Расчет стержней при растяжении сжатии примеры
Внутренние усилия при растяжении-сжатии.
Осевое (центральное) растяжение или сжатие прямого бруса вызывается внешними силами, вектор равнодействующей которых совпадает с осью бруса. При растяжении или сжатии в поперечных сечениях бруса возникают только продольные силы N. Продольная сила N в некотором сечении равна алгебраической сумме проекции на ось стержня всех внешних сил, действующих по одну сторону от рассматриваемого сечения. По правилу знаков продольной силы N принято считать, что от растягивающих внешних нагрузок возникают положительные продольные силы N, а от сжимающих — продольные силы N отрицательны (рис. 5).
Чтобы выявить участки стержня или его сечения, где продольная сила имеет наибольшее значение, строят эпюру продольных сил, применяя метод сечений, подробно рассмотренный в статье:
Анализ внутренних силовых факторов в статистически определимых системах
Ещё настоятельно рекомендую взглянуть на статью:
Расчёт статистически определимого бруса
Если разберёте теорию в данной статье и задачи по ссылкам, то станете гуру в теме «Растяжение-сжатие» =)
Напряжения при растяжении-сжатии.
Определенная методом сечений продольная сила N, является равнодействующей внутренних усилий распределенных по поперечному сечению стержня (рис. 2, б). Исходя из определения напряжений, согласно выражению (1), можно записать для продольной силы:
где σ — нормальное напряжение в произвольной точке поперечного сечения стержня.
Чтобы определить нормальные напряжения в любой точке бруса необходимо знать закон их распределения по поперечному сечению бруса. Экспериментальные исследования показывают: если нанести на поверхность стержня ряд взаимно перпендикулярных линий, то после приложения внешней растягивающей нагрузки поперечные линии не искривляются и остаются параллельными друг другу (рис.6, а). Об этом явлении говорит гипотеза плоских сечений (гипотеза Бернулли): сечения, плоские до деформации, остаются плоскими и после деформации.
Так как все продольные волокна стержня деформируются одинаково, то и напряжения в поперечном сечении одинаковы, а эпюра напряжений σ по высоте поперечного сечения стержня выглядит, как показано на рис.6, б. Видно, что напряжения равномерно распределены по поперечному сечению стержня, т.е. во всех точках сечения σ = const. Выражение для определения величины напряжения имеет вид:
Таким образом, нормальные напряжения, возникающие в поперечных сечениях растянутого или сжатого бруса, равны отношению продольной силы к площади его поперечного сечения. Нормальные напряжения принято считать положительными при растяжении и отрицательными при сжатии.
Деформации при растяжении-сжатии.
Рассмотрим деформации, возникающие при растяжении (сжатии) стержня (рис.6, а). Под действием силы F брус удлиняется на некоторую величину Δl называемую абсолютным удлинением, или абсолютной продольной деформацией, которая численно равна разности длины бруса после деформации l1 и его длины до деформации l
Отношение абсолютной продольной деформации бруса Δl к его первоначальной длине l называют относительным удлинением, или относительной продольной деформацией:
При растяжении продольная деформация положительна, а при сжатии – отрицательна. Для большинства конструкционных материалов на стадии упругой деформации выполняется закон Гука (4), устанавливающий линейную зависимость между напряжениями и деформациями:
где модуль продольной упругости Е, называемый еще модулем упругости первого рода является коэффициентом пропорциональности, между напряжениями и деформациями. Он характеризует жесткость материала при растяжении или сжатии (табл. 1).
Таблица 1
Модуль продольной упругости для различных материалов
Абсолютная поперечная деформация бруса равна разности размеров поперечного сечения после и до деформации:
Соответственно, относительную поперечную деформацию определяют по формуле:
При растяжении размеры поперечного сечения бруса уменьшаются, и ε’ имеет отрицательное значение. Опытом установлено, что в пределах действия закона Гука при растяжении бруса поперечная деформация прямо пропорциональна продольной. Отношение поперечной деформации ε’ к продольной деформации ε называется коэффициентом поперечной деформации, или коэффициентом Пуассона μ:
Экспериментально установлено, что на упругой стадии нагружения любого материала значение μ = const и для различных материалов значения коэффициента Пуассона находятся в пределах от 0 до 0,5 (табл. 2).
Таблица 2
Коэффициент Пуассона.
Абсолютное удлинение стержня Δl прямо пропорционально продольной силе N:
Данной формулой можно пользоваться для вычисления абсолютного удлинения участка стержня длиной l при условии, что в пределах этого участка значение продольной силы постоянно. В случае, когда продольная сила N изменяется в пределах участка стержня, Δl определяют интегрированием в пределах этого участка:
Произведение (Е·А) называют жесткостью сечения стержня при растяжении (сжатии).
Механические свойства материалов.
Основными механическими свойствами материалов при их деформации являются прочность, пластичность, хрупкость, упругость и твердость.
Прочность — способность материала сопротивляться воздействию внешних сил, не разрушаясь и без появления остаточных деформаций.
Пластичность – свойство материала выдерживать без разрушения большие остаточные деформации. Неисчезающие после снятия внешних нагрузок деформации называются пластическими.
Хрупкость – свойство материала разрушаться при очень малых остаточных деформациях (например, чугун, бетон, стекло).
Идеальная упругость – свойство материала (тела) полностью восстанавливать свою форму и размеры после устранения причин, вызвавших деформацию.
Твердость – свойство материала сопротивляться проникновению в него других тел.
Рассмотрим диаграмму растяжения стержня из малоуглеродистой стали. Пусть круглый стержень длинной l0 и начальным постоянным поперечным сечением площади A0 статически растягивается с обоих торцов силой F.
Диаграмма сжатия стержня имеет вид (рис. 10, а)
где Δl = l — l0 абсолютное удлинение стержня; ε = Δl / l0 — относительное продольное удлинение стержня; σ = F / A0 — нормальное напряжение; E — модуль Юнга; σп — предел пропорциональности; σуп — предел упругости; σт — предел текучести; σв — предел прочности (временное сопротивление); εост — остаточная деформация после снятия внешних нагрузок. Для материалов, не имеющих ярко выраженную площадку текучести, вводят условный предел текучести σ0,2 — напряжение, при котором достигается 0,2% остаточной деформации. При достижении предела прочности в центре стержня возникает локальное утончение его диаметра («шейка»). Дальнейшее абсолютное удлинение стержня идет в зоне шейки ( зона местной текучести). При достижении напряжением предела текучести σт глянцевая поверхность стержня становится немного матовой – на его поверхности появляются микротрещины (линии Людерса-Чернова), направленные под углом 45° к оси стержня.
Расчеты на прочность и жесткость при растяжении и сжатии.
Опасным сечением при растяжении и сжатии называется поперечное сечение бруса, в котором возникает максимальное нормальное напряжение. Допускаемые напряжения вычисляются по формуле:
где σпред — предельное напряжение (σпред = σт — для пластических материалов и σпред = σв — для хрупких материалов); [n] — коэффициент запаса прочности. Для пластических материалов [n] = [nт] = 1,2 … 2,5; для хрупких материалов [n] = [nв] = 2 … 5, а для древесины [n] = 8 ÷ 12.
Расчеты на прочность при растяжении и сжатии.
Целью расчета любой конструкции является использование полученных результатов для оценки пригодности этой конструкции к эксплуатации при минимальном расходе материала, что находит отражение в методах расчета на прочность и жесткость.
Условие прочности стержня при его растяжении (сжатии):
При проектном расчете определяется площадь опасного сечения стержня:
При определении допускаемой нагрузки рассчитывается допускаемая нормальная сила:
Расчет на жесткость при растяжении и сжатии.
Работоспособность стержня определяется его предельной деформацией [ l ]. Абсолютное удлинение стержня должно удовлетворять условию:
Часто дополнительно делают расчет на жесткость отдельных участков стержня.
Следующая важная статья теории:
Изгиб балки
Источник
Задача. Определить напряжение в стальных стержнях, поддерживающих абсолютно жёсткую балку. Материал — сталь Ст3, α=60°, [σ]=160МПа.
- Схему вычерчиваем в масштабе. Нумеруем стержни.
В шарнирно-неподвижной опоре А возникают реакции RА и НА. В стержнях 1 и 2 возникают усилия N1 и N2. Применим метод сечений. Замкнутым разрезом вырежем среднюю часть системы. Жесткую балку покажем схематично — линией, усилия N1 и N2 направим от сечения.
Составляем уравнения равновесия
Количество неизвестных превышает количество уравнений статики на 1. Значит, система один раз статически неопределима, и для её решения потребуется одно дополнительное уравнение. Чтобы составить дополнительное уравнение, следует рассмотреть схему деформации системы. Шарнирно-неподвижная опора А остается на месте, а стержни деформируются под действием силы.
Схема деформаций
По схеме деформаций составим условие совместности деформаций из рассмотрения подобия треугольников АСС1и АВВ1. Из подобия треугольников АВВ1 и АСС1 запишем соотношение:
, где ВВ1=Δℓ1 (удлинение первого стержня)
Теперь выразим СС1 через деформацию второго стержня. Укрупним фрагмент схемы.
Из рисунка видно, что СС2 = СС1·cos (90º-α)= СС1·sinα.
Но СС2= Δℓ2 , тогда Δℓ2= СС1·sinα, откуда:
Превратим условие совместности деформации (4) в уравнение совместности деформации с помощью формулы Гука для деформаций. При этом обязательно учитываем характер деформаций (укорочение записываем со знаком «-», удлинение со знаком «+»).
Тогда уравнение совместности деформаций будет:
Сокращаем обе части на Е, подставляем числовые значения и выражаем N1 через N2
Подставим соотношение (6) в уравнение (3), откуда найдем:
N1 = 7,12кН (растянут),
N2 =-20,35кН (сжат).
Определим напряжения в стержнях.
Задача решена.
Расчет бруса с зазором. Для статически неопределимого стального ступенчатого бруса построить эпюры продольных сил, нормальных напряжений, перемещений. Проверить прочность бруса. До нагружения между верхним концом и опорой имел место зазор Δ=0,1 мм. Материал – сталь Ст 3, модуль продольной упругости Е=2·105 МПа, допускаемое напряжение [σ]=160МПа.
- После нагружения зазор закроется и реакции возникнут и в нижней, и в верхней опоре. Покажем их произвольно, это реакции RA и RВ. Составим уравнение статики.
∑у=0 RA — F1 + F2 — RВ=0
В уравнении 2 неизвестных, а уравнение одно, значит задача 1 раз статически неопределима, и для ее решения требуется 1 дополнительное уравнение.
Это уравнение совместности деформаций. В данном случае совместность деформаций участков бруса состоит в том, что изменение длины бруса (удлинение) не может превзойти величины зазора, т.е. Δℓ=Δ, это условие совместности деформации.
- Теперь разобьем брус на участки и проведем на них сечения – их 4 по количеству характерных участков. Каждое сечение рассматриваем отдельно, двигаясь в одном направлении – от нижней опоры вверх. В каждом сечении выражаем силу N через неизвестную реакцию. Направляем N от сечения.
Выпишем отдельно значения продольных сил в сечениях:
N1 = — RА
N2 = 120 — RА
N3 = 120 — RА
N4 = 30- RА
3. Вернемся к составлению условия совместности деформации. Имеем 4 участка, значит
Δℓ1+ Δℓ2+ Δℓ3+ Δℓ4= Δ (величина зазора).
Используя формулу Гука для определения абсолютной деформации составим уравнение совместности деформаций, — это именно то дополнительное уравнение, которое необходимо для решения задачи.
Попробуем упростить уравнение. Помним, что величина зазора Δ=0,1 мм = 0,1·10-3 м
Е – модуль упругости, Е=2·105МПа=2·108кПа.
Подставляем вместо N их значения, записанные через опорную реакцию RА.
4. Вычисляем N и строим эпюру продольных сил.
N1=- RА=-47,5кН
N2=120 — RА=72,5кН
N3=120 — RА=72,5кН
N4=30- RА=-17,5кН.
5. Определяем нормальные напряжения σ по формуле и строим их эпюры
Строим эпюру нормальных напряжений.
Проверяем прочность.
σmax= 90,63 МПа < [σ]=160МПа.
Прочность обеспечена.
- Вычисляем перемещения, используя формулу Гука для деформаций.
Идем от стены А к зазору.
Получили величину ω4, равную зазору ,это является проверкой правильности определения перемещений.
Строим эпюру перемещений.
Задача решена.
Для статически определимого стального ступенчатого бруса построить эпюры продольных сил, нормальных напряжений и перемещений. Проверить прочность бруса. Материал – сталь Ст 3, модуль продольной упругости Е=2·105 МПа, допускаемое напряжение [σ]=160МПа.
- Произвольно направляем реакцию стены RAи определяем её из уравнения равновесия.
∑у=0 — RA+F3 — F2+ F1 =0
RA= F3 — F2+ F1 =60-25+10=45кН.
- Определяем продольные силы N методом сечений. Сечение расставляем на характерных участках (между изменениями). Подсказкой может служить размерная нитка – сколько отсечено отрезков, столько будет и участков с сечениями. В нашей задаче их 6.Каждое сечение рассматриваем отдельно с любой стороны на наше усмотрение. Силу N направляем от сечения.
Строим эпюру N. Все значения откладываем перпендикулярно от нулевой линии в выбранном нами масштабе.
Положительные значения условимся откладывать вправо от нулевой линии, отрицательные — влево.
- Определяем нормальные напряжения σ в сечениях по формуле . Внимательно смотрим, по какой площади проходит сечение.
Строим эпюру σ.
Проверим прочность по условию прочности
|σmax|= 75 МПа < [σ]=160МПа.
Прочность обеспечена.
4. Определяем перемещение бруса.
Расчет ведется от стены, в которой перемещение равно нулю ωА= 0.
Формула Гука для определения абсолютной деформации участка
Определяем перемещения:
Строим эпюру перемещений ω.
Задача решена.
На стальной стержень действует продольная сила Р и собственный вес (γ = 78 кН/м3). Найти перемещение сечения 1 –1.
Дано: Е =2·105 МПа, А = 11 см2, а = 3,0 м, в = 3,0 м, с= 1,3 м, Р = 2 кН.
Учет собственного веса
Перемещение сечения 1 –1 будет складываться из перемещения от действия силы Р, от действия собственного веса выше сечения и от действия собственного веса ниже сечения. Перемещение от действия силы Р будет равно удлинению участка стержня длиной в+а ,расположенного выше сечения 1 –1. Нагрузка Р вызывает удлинение только участка а, так как только на нем имеется продольная сила от этой нагрузки. Согласно закону Гука удлинение от действия силы Р будет равно: Определим удлинение от собственного веса стержня ниже сечения 1 –1.
Обозначим его как . Оно будет вызываться собственным весом участка с и весом стержня на участке а+в
Определим удлинение от собственного веса стержня выше сечения 1 –1.
Обозначим его как Оно будет вызываться собственным весом участка а+в
Тогда полное перемещение сечения 1-1:
Т.е, сечение 1-1 опустится на 0,022 мм.
Абсолютно жесткий брус опирается на шарнирно неподвижную опору и прикреплен к двум стержням при помощи шарниров. Требуется: 1) найти усилия и напряжения в стержнях, выразив их через силу Q; 2) Найти допускаемую нагрузку Qдоп, приравняв большее из напряжений в двух стержнях к допускаемому напряжению ; 3) найти предельную грузоподъемность системы , если предел текучести 4) сравнить обе величины, полученные при расчете по допускаемым напряжениям и предельным нагрузкам. Размеры: а=2,1 м, в=3,0 м, с=1,8 м, площадь поперечного сечения А=20 см2
Данная система один раз статически неопределима. Для раскрытия статической неопределимости необходимо решить совместно уравнение равновесия и уравнение совместности деформаций стержней.
(1) -уравнение равновесия
Составим деформационную схему — см. рис. Тогда из схемы: (2)
По закону Гука имеем:
Длины стержней: Тогда получим:
Подставим полученное соотношение в уравнение (1):
Определяем напряжение в стержнях:
Допускаемая нагрузка:
В предельном состоянии: Подставим полученные соотношения в уравнение (1):
При сравнении видим увеличение нагрузки:
Колонна, состоящая из стального стержня и медной трубы, сжимается силой Р. Длина колонны ℓ. Выразить усилия и напряжения, возникающие в стальном стержне и медной трубе.Проведем сечение 1 – 1 и рассмотрим равновесие отсеченной части