Расчетное напряжение на растяжение
2.4. РАСЧЕТЫ НА ПРОЧНОСТЬ ПРИ РАСТЯЖЕНИИ Основной задачей расчета конструкции на растяжение является обеспечение ее прочности в условиях эксплуатации. Условие прочности – оценка прочности элемента конструкции, сводящаяся к сравнению расчетных напряжений с допускаемыми: σ≤рσ[р ]; σ с ≤[ с],σ (2.9) где σр и σс – наибольшие расчетные растягивающие и сжимающие напряжения; [σр] и [σс] – допускаемые напряжения при растяжении и сжатии. Допускаемое напряжение – наибольшее напряжение, которое можно допустить в элементе конструкции при условии его безопасной, долговечной и надежной работы: Здесь σпред – предельное напряжение (состояние), при котором конструкция перестает удовлетворять эксплуатационным требованиям; им мо- гут быть предел текучести, предел прочности, предел выносливости, пре- дел ползучести и др. Для конструкций из пластичных материалов при определении допускаемых напряжений используют предел текучести σт (рис. 2.4, а). Это связано с тем, что в случае его превышения деформации резко возрастают при незначительном увеличении нагрузки и конструкция перестает удовлетворять условиям эксплуатации. Допускаемое напряжение в этом случае определяют как Для хрупких материалов (чугун, бетон, керамика) где σвр и σвс – пределы прочности при растяжении и сжатии (рис. 2.4, б). Здесь [n] – нормативный коэффициент запаса прочности. В зависимости от той предельной характеристики, с которой сравнивают расчетное напряжение σ, различают [nт] – нормативный коэффициент запаса прочности по отношению к пределу текучести σт и [nв] – нормативный коэффициент запаса прочности по отношению к пределу прочности σв. Запас прочности – отношение предельно допустимой теоретической нагрузки к той нагрузке, при которой возможна безопасная работа конструкции с учетом случайных перегрузок, непредвиденных дефектов и недостоверности исходных данных для теоретических расчетов. Нормативные коэффициенты запаса прочности зависят: − от класса конструкции (капитальная, временная), − намечаемого срока эксплуатации, − условий эксплуатации (радиация, коррозия, загнивание), − вида нагружения (статическое, циклическое, ударные нагрузки) − неточности задания величины внешних нагрузок, − неточности расчетных схем и приближенности методов расчета − и других факторов. Нормативный коэффициент запаса прочности не может быть единым на все случаи жизни. В каждой отрасли машиностроения сложились свои подходы, методы проектирования и приемы технологии. В изделиях общего машиностроения принимают [nт] = 1,3 – 2,2; [nв] = 3 – 5. Вероятность выхода из строя приближенно можно оценить с помощью коэффициента запаса в условии прочности: n = 1 соответствует вероятности невыхода из строя 50 %; n = 1,2 соответствует вероятности невыхода из строя 90 %; n = 1,5 соответствует вероятности невыхода из строя 99 %; n = 2 соответствует вероятности невыхода из строя 99,9 %. Для неответственных деталей n = 2 много. Для ответственных – мало. Так для каната подъемного лифта это означает на 1000 подъемов одно падение. При расчете конструкций на прочность встречаются три вида задач, которые вытекают из условия прочности а) поверочный расчет (проверка прочности). Известны усилие N и площадь A. Вычисляют σ = N/A и, сравнивая его с предельным σт или σв (для пластичного и хрупкого материалов соответственно), находят фактический коэффициент запаса прочности который затем сопоставляют с нормативным [n]; б) проектный расчет (подбор сечения). Известны внутреннее усилие N и допускаемое напряжение [σ]. Определяют требуемую площадь поперечного сечения стержня в) определение грузоподъемности (несущей способности). Известны площадь А и допускаемое напряжение [σ]. Вычисляют внутреннее усилие N≤N[ ] = ⋅[σ]A, (2.15) а затем в соответствие со схемой нагружения – величину внешней нагрузки F ≤ [F].
Источник
Предельным напряжением считают напряжение, при котором в материале возникает опасное состояние (разрушение или опасная деформация).
Для пластичных материалов предельным напряжением считают предел текучести, т.к. возникающие пластические деформации не исчезают после снятия нагрузки:
Для хрупких материалов, где пластические деформации отсутствуют, а разрушение возникает по хрупкому типу (шейки не образуется), за предельное напряжение принимают предел прочности:
Для пластично-хрупких материалов предельным напряжением считают напряжение, соответствующее максимальной деформации 0,2% (сто,2):
Допускаемое напряжение — максимальное напряжение, при котором материал должен нормально работать.
Допускаемые напряжения получают по предельным с учетом запаса прочности:
где [σ] — допускаемое напряжение; s — коэффициент запаса прочности; [s] — допускаемый коэффициент запаса прочности.
Примечание. В квадратных скобках принято обозначать допускаемое значение величины.
Допускаемый коэффициент запаса прочности зависит от качества материала, условий работы детали, назначения детали, точности обработки и расчета и т. д.
Он может колебаться от 1,25 для простых деталей до 12,5 для сложных деталей, работающих при переменных нагрузках в условиях ударов и вибраций.
Особенности поведения материалов при испытаниях на сжатие:
1. Пластичные материалы практически одинаково работают при растяжении и сжатии. Механические характеристики при растяжении и сжатии одинаковы.
2. Хрупкие материалы обычно обладают большей прочностью при сжатии, чем при растяжении: σвр < σвс.
Если допускаемое напряжение при растяжении и сжатии различно, их обозначают [σр] (растяжение), [σс] (сжатие).
Расчеты на прочность при растяжении и сжатии
Расчеты на прочность ведутся по условиям прочности — неравенствам, выполнение которых гарантирует прочность детали при данных условиях.
Для обеспечения прочности расчетное напряжение не должно превышать допускаемого напряжения:
Расчетное напряжение а зависит от нагрузки и размеров поперечного сечения, допускаемое только от материала детали и условий работы.
Существуют три вида расчета на прочность.
1. Проектировочный расчет — задана расчетная схема и нагрузки; материал или размеры детали подбираются:
— определение размеров поперечного сечения:
— подбор материала
по величине σпред можно подобрать марку материала.
2. Проверочный расчет — известны нагрузки, материал, размеры детали; необходимо проверить, обеспечена ли прочность.
Проверяется неравенство
3. Определение нагрузочной способности (максимальной нагрузки):
Примеры решения задач
Прямой брус растянут силой 150 кН (рис. 22.6), материал — сталь σт = 570 МПа, σв = 720 МПа, запас прочности [s] = 1,5. Определить размеры поперечного сечения бруса.
Решение
1. Условие прочности:
2. Потребная площадь поперечного сечения определяется соотношением
3. Допускаемое напряжение для материала рассчитывается из заданных механических характеристик. Наличие предела текучести означает, что материал — пластичный.
4. Определяем величину потребной площади поперечного сечения бруса и подбираем размеры для двух случаев.
Сечение — круг, определяем диаметр.
Полученную величину округляем в большую сторону d = 25 мм, А = 4,91 см2.
Сечение — равнополочный уголок № 5 по ГОСТ 8509-86.
Ближайшая площадь поперечного сечения уголка — А = 4,29 см2 (d = 5 мм). 4,91 > 4,29 (Приложение 1).
Контрольные вопросы и задания
1. Какое явление называют текучестью?
2. Что такое «шейка», в какой точке диаграммы растяжения она образуется?
3. Почему полученные при испытаниях механические характеристики носят условный характер?
4. Перечислите характеристики прочности.
5. Перечислите характеристики пластичности.
6. В чем разница между диаграммой растяжения, вычерченной автоматически, и приведенной диаграммой растяжения?
7. Какая из механических характеристик выбирается в качестве предельного напряжения для пластичных и хрупких материалов?
8. В чем различие между предельным и допускаемым напряжениями?
9. Запишите условие прочности при растяжении и сжатии. Отличаются ли условия прочности при расчете на растяжение и расчете на сжатие?
10.
Ответьте на вопросы тестового задания.
Не нашли то, что искали? Воспользуйтесь поиском гугл на сайте:
Источник
Сопротивление материалов
Решение задач на растяжение и сжатие
Расчеты на прочность при растяжении и сжатии
В результате проведения механических испытаний устанавливают предельные напряжения, при которых происходит нарушение работы или разрушение деталей конструкции.
Предельным напряжением при статической нагрузке для пластичных материалов является предел текучести, для хрупких — предел прочности.
Для обеспечения прочности деталей необходимо, чтобы возникающие в них в процессе эксплуатации наибольшие напряжения были меньше предельных.
Отношение предельного напряжения к напряжению, возникающему в процессе работы детали, называют коэффициентом запаса прочности и обозначают буквой s:
s = σпред / σ,
где σ = N / А – реальное напряжение, возникающее в элементе конструкции.
Недостаточный коэффициент запаса прочности может привести к потере работоспособности конструкции, а избыточный (слишком высокий) — к перерасходу материала и утяжелению конструкции. Минимально необходимый коэффициент запаса прочности называют допускаемым, и обозначают [s].
Отношение предельного напряжения к допускаемому запасу прочности называют допускаемым напряжением, и обозначают [σ]:
[σ] = σпред / [s].
Условие прочности в деталях и конструкциях заключается в том, что наибольшее возникающее в ней напряжение (рабочее напряжение) не должно превышать допускаемого:
σmax≤ [σ], или в другом виде: s ≥ [s].
Если допускаемые напряжения при растяжении и сжатии различны, их обозначают [σр] и [σс].
Расчетная формула при растяжении и сжатии имеет вид:
σ = N / А ≤ [σ]
и читается следующим образом: нормальное напряжение в опасном сечении, вычисленное по формуле σ = N /А, не должно превышать допустимое.
На практике расчеты на прочность проводят для решения задач:
— проектный расчет, при котором определяются минимальные размеры опасного сечения;
— проверочный расчет, при котором определяется рабочее напряжение и сравнивается с предельно допустимым;
-определение допускаемой нагрузки при заданных размерах опасного сечения.
***
Растяжение под действием собственного веса
Если ось бруса вертикальна, то его собственный вес вызывает деформацию растяжения или сжатия.
Рассмотрим брус постоянного сечения весом G, длиной l, закрепленный верхним концом и нагруженный только собственным весом G (рис.1).
Для определения напряжений в поперечном сечении на переменном расстоянии z от нижнего конца применим метод сечений.
Рассмотрим равновесие нижней части бруса и составим уравнение равновесия:
Σ Z = 0; Nz — Gz = 0, откуда:
Nz = Gz = γ А z,
где γ — удельный вес материала бруса, А – площадь его поперечного сечения, z — длина части бруса от свободного конца до рассматриваемого сечения.
Напряжения, возникающие в сечениях бруса, нагруженного собственным весом, определяются по формуле:
σz = Nz / А = γ А z / А = γ z,
т. е. для нагруженного собственным весом бруса нормальное напряжение не зависит от площади поперечного сечения. Очевидно, что опасное сечение будет находиться в заделке:
σmax = γ l.
Эпюра распределения напряжений вдоль оси бруса представляет собой треугольник.
Если требуется определить максимальную длину бруса, нагруженного собственным весом, используют расчет по предельному допустимому напряжению в сечении:
lпр = [σ] / γ.
***
Статически неопределимые задачи
Иногда в практике расчета конструкций требуется определить неизвестные силовые факторы (например, реакции связей или внутренние силы), при этом количество неизвестных силовых факторов превышает количество возможных уравнений равновесия для данной конструкции, и расчет произвести рассмотренными ранее способами не представляется возможным.
Задачи на расчет конструкций, в которых внутренние силовые факторы не могут быть определены с помощью одних лишь уравнений равновесия статики, называют статически неопределимыми. Подобные задачи нередко встречаются при расчете конструкций, подверженных температурным деформациям.
Для решения таких задач помимо уравнений равновесия составляют уравнение перемещений или деформаций.
Рассмотрим невесомый стержень постоянного сечения площадью А, длиной l, жестко защемленный по концам (см. рис. 2).
При нагревании в стержне возникают температурные напряжения сжатия.
Попробуем определить эти напряжения.
Составим для стержня уравнение равновесия:
Σ Z = 0; RС — RВ = 0,
откуда следует, что реакции RС и RВ равны между собой, а применив метод сечений установим, что продольная сила N в сечениях стержня равна неизвестным реакциям:
N = RС = RВ.
Составим дополнительное уравнение, для чего мысленно отбросим правую заделку и заменим ее реакцией RВ, тогда дополнительное уравнение деформации будет иметь вид:
Δlt = ΔlСВ
т. е. температурное удлинение стержня равно его укорочению под действием реакции RB, так как связи предполагаются абсолютно жесткими.
Температурное удлинение стержня определяется по формуле: Δlt = αtl, где α — коэффициент линейного расширения стержня.
Укорочение стержня под действием реакции: ΔlСВ = RB l / (EА).
Приравняв правые части равенств, получим:
αtl = RB l / (EА), откуда RB = αtEА.
Температурные напряжения в реальных конструкциях могут достигать значительных величин. Чтобы исключить их отрицательное влияние на прочность конструкций, прибегают к различным методам. Мосты, например, закрепляют лишь на одном конце (на одном берегу), а второй конец оставляют подвижным.
В длинных трубопроводах, подверженных температурным напряжениям, делают компенсирующие карманы, петли и т. д.
***
Материалы раздела «Растяжение и сжатие»:
- Примеры решения задач по сопромату.
- Основные понятия о деформации растяжения и сжатия.
- Деформации при растяжении и сжатии. Потенциальная энергия деформации растяжения.
Срез
Правильные ответы на вопросы Теста № 6
№ вопроса | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
Правильный вариант ответа | 2 | 1 | 1 | 3 | 3 | 2 | 1 | 3 | 2 | 1 |
Источник
Рассмотрим, как можно применить данные о механических свойствах материалов в практических расчетах инженерных конструкций на прочность.
Известно, что конструкционные материалы можно условно разделить на три основные группы: пластичные, хрупкопластичные и хрупкие.
Механические испытания материалов позволяют определить те напряжения, при которых образец из данного материала теряет свою прочность: разрушается или в нем возникают заметные пластические деформации. Эти напряжения называют предельными или опасными.
В качестве предельных напряжений для указанных трех групп материалов при статическом нагружении принимают следующие механические характеристики:
- -для пластичных материалов (их разрушению предшествует возникновение больших пластических деформаций) — физический ст или условный о0>2 предел текучести, практически одинаковый при растяжении и сжатии;
- — для хрупкопластичных материалов (их разрушение происходит при сравнительно небольших пластических деформациях) — условный предел текучести, значение которого при растяжении и сжатии различно: 0>
- — для хрупких материалов (их разрушение происходит при очень малых пластических деформациях) — предел прочности, значение которого при растяжении и сжатии различно: о, рс.
Для обеспечения’ прочности элементов конструкций необходимо так выбрать их размеры и материал, чтобы возникающие в них при эксплуатационных нагрузках напряжения были меньше предельных. Конечно, если наибольшие рабочие напряжения в детали близки к предельным (хотя и меньше их), прочность детали гарантировать нельзя, так как действующие нагрузки, а следовательно, и напряжения практически никогда- не могут быть установлены совершенно точно; в ряде случаев расчетные напряжения вообще могут быть определены лишь приближенно, возможны отклонения действительных механических характеристик применяемого материала от принятых при расчете.
Отношение предельного напряжения апрсд к наибольшему расчетному напряжению атах, возникающему в элементе конструкции при эксплуатационной нагрузке, обозначают буквой п и называют коэффициентом запаса прочности (или запасом прочности);
Значение п должно быть больше единицы, иначе прочность конструкции будет нарушена. Таким образом, чем больше п, тем прочнее конструкция, тем большим запасом она обладает. В то же время очень большие запасы прочности приводят к перерасходу материала, делают конструкцию тяжелой, неэкономичной.
Поэтому, в зависимости от назначения конструкции и целого ряда других факторов, устанавливают значение минимально необходимого коэффициента запаса прочности. Для обеспечения прочности и долговечности конструкции, а также с учетом опыта эксплуатации аналогичных конструкций запасы прочности нормируются. Нормы прочности есть в строительстве, авиации, энергетике и в других областях техники. В машиностроении для различных деталей нормативный запас прочности находится в пределах 1,5 — [лт] — 2,5 и 2,5 — [и,] — 5.
При расчете элемента конструкции нормативный коэффициент запаса прочности задается заранее. Необходимость введения коэффициента запаса связана с рядом обстоятельств;
- — расчетные нагрузки не вполне достоверны; не исключена возможность перегрузок;
- -способы определения усилий в элементах конструкций в большинстве случаев имеют некоторые условности;
- -размеры сечений имеют отклонения, а также меняются в связи с износом и ржавлением;
- — характеристики прочности и пластичности имеют отклонения для партий одного материала;
- — возможны динамическая нагрузка и концентрация напряжений.
Каждое из приведенных соображений требует введения своего коэффициента запаса. Таким образом, структура коэффициента запаса может быть представлена таким образом:
Прочность элемента конструкции считают обеспеченной, если его расчетный коэффициент запаса прочности не ниже нормативного:
Это неравенство называют условием прочности.
Используя выражение (18), запишем условие прочности в виде
Отсюда можно получить следующую форму записи условия прочности:
Правую часть последнего неравенства называют допускаемым напряжением и обозначают:
Под допускаемым напряжением [ре,>.
Прочность конструкции обеспечена, если возникающее в ней наибольшее напряжение не превышает допускаемого, т. е.
Неравенство (22) так же, как и (19) и (20), называют условием прочности.
Если расчетные напряжения незначительно превысят допускаемые, то это неопасно, так как допускаемое напряжение составляет лишь некоторую часть от предельного напряжения. Обычно считают, что это превышение может составлять до 5% от допускаемого напряжения. Иными словами, в отдельных случаях считают возможным иметь коэффициент запаса прочности несколько меньший, чем требуемый (заданный). Если расчетное напряжение значительно ниже допускаемого, это является свидетельством нерациональности конструкции, перерасхода материала.
В зависимости от цели расчета (постановки задачи) различают три вида расчетов на прочность:
- — проверочный;
- — проектировочный;
- — определение допустимой нагрузки.
Рассмотрим несколько подробнее каждый из трех указанных видов расчета.
При проверочном расчете нагрузка стержня, его материал (включая допускаемое или предельное напряжение) и размеры известны. Определению подлежит наибольшее расчетное напряжение, которое сравнивают с допускаемым напряжением.
Расчетная формула, т. е. условие прочности при растяжении — сжатии, имеет вид:
где Umax — наибольшее по абсолютному значению нормальное напряжение в опасном сечении стержня; N — продольная сила в указанном сечении; А — площадь опасного поперечного сечения; [а] — допускаемое напряжение.
В ряде случаев при проверочном расчеге удобнее сопоставлять не расчетное напряжение с допускаемым напряжением, а сравнивать расчетный коэффициент запаса прочности для опасного сечения с требуемым (или нормативным), т. е. проверять, соблюдается ли неравенство
При проектном расчете нагрузки и материал (допускаемые напряжения) известны, тогда из формулы (23) определяют требуемую площадь сечения стержня А или размеры поперечного сечения:
В некоторых случаях проверочный расчет удобнее вести в форме определения допускаемой нагрузки:
В частности, это целесообразно при изменении режимов тех или иных технологических процессов, когда возникает необходимость в повышении нагрузок существующего оборудования и, следовательно, надо знать их предельно допускаемое по условию прочности значение. При этом размеры стержня и его материал (допускаемое напряжение) известны, определению подлежит нагрузка, которую можно допустить по условию прочности этого стержня.
Источник