применяют при проектировании зданий и сооружений. Данный показатель получают из нормативных значений противодействия конкретной марки раствора делением на специальный коэффициент.
Этот коэффициент, применяемый для вычисления расчетного сопротивления бетона на сжатие обозначается γb и может принимать значения:
- 1,3 – для максимальных возможных величин по несущей способности;
- 1 – для максимальных значений по пригодности к эксплуатации.
Коэффициенты надежности материала при механическом растяжении обозначаются γbt, они могут быть равны:
- 1,5 – для максимальных показателей несущей способности во время определения класса на сжатие;
- 1,3 – для максимальных значений несущей способности на осевое растяжение;
- 1 – для максимальных величин по пригодности к эксплуатации.
Классы бетонов обозначаются от В10 до В60, значения их нормативного противодействия приводятся в специальных таблицах.
Как получить расчетное сопротивление?
Для получения расчетного сопротивления бетона по осевому сжатию определяется класс материала, из таблицы берутся его нормативные данные и производится вычисление по формуле:
Rb=Rbn/γb,
где Rb – расчетные данные на осевое сжатие, множитель Rbn – нормативные , γb – коэффициент.
Аналогично рассчитывают расчетное сопротивление бетона осевому растяжению:
Rbt=Rbtn/γbt,
где Rbt – расчетные значения на осевое растяжение, множитель Rbtn – нормативные показатели на растяжение, γbt – коэффициент для растяжения.
Учитывая условия, в которых будут эксплуатироваться бетонные конструкции, вводятся и другие коэффициенты γbi, учитывающие эти особенности:
- для непродолжительных статических нагрузок 1;
- для длительных статических нагрузок 0,9;
- элементы, заливаемые вертикально 0,9;
- коэффициенты, отражающие климатические особенности, назначение сооружения, площадь сечения указываются в документации отдельно.
Нормативное сопротивление
До 2001 года единственной характеристикой бетона указывающей на противодействие механической силе, считалась марка, обозначавшаяся буквой «М». Теперь, согласно СНиП 2.03.01 введена другая характеристика, так называемый класс прочности, обозначающаяся буквой «В». Для определения свойств железобетонных и бетонных конструкций были предложены нормативы, согласно СП 52-101-2003.
Для определения класса раствор заливают в куб с ребром 150 мм. Уплотняют его в форме и дают полностью затвердеть при температуре 18-20ºС в течение 28 суток. После этого образец поступает на испытание, и разрушается на специальном прессе. Сопротивление бетона осевой нагрузке, выраженное в МПа и является свойством, по которому определяется данная характеристика. Иногда для определения класса берется призменный образец, высота которого в четыре раза больше ребра основания.
Дополнительно образец подвергается проверке на осевое растяжение, который тоже необходимо учитывать при проведении вычислений.
При правильном определении класса не требуется делать дополнительных испытаний, поскольку они уже занесены в специализированные таблицы.
Используя эти таблицы можно, имея данные на сжатие, сразу определить показатели и на растяжение. По ним ясно видно – этот параметр для любого бетона на растяжение гораздо меньше, чем на сжатие, это обязательно учитывается при проектировании.
Эти параметры для различного класса прочности сводятся в специальную таблицу. Значения могут меняться в зависимости от условий определяемых соответствующими коэффициентами:
Из таблицы видно, что расчетное значение ниже нормативного, поскольку учитывает сторонние факторы, тип воздействия на бетонную конструкцию, возможную неоднородность материала, центр тяжести контура.
При определении противодействия бетона силовому воздействию учитывается его деформация. Для этого берется начальный параметр данной величины и делится на коэффициент, включающий в себя ползучесть, а также поперечную деформацию массива, его температурную деформацию в диапазоне -40 — +50ºС. При вычислении свойств напряженно деформированного элемента используют специальные диаграммы, демонстрирующие предельную нагрузку в зависимости от сечений и расположения детали и вида материала. Эта методика позволяет рассчитывать факторы, приводящие к появлению трещин.
График Зависимости напряжений от деформаций
При определении характеристик железобетонных конструкций применяют методику моделирования наклонных сечений. Учитывается толщина и тип арматуры, отдельно рассчитывается ее прочность.
Заключение
Сопротивление бетона рассчитывается в зависимости от действия на него различных сил, которые могут быть сжимающими, поперечными, изгибающими, а также под местным сжатием. Для внецентренно сжатых и растянутых элементов, находящихся под изгибом, момент рассчитывается для сечений, перпендикулярных их продольной оси.
Для элементов с сечениями в виде прямоугольника, квадрата или тавра применяются формулы, предельной нагрузки каждого элемента, для других сечений используются специальные нелинейные диаграммы.
Расчетное сопротивление позволит подобрать класс прочности и марку этого материала для получения оптимальных эксплуатационных свойств массива, элемента или детали. В отличие от нормативных показателей, данные учитывают геометрические особенности, условия эксплуатации, виды деформаций. Вводятся коэффициенты надежности по бетону, разновидности используемой арматуры и другие характеристики, влияющие на конечную прочность зданий и сооружений, где применяется литой бетон или конструктивные элементы из этого материла.
Источник
Бетонные конструкции изготавливаются в расчете на то, что они способны переносить высокие нагрузки без каких-либо разрушений. Характеристики сооружений из бетона закладываются в проект — это сопротивление бетона сжатию, прочность, плотность, долговечность и т.д. Бетон – материал разнородный, поэтому различные локальные участки конструкции могут обладать разной прочностью и разным сопротивлением к нагрузкам. И расчет прочности необходим, чтобы уточнить нормативные показатели материала. Что такое расчетные параметры, и как их узнают?
Что такое расчетное сопротивление
Этот параметр можно узнать и рассчитать методом простого деления указанных в ГОСТ 12730.0-78 сопротивлений на надежность, которая отражается в виде определенного коэффициента. При вычислениях сопротивления бетона этот коэффициент зависит от типа стройматериала.
График прочности на растяжение по осям
[ads-pc-1]
[ads-mob-2]
Значения расчетных сопротивлений материалов обозначаются, как Rb и Rbt, их показатели можно менять в сторону уменьшения или увеличения методом умножения на коэффициент состояния эксплуатации бетона γbi, который отражает пропорциональность значений от времени прикладывания нагрузки; цикличность нагружений; параметры, свойства и временной отрезок эксплуатации сооружения; метод изготовления; сечение, площадь, и т.д. Узнать конкретное расчётное сопротивление бетона сжатию таблица значений которых отражает математические вычисления, а не физические данные, можно для востребованных промышленностью классов:
Сопротивление, тип | Тип | Расчетные показатели для максимально нагруженных состояний 1-й группы Rb и Rbt, МПа, для разных классов прочности | ||||||
B 10 | B 12,5 | B 15 | B 20 | B 25 | B 30 | B 35 | ||
Сжатие по оси, Rb | Мелкофракционный тяжелый бетон | 6,0 | 7,50 | 8,5 | 11,5 | 14,50 | 17,0 | 19,50 |
Растяжение по оси, RM | Тяжелый бетон | 0,57 | 0,66 | 0,75 | 0,90 | 1,050 | 1,20 | 1,30 |
Как рассчитывается прочность? Существуют определенные значения прочности, заниженные для обеспечения надежности. Эти установленные параметры и есть расчетные показатели, зависящие от фактических результатов испытаний.
Нормативное сопротивление
- Параметр отражает показатель материала по сжатию (сжатие бетонной призмы по оси при испытаниях) Rbn и Rbtn по растяжению;
- Значения для максимально нагруженных состояний 1-го состава Rb, Rbt и 2-го состава Rb,ser, Rbt,ser вычисляются методом деления этих параметров согласно ГОСТ на прикрепленные коэффициенты надежности – соответственно gbc и gbt;
- Значение по ГОСТ Rbn, зависящие от класса по прочности на сжатие;
- Установленное значение Rbtn при неконтролируемой прочности материала определяется по классу прочности, и воспринимается как обеспеченная прочность при растяжении;
- Согласно п.2 параметры 1-го типа Rb и Rbt могут изменяться. Для этого Rb и Rbt умножаются на параметр gbi;
- Параметры 2-го типа Rb,ser и Rbt,ser зависят от показателя gbi, и при нормальной нагруженности материала в 1,0. Для некоторых легких бетонов используются и другие показатели Rb,ser и Rbt,ser по согласованию с проектировщиками;
- Первоначальный модуль упругости Eb определяется по таблице ниже. Если бетонный объект эксплуатируется в климатическом регионе IVА, и не обеспечен защитой от УФ излучения, то параметры Eb умножаются на 0,85.
Тип сопротивления | Rb,n и Rbt,n согласно ГОСТ, и Rb,ser и Rbt,ser (Мпа) | ||||||||||
B 10 | B 15 | B 20 | B 25 | B 30 | B 35 | B 40 | B 45 | B 50 | B 55 | B 60 | |
Сжатие по оси Rb,m и Rb,ser | 7,5 | 11 | 15 | 18,50 | 22,0 | 25,50 | 29 | 32 | 36 | 39,50 | 43 |
Растяжение по оси Rbt,r и Rbt,ser | 0,85 | 11 | 1,35 | 1,55 | 1,75 | 1,95 | 29 | 2,25 | 2,45 | 2, | 2,75 |
Структура бетона
[ads-pc-1]
[ads-mob-3]
В таблице указано расчетное сопротивление бетона осевому сжатию по СП 52-101-2003
Тип сопротивления | Сопротивление согласно ГОСТ Rb и Rbt,и Rb,ser и Rbt,ser (Мпа) | ||||||||||
B 10 | B 15 | B 20 | B 25 | B 30 | B 35 | B 40 | B 45 | B 50 | B 55 | ||
Сжатие по оси Rb | 6 | 8,5 | 11,5 | 14,5 | 17 | 19,5 | 22 | 25 | 27,5 | 30 | |
Растяжение по оси Rbt | 0,56 | 0,75 | 0,9 | 1,050 | 1,15 | 1,30 | 1,40 | 1,50 | 1,60 | 1,70 |
Сопротивление по ГОСТ или СП зависит от прочности испытываемых образцов (кубиковая нормативная прочность).
Rb и Rbt для осевых растяжений при определении класса бетона устанавливается с зависимостью от прочности согласно ГОСТ испытываемых образцов типов бетона с контролем приготовления раствора. Нормативная кубиковая и призменная прочность на сжатие и на растяжение имеют определенное соотношение, устанавливаемое при стандартных испытаниях бетонных образцов.
Требования к автоклавному бетону
Марка | Первоначальный модуль упругости Еb автоклавного материала | |||||
Сжатие и растяжение, МПа | ||||||
B 1,5 | B 2 | B 2,5 | B 3,5 | B 5 | B 7,5 | |
D 300 | 900 | 1000 | ||||
D 400 | 1100 | 1200 | 1300 | |||
D 500 | 1300 | 1500 | 1600 | 1700 | ||
D 600 | 1500 | 1600 | 1700 | 1800 | 1900 | |
D 700 | 1900 | 2200 | 2500 | 2900 | 3200 | 3400 |
Ячеистый бетон
[ads-pc-1]
[ads-mob-2]
Рассчитывая класс бетона по прочности на растяжение по осям, стандартные значения Rb и Rbt берутся как свойство класса, выраженное в цифрах, которые идут после символа «B». Определяющие свойства деформаций бетона — это:
- Максимальные относительные деформации при сжатии-растяжении по осям: Ɛbo,n и Ɛbto,n;
- Первоначальный модуль упругости Eb,n;
Дополнительные свойства деформаций бетона:
- Первичный коэффициент поперечных деформаций «v»;
- Сдвиг по модулю «G»;
- Коэффициент температурных деформаций αbt;
- Деформации, зависящие от свойств ползучести раствора Ɛсг;
- Деформации, зависящие от усадки материала εshr.
Характеристики деформаций определяются, исходя из класса и марки, плотности и технологических показателей бетона. Механические показатели бетона для напряженного состояния по одной оси в общих случаях характеризуются диаграммой деформирования материала, отражающей зависимость напряжений Σb,n (Σbt,n) и относительных продольных деформаций Εb,n (Εbt,n) бетона в растянутом или сжатом состоянии при импульсном приложении нагрузки.
Виды деформаций
[ads-pc-1]
[ads-mob-3]
При расчетах прочности бетонных конструкций основные характеристики, влияющие на конечный результат – это окончательное и фактическое сопротивление бетона Rb и Rbt. Характеристики прочности, полученные в результате вычислений, рассчитываются как стандартные сопротивления материала Rb,m и Rb,ser, а также Rbt,r и Rbt,ser, поделенные на gbc и gbt и. Показания gbc и gbt зависят от типа бетона, просчитанных свойств материала, предельных состояний при различных нагрузка, но должны не выходить за следующие рамки:
Для коэффициента gbc:
- 1,3 — для максимальных и минимальных нагрузок 1-го состава бетона;
- 1,0 — для максимальных и минимальных нагрузок 2-го состава;
Для коэффициента gbt:
- 1,5 — для максимальных и минимальных нагрузок 1-го состава при определении класса на сжатие по осям;
- 1,3 – для максимальных и минимальных нагрузок 1-го состава при определении класса на растяжение по осям;
- 1,0 — для максимальных и минимальных нагрузок 2-го состава бетона.
Для максимальных и минимальных нагрузок 1-го и 2-го состава показатели деформаций материала берутся из их значений, указанных в ГОСТ и СНиП. Также при вычислении значений R свойства нагрузок, влияние атмосферных осадков, температуры, напряженности материала и конструкции из бетона корректируются коэффициентами условий эксплуатации конструкции γbi, и отражаются на расчетных деформационных и прочностных параметрах строительного материала.
Диаграммы деформаций конструкций из бетона вычерчиваются, опираясь на метод замены стандартных показателей на расчетные параметры.
Диаграммы деформаций
[ads-pc-1]
[ads-mob-3]
Характеристики прочности при двухосном или трехосном приложении напряжений определяются по типу и классу бетона, исходя из связи между максимальными и минимальными значениями напряжений, приложенных в 2-х или 3-х перпендикулярах. Деформирование бетонного объекта вычисляется по плоскому или объемному приложению напряжений. Если конструкция имеет дисперсно-армированное состояние, то для нее принимаются характеристики, как для обычных бетонных или ж/б сооружений.
При работе с фибробетоном его свойства определяются, исходя из физико-эксплуатационных характеристик смеси, также берется в расчет форма, габариты, геометрия и распределение фибр в составе, сцепление фибр с раствором. Определяющие характеристики прочности и возможности деформирования армирования — это стандартные параметры прочности и свойства деформации.
Неупругие деформации
Основное определение прочности материала армирования при нагрузках на растяжение-сжатие — это установленное ГОСТ сопротивление Rs,n, которое принимается равным показателю эксплуатационного предела текучести или такого же условного предела, который будет соответствовать окончательному удлинению или укорочению, принимаемому как 0,2%. Также ограничение Rs,n происходит по показателям, соответствующим деформирующим нагрузкам, которые равны максимальным показателям деформации бетона вокруг сжатой арматуры при укорочении.
Понятия прочности и класса
Прочность по марке использовалась до введения евростандартов, и ею обозначалась средняя устойчивость на сжатие. Новые СНиП регламентируют классы прочности при сжатии-растяжении.
Нарастание прочности
[ads-pc-1]
[ads-mob-3]
Понятие «класс» означает сопротивление материала согласно СП сжатию бетонного куба по оси. Эталонные габариты куба – 15 х 15 см. Из-за неравномерности распределения параметров прочности по всему материалу использование среднеарифметических показателей прочности не рекомендовано, так как на локальном участке объективная прочность может быть меньше.
Основная характеристика длительности эксплуатации бетонного объекта – это его класс. При определении класса принимается во внимание и осевое сжатие, и осевое растяжение, значения которых определяются с запасом прочности через удельное сопротивление элементов.
Предельно допустимые напряжения
Формула определения сопротивления нагрузкам сжатия: R = Rn /g;
Где g – коэффициент прочности материала, принимаемый как 1,0. Чем однороднее бетон, тем коэффициент g ближе к единице.
Дополнительные параметры для расчетов:
- Электрическое удельное сопротивление раствора;
- Влагостойкость – ее параметры необходимы, чтобы знать максимальное давление жидкой среды, которое может выдержать бетон;
- Воздухопроницаемость связана с прочностью, и имеет постоянное значение в диапазоне 3-130 c/см3.
- Морозостойкость обозначается символом «F» и числами от 50 до 1000, означающими количество циклов заморозки-разморозки;
- Теплопроводность влияет на плотность материала. Чем больше воздуха в бетоне, тем меньше плотность и теплопроводность;
Визуальное выявление трещин в образцах
[ads-pc-1]
[ads-mob-3]
Продольные трещины в испытываемых призменных образцах появляются под действием поперечных нагрузок. Прочность образца увеличивается при стягивании бетона хомутами, но разрушение произойдет в любом случае, и трещины появятся позже. Такое отодвигание разрушения во времени называется эффектом обоймы. Хомут, сжимающий элемент, можно заменить укладкой в раствор поперечной стержневой арматуры, металлической сетки или спирали из стали.
- Марка обозначается символом «M», и означает среднюю кубиковую прочность Rв, которая выражается в кг/см2. Следующие за латинской буквой числа – это прочность;
- Класс – символ «B», обозначающий кубиковую прочность (Мпа) с вероятностью 0,95. Неоднородность прочности материала колеблется в пределах Rmin-Rmax.
Предварительно напряженные железобетонные конструкции
Конструкция или элемент из железобетона, нагруженный искусственно созданными внутренними напряжениями, направленные обратно реальным физическим нагрузкам при эксплуатации объекта. Искусственные напряжения появляются после внедрения в тело конструкции предварительно напряженной арматуры. Сделать это можно так:
- При заливке раствора в конструкции оставляют пазы, в которые укладывается арматура (сетка, стержни, спирали). Набор прочности завершается натягиванием арматурной сетки или другого типа арматуры с креплением концов по бокам элемента. Натягивание арматуры сопровождается сжатием бетона. Усилие натяжения обозначается символом «Р»;
- Арматура натягивается перед заливкой раствора (т.н. натяжение на упоры), а после отвердения смеси отпускается, что и создает напряжение сжатия.
Еще один вариант создания предварительного напряжения – заливка специального напрягающего цемента марки НЦ. Затвердевая, объем конструкции из цемента этой марки увеличивается, при этом растягивается и арматура, создавая напряжение растяжения.
Источник