Расчет напряжений при растяжении бруса

Геометрических характеристик плоских сечений

Министерство образования и науки Российской Федерации

Федеральное агентство по образованию

Саратовский государственный технический университет

Методические указания

к выполнению контрольной работы 1

по курсу «Сопротивление материалов» для студентов

специальностей 151001.65, 240801.65, 260601.65

Одобрено

редакционно-издательским советом

Саратовского государственного

технического университета

Саратов 2009

ОБЩИЕ ПОЛОЖЕНИЯ

В элементах конструкций при действии внешних сил возникают внутренние силы упругости. При осевом растяжении (сжатии) стержня в его сечениях возникают только продольные силы N. Для их вычисления применяется метод сечений. Растягивающие продольные силы принято считать положительными, а сжимающие – отрицательными. Мерой внутренних сил является напряжение, оно характеризует интенсивность внутренних сил в точках сечения. При осевом растяжении (сжатии) стержня в его поперечных сечениях действуют только нормальные напряжения s. Знак s определяется знаком N. При растяжении стержня его длина увеличивается, а поперечные размеры уменьшаются. При сжатии – наоборот. В результате изменения длины стержня его сечения совершают линейные перемещения d вдоль продольной оси Z.

В задаче 1 проводится вычисление продольных усилий, нормальных напряжений в поперечных сечениях стержня, определение перемещений сечений стержня, а также построение соответствующих эпюр. Так как основной задачей расчета конструкции является обеспечение ее прочности в условиях эксплуатации, то также определяется коэффициент запаса прочности.

Стержни и стержневые системы, в которых внутренние усилия могут быть определены при помощи уравнений равновесия статики, называются статически определимыми. Стержни и системы, внутренние усилия в которых нельзя определить при помощи одних лишь уравнений статики, называются статически неопределимыми. Для их расчета необходимо рассмотреть систему в деформированном состоянии и составить дополнительные уравнения, связывающие перемещения элементов системы, Раскрытие статической неопределимости системы показано в задаче 2.

При центральном растяжении-сжатии и при чистом сдвиге прочность и жесткость стержня зависит от простейшей геометрической характеристики – площади поперечного сечения А. При других видах деформации, например, кручение и изгиб, прочность и жесткость стержня определяются не только площадью поперечного сечения стержня, но и формой сечения. Поэтому для расчета на прочность и жесткость в этих случаях приходится использовать более сложные геометрические характеристики сечений: статические моменты – Sx и Sy; моменты инерции: осевые Jx и Jy, центробежный Jxy, полярный Jp; моменты сопротивления: осевые Wx и Wy, полярный Wp. В задаче 3 определяются геометрические характеристики плоского сечения стержня, состоящего из двух прокатных профилей.

РАСЧЕТ СТУПЕНЧАТОГО БРУСА НА РАСТЯЖЕНИЕСЖАТИЕ

Для ступенчатого стального бруса (рис. 1, а), выполненного из стали марки Ст. 3, имеющей предел текучести sТ = 240 МПа, модуль Юнга
E = 2×105 MПа, требуется:

1. Построить по длине бруса эпюры продольных сил N, нормальных напряжений s и перемещений поперечных сечений d.

2. Вычислить коэффициент запаса прочности бруса n.

Проведем ось z, совпадающую с осью бруса. Направление оси выбираем произвольно. Брус жестко защемлен верхним концом в опоре, в которой возникает опорная реакция R. Направление вектора реакции выбираем произвольно. Величину опорной реакции найдем из уравнения равновесия статики:

∑ FZ = 0; R – F1 + F2 = 0; R = F1 — F2 == 24 кН.

Разделим брус на силовые участки. Границами участков являются поперечные сечения бруса, проходящие через точки приложения внешних нагрузок и сечения, в которых изменяется площадь поперечного сечения бруса. Точки пересечения оси бруса и граничных сечений обозначим буквами B, C, D, K. Получим 3 участка бруса.

Используем метод сечений. На каждом участке проводим сечения I-I,
II-II, III-III. При этом одну из частей бруса (более сложную) мысленно отбрасываем и к плоскости сечения оставшейся части бруса прикладываем вектор продольной силы N в направлении внешней нормали к сечению. Рассматриваем равновесие оставшейся части бруса (рис. 2).

Уравнения равновесия статики на каждом участке запишутся:

на первом участке BC (рис. 2, а) ∑ FZ = 0; R – N1 = 0; N1 = R = 24 кН;

на втором участке CD (рис. 2, б) ∑ FZ = 0; R – N2 = 0; N2 = R = 24 кН;

на третьем участке DK (рис. 2, в) ∑ FZ = 0; N3 + F2 = 0; N3 = — F2 = — 42 кН.

Проведем вертикальную линию (рис. 1, б), параллельную оси y и отложим от нее в выбранном масштабе на каждом участке вдоль этой линии положительные значения продольной силы вправо, а отрицательные влево. Получим эпюру продольных сил N (рис. 1, б).

Определим нормальные напряжения σ, МПа, на каждом участке бруса по формуле

где N, Н – продольная сила на данном участке; А, м2 – площадь поперечного сечения данного участка.

На первом участке BC

На втором участке CD

На третьем участке DK

Проведем вертикальную линию (рис. 1, в), параллельную оси y и отложим в выбранном масштабе на каждом участке вдоль этой линии положительные значения нормальных напряжений вправо, а отрицательные влево. Получим эпюру нормальных напряжений σ.

Найдем удлинения ∆ℓ, м, участков бруса по формуле

,

где N, Н – продольная сила на данном участке; ℓ, м — длина данного участка; Е, МПа – модуль Юнга материала бруса на данном участке; А, см2 – площадь поперечного сечения данного участка.

На первом участке ВС

.

На втором участке CD

.

На третьем участке DK

.

Определим перемещения сечений бруса, проходящих через границы участков. Перемещение сечения, проходящего через точку В равно нулю, так как в жесткой заделке нет перемещений, т. е. δВ = 0.

Между точками B и C находится первый участок. Перемещение сечения C будет равно δC = δВ + ∆ℓ1 = 0 + 0,72 · 10-4 = 0,72 · 10-4 м.

Между точками C и D находится второй участок. Перемещение сечения D будет равно δD = δC + ∆ℓ2 = 0,72 · 10-4 + 0,8 · 10-4 = 1,52 · 10-4 м.

Между точками D и K находится третий участок. Перемещение сечения D будет равно δK = δD + ∆ℓ3 = 1,52 · 1,8 · 10-4 = -1,28 · 10-4 м.

Отложим в выбранном масштабе на граничных сечениях положительные значения перемещений сечений вправо, а отрицательные влево. Получим эпюру перемещений сечений бруса δ (рис. 1, г).

Найдем коэффициент запаса прочности бруса по формуле

РАСЧЕТ СТАТИЧЕСКИ НЕОПРЕДЕЛИМОЙ

СТЕРЖНЕВОЙ СИСТЕМЫ

Абсолютно жесткий брус (рис. 3) закреплен с помощью шарнирно-неподвижной опоры и двух стержней и нагружен силой Q. Требуется:

1. найти усилия и напряжения в стержнях, выразив их через силу Q;

Читайте также:  Как долго болит растяжение ноги

2. из расчета по допускаемым напряжениям найти допускаемую нагрузку [Q], приравняв большее из напряжений в двух стержнях допускаемому напряжению [σ] = 160 МПа;

3. из расчета по допускаемым нагрузкам найти предельную грузоподъемность системы и допускаемую нагрузку QДОП, если предел текучести σТ = 240 МПа и запас прочности n = 1,5;

4. сравнить величины [Q] и QДОП, полученные при расчете по допускаемым напряжениям и допускаемым нагрузкам.

 

 

Рис. 4 Рис. 5

(1)

Составлять уравнения и не имеет смысла, так как в них войдут не интересующие нас реакции опоры О (R3, R4). Таким образом, мы убеждаемся еще раз, что задача статически неопределима (в единственное уравнение статики (1) входят две неизвестные силы N1 и N2; нагрузку Q в этом уравнении считаем заданной).

Для составления дополнительного уравнения рассмотрим деформацию системы. Под действием нагрузки Q абсолютно жесткий брус CD, оставаясь прямым, повернется вокруг шарнира О и займет положение C1D1 (рис.6). Точка В опишет дугу, которую вследствие малости угла С1ОС заменим хордой ВВ1. Величина ВВ1 представляет собой удлинение второго стержня = ВВ1. Так как упругие деформации малы по сравнению с длинами стержней, то считают, что угол между абсолютно жестким брусом CD и ВК не изменился, то есть . Из рис. 3 следует, что a = 45°. При этом стержни 1 и 2 удлиняются соответственно на величины и .

 

Рис. 6

Удлинение стержня 1 () получаем на чертеже, опустив перпендикуляр ВМ из точки В на КВ1 (положение стержня 1 после деформации).

Из прямоугольного треугольника ВВ1М (рис.6) следует, что

(2)

На основании закона Гука (отрезок МВ1) и (отрезок ВВ1). При составлении этих выражений следует соблюдать соответствие направления нормальных сил N1 и N2 деформациям стержней 1 и 2. В данном случае стержни 1 и 2 растягиваются и силы N1 и N2 – растягивающие.

Условие совместности деформаций (2) перепишется так

(3)

Из рис. 3 видно, что — длина стержня 1; ℓ 2 = в – длина стержня 2. Тогда выражение (3) получает вид

(4)

Так как a = 45°, то получаем: N1 = N2. Решая совместно уравнения (1) и (4), получаем

N1 = N2 = 0,488 · Q.

После определения усилий N1 и N2 находим величины нормальных напряжений s1 и s2 в стержнях 1 и 2:

Определим допускаемую силу [Q]. из расчета по допускаемым напряжениям. Так как s2 > s1, то состояние второго стержня более опасно. Поэтому для определения допускаемой силы [Q]. следует приравнять напряжение во втором стержне s2 допускаемому напряжению [s] = 160 МПа.

(кН/м2)

244 [Q]. = 160 · 103 ; [Q]. = кН.

Допускаемая нагрузка [Q]. = 655,74 кН.

Определим допускаемую силу QДОП. из расчета по допускаемым нагрузкам. Напряжение во втором стержне оказалось больше, чем в первом, то есть s2 > s1. При увеличении силы Q напряжение во втором стержне достигнет предела текучести раньше, чем в первом. Когда это произойдет, напряжение во втором стержне не будет некоторое время увеличиваться, система станет как бы статически определимой, нагруженной силой Q и усилием во втором стержне

.

При дальнейшем увеличении силы напряжение в первом стержне также достигнет предела текучести. Усилие в этом стержне будет равно

Запишем уравнение равновесия статики для такого состояния системы

где sТ = 240 МПа – предел текучести материала.

Из этого уравнения находим предельную грузоподъемность системы

кН.

Допускаемая нагрузка QДОП определится так

кН,

где n = 1,5 – коэффициент запаса прочности.

Сравнивая полученные результаты, видим, что допускаемая нагрузка QДОП, определенная из расчета по допускаемым нагрузкам, больше допускаемой нагрузки [Q], из расчета по допускаемым напряжениям в

раза.

Способ расчета по допускаемым нагрузкам для статически неопределимых систем позволяет вскрыть дополнительные резервы прочности, повысить несущую способность системы и указывает на возможность более экономного расходования материала.

Рассмотрим пример на определение геометрических характеристик плоского сечения. Сечение (рис. 7) состоит из швеллера № 30 и равнополочного уголка 100х100х10. Требуется:

1. Определить положение центра тяжести поперечного сечения.

2. Найти осевые и центробежный моменты инерции относительно случайных осей (XC и YC), проходящих через центр тяжести.

3. Определить положение главных централь­ных осей u и v.

4. Найти моменты инерции относительно главных центральных осей.

5. Вычертить сечение в масштабе 1 : 2 и указать на нем все размеры в числах и все оси.

Выпишем из таблиц сортамента все данные, необходимые для расчёта, и схематично зарисуем профили элементов сечения (рис. 8).

Швеллер № 30 по ГОСТ 8240-89. Площадь А = 40,50 см2. Моменты инерции относительно собственных центральных осей: Jх = 5810,0 см4,
Jу = 387,0 см4, Jху=0. Так как одна из осей является осью симметрии, то оси будут главными и центробежный момент относительно них равен нулю. Центр тяжести расположен на расстоянии z0 = 2,52 см от стенки швеллера.

Уголок равнополочный 100х100х10 по ГОСТ 8509-86. Площадь
А = 19,24 см2. Моменты инерции Jх = Jу = 178,95 см4, см4, см4. Расстояние от центра тяжести уголка до наружных граней полок z0 = 2,83 см. Угол между осями Х и Х0 равен 45º. Для дальнейшего расчёта понадобится величина центробежного момента инерции уголка Jху. Её можно вычислить по формуле

Так как для равнополочного уголка 45º, то sin 2 = sin 90º = 1.

Знак центробежного момента инерции уголка выбирается в соответствии с рис. 9. При положениях уголка (рис.9, а) и (рис.9, б) центробежный момент инерции отрицательный, а при положениях уголка (рис.9, в) и (рис.9, г) центробежный момент инерции положительный.

Прежде чем приступить к дальнейшему расчёту, необходимо с соблюдением масштаба (в задании задачи – это масштаб 1:2) начертить сечение,
(рис.Так как сечение состоит из 2 элементов, пронумерованных цифрами I, II, необходимо ввести соответствующие индексы в обозначении центров тяжестей (01, 02), центральных осей x1, y1, x2, y2 и соответствующих моментов инерции. Из рис. 10 видно, что центральные оси швеллера x1 и y1 соответствуют осям y и x швеллера на рис. 8. Соответственно поменяются местами осевые моменты инерции швеллера.

Определим координаты центра тяжести сечения относительно вспомогательных осей x и y (рис. 10). Оси удобно провести так, чтобы все сечение располагалось в первом квадрате. Найдём координаты центров тяжести элементов в системе осей x и y. Из рис. 10 видно, что О1(15;2,52), О2(22,17;3,48). Координаты центра тяжести сечения находятся по формулам:

Читайте также:  Предел прочности свинца при растяжении

;

.

В масштабе наносим точку С с координатами Хс=17,31 и Ус=2,82 см на расчётную схему и проводим через т. С оси xс и yс, параллельные осям x и y. Находим координаты центров тяжестей О1 и О2 элементов в полученной системе координат xсСyс.

Пользуясь формулами связи между координатами точки относительно параллельных осей координат, получим:

см;

см;

см;

см.

Для проверки правильности нахождения координат центра тяжести сечения найдём статистические моменты всего сечения относительно центральных осей xс и yс. Известно, что статические моменты сечения относительно центральных осей должны быть равны нулю:

см3;

см3.

Близкие к нулю значения Sx и Sy показывают, что координаты центра тяжести сечения найдены правильно. Отличие их от нуля – накопленная погрешность вычисления.

Определим осевые и центробежный моменты инерции сечения относительно произвольных центральных осей xсyс. Используем формулы зависимостей между моментами инерции относительно параллельных осей:

;

;.

Определим направление главных центральных осей u и v. Тангенс угла наклона главных центральных осей u и v к произвольным центральным осям xс и yс определяется по формуле

.

По найденному значению тангенса с помощью таблиц или калькулятора находим значение угла , откуда . Положительный угол откладывается от оси xс против хода часовой стрелки и определяет положение одной из главных центральных осей – u. Вторая главная центральная ось – v перпендикулярна оси u.

Покажем на расчётной схеме (рис. 10) положение главных центральных осей u и v.

Для проверки правильности определения положения главных центральных осей найдём центробежный момент инерции относительно этих осей u и v по формуле:

.

Центробежный момент инерции относительно главных осей должен быть равным нулю. Полученная близкая к нулю величина JUV показывает, что положение главных осей определено достаточно точно.

Определим моменты инерции относительно главных осей. Величины главных моментов инерции находятся по формуле:

;

Jmax = 6660,90 см4; Jmin = 511,86 см4.

Максимальный момент инерции Jmax будет относительно той главной центральной оси, которая ближе расположена к произвольной центральной оси, момент инерции относительно которой имеет наибольшее значение, то есть в нашем случае это есть ось v – она ближе всего к оси yс с максимальным . Таким образом, получаем:

Jv = Jmax = 6660,90 см4; Ju = Jmin = 511,86 см4.

Для контроля определения Jv и Ju проверим, выполняется ли равенство:

Jv + Ju; 318,01 + 6654,74 = 7172,75 см4 ;

Jv + Ju = 511,86 + 6660,90 = 7172,76 см4.

С той же целью найдём центробежный момент инерции по известным главным центральным моментам инерции Jv и Ju и углу по формуле

.

Незначительное отличие от ранее найденного значения =194,47 см4 свидетельствует о достаточной точности определения положения главных центральных осей и величин главных центральных моментов инерции.

ВОПРОСЫ ДЛЯ САМОПРОВЕРКИ

1. Какие случаи деформации бруса называются центральным растяжением или сжатием?

2. Как вычисляется значение продольной силы в произвольном поперечном сечении бруса?

3. Как вычисляются напряжения при центральным растяжении или
сжатии?

4. Как формулируется закон Гука? Что называется жесткостью сечения при растяжении (сжатии)?

5. Что называется модулем Юнга Е? Какова его размерность?

6. Что называется допускаемым напряжением? Как оно выбирается для пластичных и хрупких материалов?

7. Какие конструкции являются статически определимыми, а какие – статически неопределимыми?

8. Каким образом проводится расчет статически неопределимых конструкций?

9. Чем отличается расчет по допускаемым напряжениям от расчета по допускаемым нагрузкам?

10. Как находятся координаты центра тяжести сечения?

11. Какие оси называются главными?

12. Для каких сечений можно без вычислений установить положение главных осей?

13. Чему равен центробежный момент инерции относительно главных осей?

14. Какие оси называются центральными?

15. Относительно каких центральных осей осевые моменты инерции принимают наибольшее и наименьшее значения?

ЛИТЕРАТУРА

1. Александров материалов: учебник для вузов / , , ; под ред. . – 5-е изд., стер. – М.: Высш. шк., 2007. – 560 с.

2. Вольмир материалов / , ; под ред. . – М.: Высш. шк., 2007 . – 412 с.

3. Гильман материалов: учеб. пособие / . – Саратов: СГТУ, 2003. – 108 с.

4. Сопротивление материалов: учеб. пособие / , , и др.; под ред. . – 3-е изд., перераб. и доп. – М.: Высшая школа, 2007. – 488 с.

5. Феодосьев материалов: учебник / . – 13-е изд., стер. – М.: Изд-во МГТУ им. , 2005. – 592 с.

6. ГОСТ 8509-86. Сталь прокатная угловая равнополочная. Сортамент. – М.: Изд-во стандартов, 1987. – 6 с.

7. ГОСТ 8240-89. Сталь горячекатанная. Швеллеры. Сортамент // Сортамент черных металлов. Прокат и калибровочная сталь. – М.: Изд-во стандартов, 1990.

8. ГОСТ 8239-89. Сталь горячекаменная. Двутавры. Сортамент // Сортамент черных металлов. Прокат и калибровочная сталь. – М.: Изд-во стандартов, 1990.

Методические указания

к выполнению контрольной работы

Составили: ГИЛЬМАН Александр Абрамович

ПОПОВА Наталья Евгеньевна

Рецензент

Корректор

Подписано в печать Формат 60х84 1/16

Бум. офсет. Усл. печ. л. Уч.-изд. л

Тираж 100 экз. Заказ Бесплатно

Саратовский государственный технический университет

Саратов, Политехническая ул., 77

Отпечатано в РИЦ СГТУ. Саратов, Политехническая ул., 77

Источник

Содержание:

  • Проверка прочности и определение необходимых размеров бруса при растяжении (сжатии)

Проверка прочности и определение необходимых размеров бруса при растяжении (сжатии)

  • Испытание на прочность и определение Требуемые размеры луча Напряжение (при сжатии) В предыдущем параграфе рассматривался вопрос о распределении напряжения и деформации балки под действием продольных сил. Однако проблема того, как назначить размеры стержня для надежного и постоянного сопротивления заданной нагрузке, не была решена. Это одна из основных проблем

материального сопротивления. В условиях массового строительства возникает проблема экономии строительных материалов, чтобы полностью гарантировать долговечность конструкции. Если указаны размеры стержня, проблема определения грузоподъемности стержня, то есть стержня, может выдержать его длительную работу без каких-либо опасных изменений.

Для решения этих вопросов должны быть выполнены специальные расчеты. Есть три способа решения этих
Людмила Фирмаль

проблем. 2) Расчет допустимого напряжения, 3) Расчет предельного состояния. Все три метода имеют одинаковую цель — обеспечение прочности, долговечности и структуры. Первый метод включает определение минимальной нагрузки, которая сломает конструкцию, чтобы сравнить эту нагрузку с оценкой для строящейся конструкции. Второй метод широко использовался в строительном бизнесе до

Читайте также:  Гаражные ворота пружины растяжения или торсионы

недавнего времени и в настоящее время применяется частично, особенно в машиностроении. Согласно этому способу размеры конструктивных элементов назначаются во всех секциях таким образом, чтобы напряжение, вызванное нагрузкой, не превышало определенного допуска третьего способа, причем «младший» вступил в недавнюю жизнь Это было В настоящее время это основной метод, используемый для проектирования советских сооружений. Значение будет описано ниже. Давайте кратко рассмотрим все три метода. 721

  • Способ разрушения груза «В качестве условия для прочности этого метода расчета максимальная нагрузка на конструкцию не должна превышать определенную допустимую нагрузку [P]. , (2,35) Коэффициент безопасности n принимается на основе многих соображений, таких как те, которые подробно обсуждаются в методе расчета допустимого напряжения. Рис 71А Тем не менее) Rgunit описание в списках 0L б Рис 72А Упрощенная иллюстрация растяжения (сжатия), как показано на рисунке, для определения разрушающей нагрузки в конструкции, изготовленной из материала с высокой пластичностью и относительно небольшим отверждением.

71, область текучести расширяется до бесконечности. В этом случае при центральном растяжении или сжатии сила разрыва определяется уравнением Praz = J QjdF = aTF. (2.36) F В случае хрупкого материала, необходимо взять предел прочности на разрыв Р раз = aBF вместо предела текучести. (2.37) В статически неопределенной системе пластического материала появление текучести только одного из наиболее нагруженных элементов все же не приводит к отказу системы. Например, стержень, как показано на рисунке. 72, а, появление текучести на сайте а не разрушено.

Чтобы завершить это Самоуничтожение требует текучести, которая распространяется на обе части стержня. В этом случае разрывная нагрузка (рис. 72, б),
Людмила Фирмаль

равная сумме внутренних продольных сил в двух частях стержня, определяется равенством. Рис .73d Rraz = 2gat. Кроме того, труднее определить разрушающую нагрузку, о которой идет речь, как показано на рисунке. 73, где бесконечно жесткий стержень удерживается тремя стержнями. Здесь сила Праз определяется по состоянию потока по меньшей мере двух стержней. Следовательно, если стержень AB менее нагружен, а два других стержня CD и EC являются текучими, то Prae Точно так же, предполагая, что текучесть появляется в двух стержнях AB и EC или стержнях AB и CD, можно сделать еще два уравнения. Из трех найденных значений силы в

расчет вводится наименьшая сила, которая считается разрушительной. 2. В методе допустимого напряжения максимальное напряжение в стержне не должно превышать так называемое допустимое напряжение, которое выражается как 1А. Например, условием прочности на растяжение является «,» «= -A- <I». — (2.38) г нетто Предполагая, что эффективное напряжение равно допустимому напряжению, N G1 RG —— = M- нетто Из этого уравнения можно определить требуемую площадь для данной силы или, наоборот, допустимую силу для данной площади поперечного сечения. 74допускаемые напряжения равны опасному напряжению АОП,

деленному на коэффициент безопасности р, [а] =. (2,39) • I Для хрупких материалов предел прочности при растяжении AOP = AB считается опасным напряжением. Для пластических материалов предел текучести AOP = при После появления пластической деформации становится ясно, что коэффициент запаса должен быть больше, чем P2, поскольку стержень еще не разрушен. Необходимость введения коэффициента безопасности объясняется следующими обстоятельствами: a) диапазон значений, определенный из опыта работы с этим материалом или AB. б) Рабочая нагрузка может быть

точно определена Допустимое напряжение устанавливается руководящим органом, указанным в технических характеристиках и стандартах проектирования, которые имеют силу закона и обязательны для всех инженеров и техников. В дополнение к вышеизложенным соображениям, при определении факторов безопасности и, следовательно, допустимого напряжения необходимо учитывать множество других факторов: Качество и степень однородности материала. Например, в случае стали коэффициент запаса предполагается равным примерно 1,5, в частности, -3. Для натурального камня материал очень неоднороден, а соотношение запасов составляет -10. 2. Долговечность и значимость конструкции

или машины. Например, если постоянный мост со сроком службы 50-70 лет и временный мост со сроком службы 3-5 лет изготовлены из одной и той же стали, то, конечно, в последнем случае соотношение будет равно 3. уровень. Точность расчета повышается за счет развития технологий, качества изготовления материалов и точности обработки деталей. Следовательно, с течением времени коэффициент безопасности уменьшается, а допустимое напряжение увеличивается. Например, допустимое напряжение низкоуглеродистой стали в Японии постоянно увеличивается. 753 метод предельного состояния Принимая во внимание один фактор в учете, сложно принять множество факторов, которые могут быть выявлены в разных комбинациях для разных структур. В целях более гибкого учета влияния различных факторов был предложен новый метод расчета

предельного состояния. Предельное состояние — это состояние конструкции, в которой оно останавливается для удовлетворения эксплуатационных требований. В норме различают три типа предельных состояний. В первом предельном состоянии несущая способность конструкции истощается. Все конфигурации рассчитываются в этом предельном состоянии. Второе предельное состояние — это состояние, в котором структурой трудно манипулировать из-за больших общих деформаций. В третьем критическом состоянии происходит чрезмерная локальная деформация (например, трещины образуются в железобетонных

конструкциях). Рассмотрим первый расчет предельного состояния более подробно. Испытание на прочность проводится по формуле 4 <R, (2,40) Где N — расчетная сила, создаваемая нагрузкой на элемент конструкции и определяемая по формуле N = N yit + N2P2 + N3P3 +. .., (2-41) где N! 3 — усилия от различных типов нагрузок, определенных в правиле, установленных норм (нормативная мощность); n it p2, PW — случайное отклонение от стандартных нагрузок Геометрические свойства F-сечения (под напряжением и сжимающим сечением); 7? -Расчет сопротивления материала, R = R «кило, (2.42) где R н-

нормативное сопротивление материала (в предел текучести или предел прочности при растяжении AB); 76 & <1- Случайное отклонение от стандартного сопротивления (например, сталь k = 0,94-0,85; бетон k = 0,6; древесина k = 0,34-0,9. Для пластика Где & 0D-коэффициент однородности, принятый для различных пластиков, AOD = 0,64-0,8; kac-коэффициент долговременного сопротивления, учитывающий снижение АБ вследствие длительного воздействия нагрузки. Он берется, когда & DS = 0,7 (SWAM) -? 0,3 (плексиглас, винипласт); t <D- отклонение от проектных размеров (в пределах допуска), разность проектной схемы от фактической конструкции, риск или риск AB в любой точке конструкции и (это Коэффициент составляет 0,94-1,0. Метод предельных условий подробно описан в ходе конструкций и мостов.

Смотрите также:

  • Учебник по сопротивлению материалов: сопромату

Источник