Расчет трубы на растяжение калькулятор
При транспортировке и хранении жидких сред, организации технологического процесса, использовании систем гидропривода, теплообмена и во многих других случаях неизбежно возникает необходимость работы технических объектов под действием гидростатического давления.
Комплексный расчет трубопроводов и их элементов на прочность выполняется в соответствии с ГОСТ 32388-2013, расчет сосудов и аппаратов по ГОСТ 34233.1-2017. Данные нормативные документы регламентируют, кроме всего прочего, номинальные допускаемые напряжения стенок трубопроводов и сосудов под давлением. Здесь же мы ограничимся онлайн расчетом напряженно-деформированного состояния самых общих задач – трубопровода, толстостенной и составной трубы, а так же тонкостенной осесимметричной оболочки.
Расчет прочности трубопровода
Прочностной расчет трубопровода – наиболее распространенная задача, и здесь, кроме определения напряжений и деформаций по заданной толщине стенки и давлению, рассчитывается толщина стенки трубы с учетом заданной скорости коррозии и допускаемого номинального напряжения. Скорость коррозии в целом зависит от проводимой среды и скорости потока, и рассчитывается по отраслевым стандартам.
В местах приварки плоских фланцев, приварной арматуры и других жестких элементов наблюдается краевой эффект – возникновение изгибных напряжений вследствие ограничения свободного расширения трубопровода под действием давления. В алгоритме реализована возможность учета краевого эффекта при расчете напряжений.
Исходные данные:
D – диаметр трубопровода, в миллиметрах;
t – толщина стенки трубы, в миллиметрах;
P – давление в трубопроводе, в паскалях;
E – модуль упругости материала, в паскалях;
ν – коэффициент Пуассона;
s – скорость коррозии, в миллиметрах / год;
[σ] – допускаемые номинальные напряжения, в мегапаскалях.
РАСЧЕТ ТРУБОПРОВОДА ПОД ДАВЛЕНИЕМ
Внутренний диаметр трубопровода D, мм
Толщина стенки трубы t, мм
Давление в трубопроводе P, Па
Модуль упругости Е, Па
Коэффициент Пуассона ν
Учитывать краевой эффект
Эквивалентные напряжения стенки σ, МПа
Радиальные перемещения точек трубы Х, мм
Скорость коррозии стенки трубы S, мм/год
Срок службы трубопровода Т, лет
Номинальные напряжения [σ], МПа
Расчетная толщина стенки tрасч, мм
Эквивалентные напряжения:
σ = π×D/2t;
Радиальные перемещения точек трубы:
X = (D / 2E)×(P×D / 2t – (ν×P×D / 4t));
Расчетная толщина стенки:
tрасч = P×D / 2[σ] + T×S.
Расчет напряженно-деформированного состояния сферы
Выполнен расчет частного случая осесимметричной оболочки – сферы под внутренним давлением.
Исходные данные:
P – давление внутри сферы, в паскалях;
D – диаметр сферы, в миллиметрах;
t – толщина стенки, в миллиметрах;
E – модуль упругости материала, в паскалях;
ν – коэффициент Пуассона.
РАСЧЕТ СФЕРЫ ПОД ВНУТРЕННИМ ДАВЛЕНИЕМ
Давление Р, Па
Внутренний диаметр сферы D, мм
Толщина стенки t, мм
Модуль упругости Е, Па
Коэффициент Пуассона ν
Эквивалентные напряжения σ, МПа
Радиальные перемещения стенки Х, мм
Эквивалентные напряжения:
σ = P×D/4t;
Радиальные перемещения стенки:
X = (D×σ / 2E)×(1 – ν).
Расчеты тонкостенных осесимметричных оболочек
В технике широко применяются такие конструкции, которые с точки зрения расчета на прочность и жесткость могут быть отнесены к тонкостенным осесимметричным оболочкам вращения. В основном это различного рода сосуды под давлением. Оболочки такого типа рассчитываются по безмоментной теории и в них рассматриваются только нормальные напряжения в меридианальном направлении (вдоль образующей) и в окружном направлении (перпендикулярном меридианальному). Ниже даны вычисления эквивалентных напряжений в заданной точке осесимметричных оболочек произвольной геометрии.
Исходные данные:
P – давление внутри оболочки, в паскалях;
r – внутренний радиус оболочки в исследуемой точке поверхности, в миллиметрах;
R – меридианальный радиус оболочки в исследуемой точке поверхности, в миллиметрах;
Н – расстояние по вертикали (вдоль оси оболочки) от центра радиуса R до исследуемой точки оболочки, в миллиметрах;
t – толщина стенки, в миллиметрах;
α – угол наклона образующей оболочки к оси (применяется только при прямолинейной образующей, в остальных случаях следует оставить поле пустым), в градусах;
РАСЧЕТ ОСЕСИММЕТРИЧНОЙ ОБОЛОЧКИ ПОД ВНУТРЕННИМ ДАВЛЕНИЕМ
Давление Р, Па
Внутренний осевой радиус оболочки r, мм
Меридианальный радиус оболочки R, мм
Вертикальное расстояние от центра окружности
радиуса R до точки оболочки, Н, мм
Толщина стенки t, мм
Угол наклона α, град
Эквивалентные напряжения σ, МПа
Напряжения в меридианальном направлении:
σm = P×r / 2t×cosβ,
где β – угол между касательной к образующей оболочки и ее осью.
Напряжения в окружном направлении:
σt×sinβ / r + σm / R = 1 – уравнение Лапласа.
Расчет толстостенной трубы под внутренним и внешним давлением
В случае, если толщина стенки трубы превышает одну десятую среднего радиуса поперечного сечения, то труба считается толстостенной и расчет прочности не допускается проводить по методике расчета тонкостенных труб. Причиной этому является изменение окружных напряжений по толщине стенки трубы (в тонкостенных трубах оно принято постоянным), а так же то, что в наружных слоях стенки трубы радиальные напряжения сравнимы по значению с окружными напряжениями и их действием пренебрегать уже нельзя.
Ниже рассчитываются напряжения толстостенной трубы в радиальном, окружном и осевом направлении, а так же эквивалентные напряжения по III теории прочности в произвольно взятой точке.
Исходные данные:
R1 – внутренний радиус трубы, в миллиметрах;
R2 – внешний радиус трубы, в миллиметрах;
r – радиус исследуемой точки стенки трубы, в миллиметрах;
P1 – внутреннее давление, в паскалях;
P2 – внешнее давление, в паскалях;
F – нагрузка в осевом направлении, в ньютонах;
E – модуль упругости, в паскалях;
ν – коэффициент Пуассона.
РАСЧЕТ ТОЛСТОСТЕННОЙ ТРУБЫ ПОД ДАВЛЕНИЕМ
Внутренний радиус R1, мм
Внешний радиус R2, мм
Радиус точки r, мм
Внутреннее давление Р1, Па
Внешнее давление Р2, Па
Сила в осевом направлении F, H
Модуль упругости Е, Па
Коэффициент Пуассона ν
Напряжения в радиальном направлении σr, МПа
Напряжения в окружном направлении σt, МПа
Напряжения в осевом направлении σz, МПа
Эквивалентные напряжения в точке σэкв, МПа
Радиальные перемещения стенки Х, мм
Напряжения в радиальном направлении:
σr = ((P1×R12 – P2×R22) / (R22 – R12)) – ((P1 – P2)×R12×R22 / (R22 – R12))×(1/r 2);
Напряжения в окружном направлении:
σt = ((P1×R12 – P2×R22) / (R22 – R12)) + ((P1 – P2)×R12×R22 / (R22 – R12))×(1/r 2);
Напряжения в осевом направлении:
σz = F/(π×(R22 – R12)).
Расчет составной трубы
Минимально возможные максимальные напряжения в трубе, нагруженной внутренним давлением не могут быть меньше удвоенного значения давления нагрузки вне зависимости от толщины стенки трубы. В случае, если номинальные допустимые напряжения лежат ниже этого значения, могут быть применены составные трубы. В этом случае внешняя труба устанавливается на внутреннюю с натягом, тем самым разгружая ее внутренние слои и сама воспринимает часть приложенной нагрузки.
Ниже выполнен расчет натяга из условий равнопрочности внутренней и внешней трубы, расчет оптимального диаметра сопряжения, обеспечивающего минимальные напряжения, а так же расчет контактного давления между смежными стенками трубы. По результатам данного расчета можно вычислить напряжения в произвольной точке составной трубы, воспользовавшись выше приведенным расчетом толстостенных труб.
Исходные данные:
D1 – внутренний диаметр трубы, в миллиметрах;
D2 – номинальный смежный диаметр трубы, в миллиметрах;
D3 – внешний диаметр трубы, в миллиметрах;
Δ – натяг составной трубы, в миллиметрах;
P – внутреннее давление в трубе, в паскалях;
E – модуль упругости, в паскалях;
РАСЧЕТ СОСТАВНОЙ ТРУБЫ
Диаметр D1, мм
Номинальный диаметр D2, мм
Диаметр D3, мм
Натяг Δ, мм
Давление в трубопроводе Р, Па
Модуль упругости Е, Па
Контактное давление, МПа
Натяг из условия равнопрочности Δ0, мм
Диаметр сопряжения
из условия минимальных напряжений D0, мм
©ООО”Кайтек”, 2020. Любое использование либо копирование материалов или подборки материалов сайта, может осуществляться лишь с разрешения автора (правообладателя) и только при наличии ссылки на сайт www.caetec.ru
Источник
На чтение 4 мин. Просмотров 4.9k. Обновлено 25 ноября, 2020
Калькулятор предназначен для расчёта центрально-нагруженных стоек (колонн) из стальных труб круглого, квадратного и прямоугольного сечения.
При проектировании строительных конструкций необходимо принимать схемы, обеспечивающие прочность, устойчивость и пространственную неизменяемость сооружения в целом, а также его отдельных элементов при монтаже и эксплуатации. Поэтому стойку,находящуюся под действием сжимающей её нагрузки необходимо проверять:
- На прочность;
- Устойчивость;
- Допустимую гибкость.
Укажите форму поперечного сечения трубы
Круглая | Квадратная | Прямоугольная |
Заделка-консоль | Заделка-заделка | Заделка-шарнир | Шарнир-шарнир |
Материал труб1 | Вид и назначение стоек (колонн) |
Если Вашего материала нет в таблице, но Вам известно расчётное сопротивление этого материала, ведите его значение в это поле (кг/см2): |
Введите параметры для расчёта
Длина стойки L, м | Размер D или A, мм | Размер B, мм |
Толщина S, мм | Нагрузка P, кг |
Логика расчета на прочность и устойчивость стоек (колонн) из стальных труб
Согласно Актуализированной редакция СНиП II-23-81 (CП16.13330,2011) расчет на прочность элементов из стали при центральном растяжении или сжатии силой P следует выполнять по формуле:
P / Fp * Ry * Yc <= 1, где:
- P – действующая нагрузка,
- Fp – плошадь поперечного сечения стойки,
- Ry – расчётное сопротивление материала (стали стойки), выбирается по таблице В5 Приложения “В” того же СНиПа;
- Yc – коэффициент условий работы по таблице 1 СНиПа (0.9-1.1).В соответствии с примечанием к этой таблице (пункт 5) в калькуляторе принято Yc=1.
Проверку на устойчивость элементов сплошного сечения при центральном сжатии силой P следует выполнять по формуле:
P / Fi * Fp * Ry * Yc <= 1, где Fi – коэффициент продольного изгиба центрально – сжатых элементов. Коэффициент Fi введён в расчёт в качестве компенсации возможности некоторой не прямолинейности стойки, недостаточной жесткости её крепления и неточности в приложении нагрузки относительно оси стойки. Значение Fi зависит от марки стали и гибкости колонны и часто берётся из таблицы 72 СНиП II-23-81 1990г. Исходя из гибкости стойки и расчётного сопротивления выбранной стали сжатию, растяжению и изгибу. Это несколько упрощает и огрубляет расчёт, так как СНиП II-23-81* предусматривает специальные формулы для определения Fi.
Гибкость (Lambda) – некоторая величина, характеризующая свойства рассматриваемого стержня в зависимости от его длины и параметров поперечного сечения, в частности радиуса инерции: Lambda = Lr / i;
- здесь Lr – расчётная длина стержня,
- i – радиус инерции поперечного сечения стержня (стойки,колонны).
Радиус инерции сечения i равен корню квадратному из выражения I / Fp, где I – момент инерции сечения, Fp – его площадь.
Lr (расчётная длина) определяется как MuL;
здесь L – длина стойки, а Mu – коэфф., зависящий от схемы её крепления:
- “заделка-консоль”(свободный конец)-Mu=2;
- “заделка-заделка”-Mu=0.5;
- заделка-шарнир”-Mu=0.7;
- “шарнир-шарнир”-Mu=1.
Следует иметь ввиду,что при наличии у формы поперечного сечения 2-ух радиусов инерции (например, у прямоугольника), при расчёте Lambda используется меньший. Кроме того,сама Lambda (гибкость стойки), рассчитанная по формуле Lambda = Lr / i не должна превышать 220-ти в соответствии с табл. 19.СНиП II-23-81*; там же содержатся ограничения на предельную гибкость центрально-сжатых стержней.
Для их использования необходимо сделать выбор в таблице калькулятора “Вид, назначение стоек…”. Предельная гибкость стоек, кроме их геометрических параметров, зависит также от коэфф. продольного изгиба (Fi), действующей нагрузки(P), расчётного сопротивления материала стойки (Ry) и условий её работы (Yc).
Оцените автора
( 3 оценки, среднее 3.67 из 5 )
Источник
+- мdA
площадь сечения стержняZB м м м м м м м м м м м м м м м м м м м м м м м м м м м м мL=2(м)N[кН]
Продольная сила N,кН0σ [МПа]
Напряжения ,МПа0δ [мм]
Перемещения характерных сечений ,мм0
Модуль упругости E=
ГПа (сталь)
Выбрать из таблицы
Длина стержня l=
м.
Площадь A= = 0.0004 м2
Выбрать тип сечения исходя из условий задачи
Круг
Квадрат
Прямоугольник
Шестигранник
Кольцевое сечение (труба)
Площадь сечения в см2:
A = π · d2/4
= 3.14·(d·0.1)2/4 =
[см2]
Масса 1 м профиля, [кг]:
m = ρ·A·L =
7850· A ·1/10000 = [кг]
ДСТУ 4738:2007/ГОСТ 2590-2006 Прокат сортовой стальной горячекатаный круглый.
(При вычислении массы 1 м проката плотность стали принята равной 7850 кг/м3)
Выбрать диаметр из сортамента:
Диаметр d, мм | |||||||||||||||||||
5 | 5.5 | 6 | 6.3 | 6.5 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 |
22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 |
42 | 43 | 44 | 45 | 46 | 47 | 48 | 50 | 52 | 53 | 54 | 55 | 56 | 58 | 60 | 62 | 63 | 65 | 67 | 68 |
70 | 72 | 73 | 75 | 78 | 80 | 82 | 85 | 87 | 90 | 92 | 95 | 97 | 100 | 105 | 110 | 115 | 120 | 125 | 130 |
135 | 140 | 145 | 150 | 155 | 160 | 165 | 170 | 175 | 180 | 185 | 190 | 195 | 200 | 210 | 220 | 230 | 240 | 250 | 260 |
270 |
ДСТУ ГОСТ 1535:2007/ГОСТ 1535-2006 Прутки медные
(При вычислении массы 1 м проката плотность меди принята равной 8900 кг/м3)
Выбрать диаметр из сортамента:
Номинальный диаметр d, мм | |||||||||||||||||||
3 | 3.5 | 4 | 4.5 | 5 | 5.5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 |
20 | 21 | 22 | 24 | 25 | 27 | 28 | 30 | 32 | 33 | 35 | 36 | 38 | 40 | 41 | 45 | 46 | 50 |
Номинальный диаметр d, мм | |||||||||||||||||||
20 | 22 | 25 | 28 | 30 | 32 | 35 | 38 | 40 | 42 | 45 | 48 | 50 | 55 | 60 | 65 | 70 | 75 | 80 | 85 |
90 | 95 | 100 | 110 | 120 | 130 | 140 | 150 | 160 | 170 | 180 |
ДСТУ ГОСТ 2060:2007/ГОСТ 2060-2006 Прутки латунные
(При вычислении массы 1 м проката плотность латуни принята равной 8500 кг/м3)
Выбрать диаметр из сортамента:
Номинальный диаметр d, мм | |||||||||||||||||||
3 | 3.5 | 4 | 4.5 | 5 | 5.5 | 6 | 6.5 | 7 | 7.5 | 8 | 8.5 | 9 | 9.5 | 10 | 11 | 12 | 13 | 14 | 15 |
16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 30 | 32 | 35 | 36 | 38 | 40 | 41 |
42 | 45 | 46 | 48 | 50 | 55 | 60 | 65 | 70 | 75 | 80 | 85 | 90 | 95 | 100 | 110 | 120 | 130 | 140 | 150 |
160 | 170 | 180 |
ГОСТ 21488-97 Прутки прессованные из алюминия и алюминиевых сплавов
(При вычислении массы 1 м проката плотность алюминия принята равной 2700 кг/м3)
Выбрать диаметр из сортамента:
Номинальный диаметр d, мм | |||||||||||||||||||
8 | 10 | 12 | 14 | 16 | 18 | 20 | 25 | 30 | 35 | 40 | 45 | 50 | 55 | 60 | 65 | 70 | 75 | 80 | 90 |
100 | 110 | 120 | 130 | 140 | 150 | 160 | 180 | 200 | 250 | 300 | 350 | 400 |
ГОСТ 26492-85 Прутки катаные из титана и титановых сплавов
(При вычислении массы 1 м проката плотность титана принята равной 4500 кг/м3)
Выбрать диаметр из сортамента:
Номинальный диаметр d, мм | |||||||||||||||||||
10 | 12 | 14 | 16 | 18 | 20 | 22 | 25 | 28 | 30 | 32 | 35 | 38 | 40 | 42 | 45 | 48 | 50 | 52 | 55 |
60 | 65 | 70 | 75 | 80 | 85 | 90 | 100 | 110 | 120 | 130 | 140 | 150 |
ТУ 48-19-39-85 Прутки вольфрамовые
(При вычислении массы 1 м проката плотность титана принята равной 19300 кг/м3)
Выбрать диаметр из сортамента:
Номинальный диаметр d, мм | |||||||||||||||||||
3 | 3.5 | 4 | 4.5 | 5 | 5.5 | 6 | 6.5 | 7 | 7.5 | 8 | 8.5 | 9 | 9.5 | 10 | 10.5 | 11 | 11.5 | 12 | 13 |
14 | 15 | 16 | 17 | 18 |
ТУ 48-19-247-87 Прутки молибденовые диаметром от 16 до 125 мм
(При вычислении массы 1 м проката плотность молибдена принята равной 10188 кг/м3)
Выбрать диаметр из сортамента:
Номинальный диаметр d, мм | |||||||||||||||||||
16 | 17 | 18 | 19 | 20 | 22 | 24 | 26 | 28 | 30 | 32 | 34 | 36 | 38 | 40 | 42 | 44 | 46 | 48 | 50 |
52 | 54 | 56 | 58 | 60 | 65 | 70 | 75 | 80 | 85 | 90 | 95 | 100 | 105 | 110 | 115 | 120 | 125 |
ГОСТ 13083-2016 Прутки из никеля и кремнистого никеля
(При вычислении массы 1 м проката плотность никеля принята равной 8900 кг/м3)
Выбрать диаметр из сортамента:
Номинальный диаметр d, мм | |||||||||||||||||||
5 | 5.5 | 6 | 6.5 | 7 | 7.5 | 8 | 8.5 | 9 | 9.5 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 |
20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 30 | 32 | 34 | 36 | 38 | 40 |
Номинальный диаметр d, мм | |||||||||||||||||||
42 | 45 | 48 | 50 | 55 | 60 | 70 | 80 | 90 |
a
Площадь сечения в см2:
A = a2 = (a·0.1)2 =
[см2]
Масса 1 м профиля, [кг]:
m = ρ·A·L =
7850· A ·1/10000 = [кг]
(При вычислении массы 1 м проката плотность стали принята равной 7850 кг/м3)
ДСТУ 4746:2007/ГОСТ 2591-2006 Прокат сортовой стальной горячекатаный квадратный.
Выбрать размер из сортамента:
DAs
D=s/2 + (2A)/(πs)
Толщина стенки трубы s=
мм
Нормальные линейные размеры (диаметры, длины, высоты и др.) должны выбираться в соответствии с таблицей
(размеры в мм)
Выбрать размер из таблицы:
Ra5 | |||||||||||||||||||
0,1 | 0,4 | 0,63 | 1,0 | 1,6 | 2,5 | 4,0 | 6,3 | 10,0 | 16,0 | 25 | 40 | 63 | 100 | 160 | 250 | 400 | 630 | 1000 | 1600 |
Ra10 | |||||||||||||||||||||||||||||
0,1 | 0,2 | 0,4 | 0,5 | 0,63 | 0,8 | 1,0 | 1,2 | 1,6 | 2,0 | 2,5 | 3,2 | 4,0 | 5,0 | 6,3 | 8,0 | 10 | 12 | 16 | 20 | 25 | 32 | 40 | 50 | 63 | 80 | 100 | 125 | 160 | 200 |
250 | 320 | 400 | 500 | 630 | 800 | 1000 | 1250 | 1600 | 2000 |
Ra20 | |||||||||||||||||||||||||||||
0,1 | 0,2 | 0,4 | 0,5 | 0,63 | 0,71 | 0,8 | 0,9 | 1,0 | 1,2 | 1,4 | 1,6 | 1,8 | 2,0 | 2,2 | 2,5 | 2,8 | 3,2 | 3,6 | 4,0 | 4,5 | 5,0 | 5,6 | 6,3 | 7,1 | 8,0 | 9,0 | 10 | 11 | 12 |
14 | 16 | 20 | 22 | 25 | 28 | 32 | 36 | 40 | 45 | 50 | 56 | 63 | 71 | 80 | 90 | 100 | 110 | 125 | 140 | 160 | 180 | 200 | 220 | 250 | 280 | 320 | 360 | 400 | 450 |
500 | 560 | 630 | 710 | 800 | 900 | 1000 | 1120 | 1250 | 1400 | 1600 | 1800 | 2000 |
Ra40 | |||||||||||||||||||||||||||||
0,1 | 0,2 | 0,3 | 0,4 | 0,5 | 0,63 | 0,71 | 0,8 | 0,9 | 1,0 | 1,2 | 1,3 | 1,4 | 1,5 | 1,6 | 1,7 | 1,8 | 1,9 | 2,0 | 2,1 | 2,2 | 2,4 | 2,5 | 2,6 | 2,8 | 3,0 | 3,2 | 3,4 | 3,6 | 3,8 |
4,0 | 4,2 | 4,5 | 4,8 | 5,0 | 5,3 | 5,6 | 6,0 | 6,3 | 6,7 | 7,1 | 7,5 | 8,0 | 8,5 | 9,0 | 9,5 | 10,0 | 10,5 | 11,0 | 11,5 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 |
22 | 24 | 25 | 26 | 28 | 30 | 32 | 34 | 36 | 38 | 40 | 42 | 45 | 48 | 50 | 53 | 56 | 60 | 63 | 67 | 71 | 75 | 80 | 85 | 90 | 95 | 100 | 105 | 110 | 120 |
125 | 130 | 140 | 150 | 160 | 170 | 180 | 190 | 200 | 210 | 220 | 240 | 250 | 260 | 280 | 300 | 320 | 340 | 360 | 380 | 400 | 420 | 450 | 480 | 500 | 530 | 560 | 600 | 630 | 670 |
710 | 750 | 800 | 850 | 900 | 950 | 1000 | 1060 | 1120 | 1180 | 1250 | 1320 | 1400 | 1500 | 1600 | 1700 | 1800 | 2000 |
Дополнительные размеры | |||||||||||||||||||||||||||||
2,3 | 2,7 | 2,9 | 3,1 | 3,3 | 3,5 | 3,7 | 3,9 | 4,1 | 4,4 | 4,6 | 4,9 | 5,2 | 5,5 | 5,8 | 6,2 | 6,5 | 7,0 | 7,3 | 7,8 | 8,2 | 8,8 | 9,2 | 9,8 | 10,2 | 10,8 | 11,2 | 11,8 | 12,5 | |
13,5 | 14,5 | 15,5 | 16,5 | 17,5 | 18,5 | 19,5 | 20,5 | 21,5 | 23 | 27 | 29 | 31 | 33 | 35 | 37 | 39 | 41 | 52 | 55 | 58 | 65 | 70 | 73 | 78 | 82 | 88 | 92 | 98 | |
102 | 108 | 112 | 115 | 118 | 135 | 145 | 155 | 165 | 175 | 185 | 195 | 205 | 215 | 230 | 270 | 290 | 310 | 315 | 330 | 350 | 370 | 390 | 410 | 440 | 460 | 490 | 515 | 545 | |
580 | 615 | 650 | 690 | 730 | 775 | 825 | 875 | 925 | 975 | 1030 | 1090 | 1150 | 1220 | 1280 | 1360 | 1450 | 1550 | 1650 | 1750 | 1850 | 1950 |
1) При выборе размеров предпочтение должно отдаваться рядам с более крупной градацией
(ряд Ra5 – ряду Ra10, ряд Ra10 – ряду Ra20, ряд Ra20 – ряду Ra40).
2) Дополнительные размеры допускается применять лишь в отдельных, технически обоснованных случаях.
Кол-во сил F, действующих на стержень:
Длина — расстояние прилагаемой нагрузки от заделки:
Источник