Расчет профиля на растяжение

где N — продольная растягивающая сила, действующая на стержень;
F — площадь поперечного сечения стержня;
σ — нормальные напряжения, возникающие в рассматриваемом поперечном сечении стержня в ответ на действие растягивающей продольной силы;
Rр — расчетное сопротивление материала стержня растяжению (для некоторых материалов расчетные сопротивления растяжению, сжатию, изгибу и т.п. могут различаться).
Визуально это может выглядеть так:
Рисунок 525.1. Нормальные напряжения при растяжении прямолинейного стержня.
На рисунке 525.1.а) мы видим прямолинейный стержень длиной l, показанный серым цветом, к которому приложена растягивающая сила N. При этом точка приложения силы находится на нейтральной оси стержня, совпадающей с осью х, показанной пунктирной линией.
Для упрощения расчетов заменяем опору А соответствующей опорной реакцией А (рис.525.1.б). Исходя из условий статического равновесия:
∑х = А + N = 0 (149.5.2)
А = — N (525.2)
Это означает, что опорная реакция A равна по значению растягивающей силе N, но направлена в противоположную сторону.
Если взглянуть на эту ситуацию под некоторым углом, то она будет выглядеть так, как показано на рисунке 525.1.в). На этом рисунке мы видим, что нормальные напряжения — это реакция материала на действие растягивающей силы и направлены эти напряжения в сторону, противоположную действию сил. Другими словами нормальные напряжения препятствуют деформации растяжения, и направлены на то, чтобы вернуть материалу исходную форму. Иногда для упрощения восприятия нормальные напряжения, возникающие при растяжении, принято изображать направленными от сечения, как показано на рисунке 525.1.г), а сжимающие напряжения — направленными к сечению. С точки зрения физики такая замена вполне допустима, так как нормальные напряжения (внутренние силы) можно рассматривать как плоскую нагрузку, распределенную по всей площади сечения (внешнюю силу). Как правило растягивающие нормальные напряжения рассматриваются как положительные, а сжимающие — как отрицательные.
Сечение стержня, показанное на рисунке 525.1.в) розовым цветом, является перпендикулярным нейтральной оси стержня и называется поперечным сечением.
Как следует из формулы (525.1) и из приведенного рисунка, длина стержня l на значение нормальных напряжений никак не влияет. А вот параметры поперечного сечения стержня: ширина сечения b и высота сечения h, если сечение прямоугольное, очень даже влияют, так как от этих параметров зависит площадь F поперечного сечения.
Примечание: конечно же поперечное сечение стержня далеко не всегда имеет прямоугольную форму, как показано на рисунке 525.1.в). Поперечное сечение может быть и круглым, и овальным, и ромбическим, и вообще иметь любую сколь угодно сложную форму, тем не менее форма поперечного сечения никак на значение нормальных напряжений не влияет (во всяком случае такое допущение принимается в теории сопротивления материалов), а влияет только площадь сечения, определить которую тем сложнее, чем более сложной является форма поперечного сечения.
Проверить данные постулаты теории сопротивления материалов очень легко и просто. Достаточно взять нитку и попробовать ее разорвать (вариант а)). Затем разорвать нитки с с той же катушки, но б) более короткую и в) более длинную, чем в первом случае. Во всех трех случаях усилие, которое необходимо приложить для разрыва нитки, будет примерно одинаковым.
Но если одну из ниток сложить вдвое и попробовать разорвать, то усилие, необходимое для разрыва нитки, увеличится в 2 раза. Все потому, что условная площадь сечения стержня, работающего на растяжение, увеличится при складывании нитки в 2 раза.
Таким образом известная пословица: «где тонко, там и рвется» в переводе на язык теории сопротивления материалов будет звучать примерно так: «при действии растягивающих нормальных напряжений разрушение материала, обладающего постоянным сопротивлением растяжению по всей длине, будет происходить в сечении с минимальной площадью». Это особенно актуально для стержней с изменяющейся по длине площадью сечения.
С учетом различных факторов формула (525.1) может иметь другой вид:
Nγn/Fn = σ ≤ Rрγs (512.1.2)
где γn — коэффициент надежности по нагрузке (как правило больше единицы), Fn — минимальная площадь сечения (с учетом возможных ослаблений отверстиями, пазами и т.п.), γs — коэффициент условий работы (как правило меньше единицы).
Т.е. теория сопротивления материалов допускает, что нормальные напряжения в стержне могут быть равны расчетному сопротивлению материала на растяжение, умноженному на коэффициент условий работы.
Пример расчета стержня на растяжение
Дано: На стальной стержень (см. рис.525.1.а)) с расчетным сопротивлением Rp = 2250 кг/см2 действует продольная растягивающая сила N = 30 тонн. Коэффициент надежности по нагрузке γn = 1.05, коэффициент условий работы γs = 0.9. Собственным весом стержня в виду его незначительности по сравнению с действующей нагрузкой для упрощения расчетов можно пренебречь. Предполагается, что нагрузка прикладывается по всей площади поперечного сечения стержня, т.е. возникающие нормальные напряжения будут равномерно распределенными по всей площади сечения.
Требуется: Подобрать диаметр стержня.
Решение:
1. Определяем требуемую площадь сечения стержня, преобразовав формулу (525.1.2)
F = Nγn/Rpγs = 30000·1.05/(2250·0.9) = 15.56 см2.
2. Определяем диаметр стержня
d = √4F/п = √4·15.56/3.14 = 4.45 см
Как видим сам расчет занимает гораздо меньше времени, чем описание физических характеристик используемых данных и даже формулировка условия задачи.
Источник
2.4. РАСЧЕТЫ НА ПРОЧНОСТЬ ПРИ РАСТЯЖЕНИИ Основной задачей расчета конструкции на растяжение является обеспечение ее прочности в условиях эксплуатации. Условие прочности – оценка прочности элемента конструкции, сводящаяся к сравнению расчетных напряжений с допускаемыми: σ≤рσ[р ]; σ с ≤[ с],σ (2.9) где σр и σс – наибольшие расчетные растягивающие и сжимающие напряжения; [σр] и [σс] – допускаемые напряжения при растяжении и сжатии. Допускаемое напряжение – наибольшее напряжение, которое можно допустить в элементе конструкции при условии его безопасной, долговечной и надежной работы: Здесь σпред – предельное напряжение (состояние), при котором конструкция перестает удовлетворять эксплуатационным требованиям; им мо- гут быть предел текучести, предел прочности, предел выносливости, пре- дел ползучести и др. Для конструкций из пластичных материалов при определении допускаемых напряжений используют предел текучести σт (рис. 2.4, а). Это связано с тем, что в случае его превышения деформации резко возрастают при незначительном увеличении нагрузки и конструкция перестает удовлетворять условиям эксплуатации. Допускаемое напряжение в этом случае определяют как Для хрупких материалов (чугун, бетон, керамика) где σвр и σвс – пределы прочности при растяжении и сжатии (рис. 2.4, б). Здесь [n] – нормативный коэффициент запаса прочности. В зависимости от той предельной характеристики, с которой сравнивают расчетное напряжение σ, различают [nт] – нормативный коэффициент запаса прочности по отношению к пределу текучести σт и [nв] – нормативный коэффициент запаса прочности по отношению к пределу прочности σв. Запас прочности – отношение предельно допустимой теоретической нагрузки к той нагрузке, при которой возможна безопасная работа конструкции с учетом случайных перегрузок, непредвиденных дефектов и недостоверности исходных данных для теоретических расчетов. Нормативные коэффициенты запаса прочности зависят: − от класса конструкции (капитальная, временная), − намечаемого срока эксплуатации, − условий эксплуатации (радиация, коррозия, загнивание), − вида нагружения (статическое, циклическое, ударные нагрузки) − неточности задания величины внешних нагрузок, − неточности расчетных схем и приближенности методов расчета − и других факторов. Нормативный коэффициент запаса прочности не может быть единым на все случаи жизни. В каждой отрасли машиностроения сложились свои подходы, методы проектирования и приемы технологии. В изделиях общего машиностроения принимают [nт] = 1,3 – 2,2; [nв] = 3 – 5. Вероятность выхода из строя приближенно можно оценить с помощью коэффициента запаса в условии прочности: n = 1 соответствует вероятности невыхода из строя 50 %; n = 1,2 соответствует вероятности невыхода из строя 90 %; n = 1,5 соответствует вероятности невыхода из строя 99 %; n = 2 соответствует вероятности невыхода из строя 99,9 %. Для неответственных деталей n = 2 много. Для ответственных – мало. Так для каната подъемного лифта это означает на 1000 подъемов одно падение. При расчете конструкций на прочность встречаются три вида задач, которые вытекают из условия прочности а) поверочный расчет (проверка прочности). Известны усилие N и площадь A. Вычисляют σ = N/A и, сравнивая его с предельным σт или σв (для пластичного и хрупкого материалов соответственно), находят фактический коэффициент запаса прочности который затем сопоставляют с нормативным [n]; б) проектный расчет (подбор сечения). Известны внутреннее усилие N и допускаемое напряжение [σ]. Определяют требуемую площадь поперечного сечения стержня в) определение грузоподъемности (несущей способности). Известны площадь А и допускаемое напряжение [σ]. Вычисляют внутреннее усилие N≤N[ ] = ⋅[σ]A, (2.15) а затем в соответствие со схемой нагружения – величину внешней нагрузки F ≤ [F].
Источник
Центрально-растянутые элементы. Работа таких элементов под нагрузкой полностью соответствует диаграмме работы материала при растяжении.
Основная проверка для центрально-растянутых элементов — проверка прочности, относящаяся к первой группе предельных состояний.
Напряжения в центрально-растянутом элементе
σ=N / Aп ≤ Ryγc
где N— усилие в элементе от расчетных нагрузок; Aп — площадь поперечного сечения проверяемого элемента за вычетом ослаблений (площадь сечения нетто); Ry — расчетное сопротивление; γc — коэффициент условий работы.
Расчет по формуле выше предупреждает развитие пластических деформаций в ослабленном сечении элементов, выполненных из малоуглеродистых сталей и сталей повышенной прочности.
Расчет на прочность растянутых элементов конструкций из стали с отношением Ruγu > Ry эксплуатация которых возможна и после достижения металлом предела текучести, выполняют по формуле σ=N / Aп ≤ Ruγu / γuγn
где γu — коэффициент надежности при расчете по временному сопротивлению.
Кроме прочности растянутых элементов, необходимо обеспечить их достаточную жесткость, чтобы избежать повреждения элементов при перевозке и монтаже конструкций, а также в процессе их эксплуатации уменьшить провисание элементов от собственного веса и предотвратить вибрацию стержней при динамических нагрузках.
Для этой цели проверяют гибкость растянутых элементов, которая не должна превышать максимально допустимых значений [λ], приведенных в таблице ниже
λ = lef/i ≤ λ
где lef — расчетная длина элемента; i — радиус инерции сечения.
Предельные гибкости [λ] растянутых элементов
Элементы конструкций | Максимальная допускаемая гибкость | ||
в зданиях и сооружениях при нагрузках | в затворах ГТС | ||
статиче ских | динамических, приложенных непосредственно к конструкции | ||
1 | 2 | 3 | 4 |
Пояса и опорные раскосы плоских | |||
ферм | 400 | 250 | 250 |
Прочие элементы ферм | 400 | 350 | 350 |
Нижние пояса подкрановых балок | |||
и ферм | — | 150 | — |
Элементы продольных и поперечных связей в затворах ГТС | 150 | ||
Элементы вертикальных связей между колоннами (ниже подкрановых балок) | 300 | 300 | |
Прочие элементы связей | 400 | 400 | 400 |
Примечания. I. В сооружениях, не подвергающихся динамическим воздействиям. гибкость растянутых элементов проверяют только в вертикальной плоскости. 2. К динамическим нагрузкам, приложенным непосредственно к конструкциям, относятся нагрузки, принимаемые в расчетах на выносливость или в расчетах с учетом коэффициентов динамичности. 3. Для растянутых элементов, в которых при неблагоприятном расположении нагрузки может изменяться знак усилия, предельную гибкость принимают как для сжатых элементов; при этом соединительные прокладки в составных элементах следует устанавливать не реже чем через 40i
Центрально-сжатые элементы. Эти элементы рассчитывают по первой группе предельных состояний, при этом для коротких элементов, длина которых превышает наименьший поперечный размер не более чем в 5-6 раз, проверяют прочность по формуле выше, а для длинных гибких элементов — устойчивость по формуле
σ = N/φA = Ryγc/γn
где А — площадь поперечного сечения брутто; φ — коэффициент продольного изгиба, определяемый по таблице ниже по наибольшей гибкости λ или по формулам в зависимости от условной гибкости элемента; при 0 < λ ≤ 2,5:
Коэффициенты φ продольного изгиба центрально-сжатых стальных элементов
Гибкость элемента | Значения φ при Ry, МПа | |||||
200 | 240 | 280 | 320 | 360 | 400 | |
10 | 0,988 | 0,987 | 0,985 | 0,984 | 0,983 | 0,982 |
20 | 0,967 | 0,962 | 0,959 | 0,955 | 0,952 | 0,949 |
30 | 0,939 | 0,931 | 0,924 | 0,917 | 0,911 | 0,905 |
40 | 0.906 | 0,894 | 0,883 | 0,873 | 0,863 | 0,854 |
50 | 0,869 | 0,852 | 0,836 | 0,822 | 0,809 | 0,796 |
60 | 0,827 | 0,805 | 0,785 | 0,766 | 0,749 | 0,721 |
70 | 0,782 | 0,754 | 0,724 | 0,687 | 0,654 | 0,623 |
80 | 0,734 | 0,686 | 0,641 | 0,602 | 0,566 | 0,532 |
90 | 0,665 | 0,612 | 0,565 | 0,522 | 0,483 | 0,447 |
100 | 0,599 | 0,542 | 0,493 | 0,448 | 0,408 | 0,369 |
110 | 0,537 | 0,478 | 0,427 | 0,381 | 0,338 | 0,306 |
120 | 0,479 | 0,419 | 0,366 | 0,321 | 0,287 | 0,260 |
130 | 0,425 | 0,364 | 0,313 | 0,276 | 0,247 | 0,223 |
140 | 0,376 | 0,315 | 0,272 | 0,240 | 0,215 | 0,195 |
150 | 0,328 | 0,276 | 0,239 | 0,211 | 0,189 | 0,171 |
160 | 0,290 | 0,244 | 0,212 | 0,187 | 0,167 | 0,152 |
170 | 0,259 | 0,218 | 0,189 | 0,167 | 0,150 | 0,136 |
180 | 0,233 | 0,196 | 0,170 | 0,150 | 0,135 | 0,123 |
190 | 0,210 | 0,177 | 0,154 | 0,136 | 0,122 | 0,111 |
200 | 0,191 | 0,161 | 0,140 | 0,124 | 0,111 | 0,101 |
210 | 0,174 | 0,147 | 0,128 | 0,113 | 0,102 | 0,093 |
220 | 0,160 | 0,135 | 0,118 | 0,104 | 0,094 | 0,086 |
Коэффициенты μ для определения расчетных длин колонн и стоек постоянного сечения
Расчетная схема элемента | μ | Расчетная схема элемента | μ |
| 1 2 0,7 |
| 0,5 1,12 0,725 |
Учитывая традиционное соотношение размеров элементов в металлических конструкциях, основной является проверка устойчивости.
По формуле, выведенной Эйлером, потеря устойчивости центрально-сжатым элементом, шарнирно закрепленным по концам (основной случай), происходит при критической силе
Ncr = π2EImin / l2ef
где Е — модуль упругости; Imin — минимальный момент инерции поперечного сечения элемента; lef — расчетная длина стержня.
Соответственно критические напряжения
где imin= √Imin/A — минимальный радиус инерции.
Формула Эйлера выведена в предположении, что Е — величина постоянная, т. е. критические напряжения не превосходят предел пропорциональности материала. Для малоуглеродистых сталей, имеющих предел пропорциональности σel = 200 МПа, из формулы ниже можно получить наименьшую гибкость, при которой применима формула Эйлера:
Гибкость стержней не должна превышать предельных значений для сжатых элементов (таблица ниже).
Значения предельной допустимой гибкости [λ] для сжатых стержней
№ позиции | Элементы конструкций | λ |
1 | 2 | 3 |
1 | Пояса, опорные раскосы и стойки, передающие опорные реакции: а) плоских ферм и пространственных конструкций из труб или парных уголков высотой до 50 м; б) пространственных конструкций из одиночных уголков труб или парных уголков высотой более 50 м | 180-60α 120 |
2 | а) плоских ферм, сварных пространственных конструкций из одиночных уголков, пространственных конструкций из труб или парных уголков; б) пространственных конструкций из одиночных уголков с болтовыми соединениями | 210-60α 220-40α |
3 | Верхние пояса ферм, остающиеся незакрепленными в процессе монтажа | 220 |
4 | Основные колонны | 180-60α |
5 | Второстепенные колонны (стойки фахверка, фонарей и т. п.), элементы решетки колонн, элементы вертикальных связей между колоннами (ниже подкрановых балок) | 210-60α |
6 | Элементы связей (за исключением связей, указанных в п. 5), а также стержни, служащие для уменьшения расчетной длины сжатых стержней, и другие ненагруженные элементы | 200 |
7 | Сжатые и ненагруженные элементы пространственных конструкций таврового и крестового сечения, подверженные воздействию ветровых нагрузок, при проверке гибкости в вертикальной плоскости; элементы связей в затворах ГТС | 150 |
Примечание. α = N / φARyγc ≥ 0,5; в необходимых случаях вместо φ следует применять φе.
Проверка устойчивости центрально-сжатого элемента сводится к сравнению напряжений, равномерно распределенных по сечению, с критическим вычисленным с учетом случайных эксцентриситетов: σ=N/A ≤ σсr. Чтобы не вычислять каждый раз σсr для проверки устойчивости можно пользоваться формулой выше. Смысл коэффициента продольного изгиба φ состоит в том, что он уменьшает расчетное сопротивление до значений, обеспечивающих устойчивое равновесие стержня, т. е. до критического напряжения:
σсr = φ Ry или φ = σсrRy
С учетом влияния случайных эксцентриситетов
где σсr — критическое напряжение стержня, вычисленное по формуле Эйлера; σeсr — критическое напряжение стержня, сжимаемого силой, приложенной с возможным случайным эксцентриситетом е.
Источник
Информация к новости
- Просмотров: 93055
- Автор: PavlovAlexey
- Дата: 3-05-2015, 17:53
3-05-2015, 17:53
Расчет стойки круглого сечения
Диаметр d
мм
Длина стойки L
м
Нагрузка N
кН
Схема:
Прочность:
Устойчивость:
Гибкость:
Расчет стойки круглого полого сечения
Диаметр d
мм
Толщина стенки t
мм
Длина стойки L
м
Нагрузка N
кН
Схема:
Прочность:
Устойчивость:
Гибкость:
Расчет стойки ввиде двутавра
Высота сечения h
мм
Толщина стенки t
мм
Ширина полки b
мм
Толщина полки h1
мм
Длина стойки L
м
Нагрузка N
кН
Схема:
Прочность:
Общая устойчивость:
Устойчивость стенки:
Устойчивость полки:
Гибкость элемента:
Расчет стойки сечением ввиде швеллера
Высота сечения h
мм
Толщина стенки t
мм
Толщина полки t
мм
Ширина полки b
мм
Длина стойки L
м
Нагрузка N
кН
Схема:
Сечение:
Прочность:
Общая устойчивость:
Устойчивость стенки:
Устойчивость полки:
Гибкость:
Расчет стойки сечением ввиде уголка
Ширина полки а
мм
Ширина полки b
мм
Толщина полки t
мм
Длина стойки L
м
Нагрузка N
кН
Схема:
Сечение:
Прочность:
Общая устойчивость:
Устойчивость полки:
Гибкость:
Расчет стойки сечением ввиде прямуогольника
Высота сечения h
мм
Толщина t
мм
Длина стойки L
м
Нагрузка N
кН
Схема:
Прочность:
Устойчивость:
Гибкость:
Расчет стойки сечением ввиде квадрата
Высота сечения h
мм
Длина стойки L
м
Нагрузка N
кН
Схема:
Прочность:
Устойчивость:
Гибкость:
Расчет стойки ввиде профильной трубы
Высот сечения h
мм
Ширина сечения b
мм
Толщина стенки t
мм
Длина стойки L
м
Нагрузка N
кН
Схема:
Прочность:
Общая устойчивость:
Устойчивость стенки:
Гибкость:
На данном калькуляторе вы сможете с легкостью произвести расчет стойки на прочность и устойчивость. В программе есть 3 вида материалов: дерево (3-ех сортов), сталь (10-ти классов) и бетон (9-ти классов). Также в программе есть 8 видов сечения: круг, труба, двутавр, швеллер, уголок, прямоугольное сечение, квадратное сечение и труба квадратного профиля.
Для расчета стойки вам необходимо заполнить геометрические размеры сечения, которые указаны на рисунке, указать длину вашей стойки, выбрать тип расчетной схемы и задать нагрузку на стойку (посмотреть можно в статье Сбор нагрузок либо рассчитать нагрузку онлайн в нашем Сборе нагрузок онлайн).
При нажатии на кнопку «Считать» вам выдаст, проходит ли ваша стойка по прочности и устойчивости. При необходимости более точной информации необходимо нажать на кнопку «Подробнее», которая покажет вам площадь сечения, расчетное сопротивление материала, действующее напряжение, радиус инерции вдоль оси Х и У, гибкости вдоль оси Х и У, расчетную длину стойки и коэффициент продольного изгиба.
При расчете расчетного сопротивления дерева на сжатие учитывались следующие коэффициенты:
Mдл = 0.66 – коэффициент, характеризующий режим работы балки (для совместного действия постоянной и кратковременной снеговой нагрузки).
Mв = 0.9 – нормальные условия эксплуатации (влажность древесины меньше 12%, максимальная относительная влажность воздуха при 20 градусах – 65%)
Mт = 0.8 – для температуры воздуха 50 градусов
Mсс = 0.9 – для срока службы сооружения 75 лет
Пример расчета деревянной стойки можно посмотреть в данной статье .
Последние изменения (20.06.2018):
1. Добавлена проверка по гибкости
2. Добавлен расчет спаренных и крестообразных уголков
3. Добавлен расчет спаренного швеллера в виде короба и в виде двутавра
4. Добавлена проверка уголка через главные оси
Последние изменения (08.09.2018):
1. Добавлена проверка местной устойчивости стенки/полки для двутавра, швеллера, уголка и профильной трубы.
Последние изменения (02.12.2018):
1. Исправлено расчетное сопротивление дерева на сжатие согласно СП 64.13330.2017 «Деревянные конструкции»
2. Исправлены коэффициенты расчетной длины для деревянных конструкций
3. Исправлены замечания с отображением результатов
Источник