Расчет на прочность при растяжении сжатии стержней

Расчет на прочность при растяжении сжатии стержней thumbnail

Расчеты на прочность стержней и других элементов конструкций составляют одну из основных задач сопротивления материалов. Целью этих расчетов является обеспечение надежной и безопасной работы элементов конструкций и сооружений в течение всего периода эксплуатации при минимальном расходе материала.

Расчеты на прочность производятся на основе определенных методов, позволяющих сформулировать условия прочности элементов конструкций при различных воздействиях.

Основным методом расчета на прочность элементов строительных конструкций является метод предельных состояний. В этом методе значения всех нагрузок, действующих на конструкцию в течение всего периода ее эксплуатации, разделяются на нормативные и расчетные. Нормативные значения нагрузок характеризуют их действие на конструкцию при нормальных условиях ее эксплуатации. Это собственный вес конструкции, атмосферные воздействия снега, ветра, вес технологического оборудования, людей и т.п. Нормативные значения нагрузок приведены в строительных нормах и правилах (СНиП).

Расчетные значения нагрузок Рр определяются путем умножения нормативных значений Рн на коэффициенты надежности по нагрузке уу-:

Расчет на прочность при растяжении сжатии стержней

С помощью коэффициентов производится учет возможного отклонения нагрузок от их нормативных значений в неблагоприятную для работы конструкции сторону. Значения коэффициентов надежности по нагрузке устанавливаются нормами проектирования с учетом различных факторов в пределах от 1,05 до 1,4.

В качестве основного параметра, характеризующего сопротивление материала конструкции различным воздействиям, принимается нормативное сопротивление RH, соответствующее значению предела текучести для пластичных материалов или временного сопротивления для хрупких материалов. Последние определяются с помощью механических испытаний.

При оценке прочности элементов конструкций величина нормативного сопротивления материала должна быть уменьшена за счет различных неблагоприятных факторов (например, ухудшения качества материала). Для этого вводится расчетное сопротивление, которое определяется по формуле

Расчет на прочность при растяжении сжатии стержней

где ут — коэффициент надежности по материалу, изменяющийся в различных пределах в зависимости от физико-механических свойств материала. Например, для стали он изменяется в пределах от 1,025 до 1,15.

Кроме того, в условие прочности вводится коэффициент условий работы ус, с помощью которого учитываются конструктивные особенности и виды нагружения сооружений. Коэффициент ус может быть больше или меньше единицы.

Величины нормативных и расчетных сопротивлений и значения коэффициентов ур ут и ус приведены в соответствующих разделах строительных норм и правил (СНиП).

Условие прочности стержня при растяжении и сжатии, согласно методу предельных состояний, имеет следующий вид:

Расчет на прочность при растяжении сжатии стержней

где N — продольная сила в стержне, вычисленная от действия расчетных нагрузок; F — площадь поперечного сечения стержня.

Условие (3.27) обычно ставится для сечения стержня, в котором действуют наибольшие нормальные напряжения.

С помощью условия прочности (3.27) можно выполнить подбор сечения стержня, т.е. определить размеры поперечного сечения или установить номер прокатного профиля по сортаменту, а также определить грузоподъемность стержня или стержневой системы. Подбор сечения стержня выполняется по формуле

Расчет на прочность при растяжении сжатии стержней

При расчете на прочность элементов машиностроительных конструкций используется метод расчета по допускаемым напряжениям. В этом методе внутренние усилия и напряжения в элементах конструкции вычисляются от действия нормативных нагрузок, допускаемых при нормальной эксплуатации данной конструкции. Сопротивление материала различным воздействиям характеризуется допускаемым напряжением [а], которое определяется по формулам: для хрупких материалов

Расчет на прочность при растяжении сжатии стержней

для пластичных материалов

Расчет на прочность при растяжении сжатии стержней

где пви пт — коэффициенты запаса прочности по отношению к временному сопротивлению ов и пределу текучести от.

Коэффициенты запаса принимаются с учетом целого ряда факторов, таких как физико-механические свойства материала, условия работы конструкции, характер действия нагрузок и т.п.

Величины допускаемых напряжений [о] для различных материалов приведены в соответствующих нормативных документах.

Условие прочности стержня при растяжении и сжатии по методу допускаемых напряжений имеет следующий вид:

Расчет на прочность при растяжении сжатии стержней

С помощью условия (3.31) можно также решать задачи подбора сечения стержня и определения грузоподъемности.

Пример 3.9. Жесткая балка АВ нагружена сосредоточенной силой и поддерживается с помощью стержня CD (рис. 3.24). Подберем сечение стержня в виде двух стальных прокатных равнобоких уголков и в виде двух стальных тяг круглого сечения. В расчетах примем нормативное значение силы Рн = 100 кН, yf= 1,4, ус = 1,0, R = 210 МПа = 21 кН/см2.

Определим расчетное значение силы:

Расчет на прочность при растяжении сжатии стержней

Определим с помощью уравнения равновесия расчетное значение продольной силы в стержне CD:

Расчет на прочность при растяжении сжатии стержней

Вычислим значение требуемой по условию прочности площади поперечного сечения стержня:

Расчет на прочность при растяжении сжатии стержней

В первом варианте принимаем по сортаменту сечение стержня в виде двух равнобоких уголков (рис. 3.25, а) _|1_56х56х5. Площадь поперечного сечения стержня равна F= 2 • 5,41 = 10,82 см2.

Во втором варианте определяем требуемый диаметр сечения каждого стержня (рис. 3.25, б):

Расчет на прочность при растяжении сжатии стержней

Рис. 3.24

Расчет на прочность при растяжении сжатии стержней

Рис. 3.25

Расчет на прочность при растяжении сжатии стержней

Округлив в большую сторону, примем D = 2,6 см.

Определим для первого варианта сечения значения напряжений в поперечном сечении стержня:

Расчет на прочность при растяжении сжатии стержней

Прочность стержня обеспечена с небольшим запасом.

Пример 3.10. Стержневая система состоит из жесткой балки АВ, имеющей шарнирно-неподвижную опору С, и двух стержней BD и АЕ, поддерживающих балку (рис. 3.26). К балке приложена сила Р, нормативное значение которой равно 300 кН. Определим усилия в стержнях и подберем их сечения в виде двух стальных прокатных равнобоких уголков. В расчетах примем соотношение между площадями поперечных сечений стержней F2/F] = 1,3, yf = 1,2, ус = 1,0, R = 210 МПа = 21 кН/см2.

Читайте также:  При растяжении связок у собак

Расчетное значение силы Р равно Рр = 300 • 1,2 = 360 кН.

Данная стержневая система является статически неопределимой, поскольку для определения четырех неизвестных величин /V,, N2, Rcи Нсможно составить только три независимых уравнения статики. Используем уравнение равновесия относительно усилий в стержнях /V, и N2. Учитывая, что г, = 3 sin 30° = 1,5 м, получим

Расчет на прочность при растяжении сжатии стержней

Для получения дополнительного уравнения относительно N{ и N2 рассмотрим схему деформации системы. При повороте жесткой балки АВ на малый угол у (рис. 3.27) удлинения стержней составят:

Расчет на прочность при растяжении сжатии стержнейРасчет на прочность при растяжении сжатии стержней

Рис. 3.26

Расчет на прочность при растяжении сжатии стержней

Рис. 3.27

Определим из подобия треугольников АА’С и В В’ С соотношение между величинами А/, и Д/2:

Расчет на прочность при растяжении сжатии стержней

Выражаем величины удлинений стержней через действующие в них усилия и составляем дополнительное уравнение относительно N, и N2:

Расчет на прочность при растяжении сжатии стержней

где /j = 3/cos 30° = 3,46 ми /2 = 1,5 м — длины стержней.

Подставляем соотношение между усилиями в уравнение равновесия и определяем величины усилий в стержнях:
Расчет на прочность при растяжении сжатии стержней

Расчет на прочность при растяжении сжатии стержней

Определяем требуемые по условию прочности площади поперечных сечений стержней:

Расчет на прочность при растяжении сжатии стержней

Проверим выполнение принятого в начале расчета соотношения между площадями F{ и F2:

Расчет на прочность при растяжении сжатии стержней

Поскольку принятое соотношение не выполняется, при подборе сечений стержней надо увеличить требуемую площадь поперечного сечения первого стержня и принять ее равной

Расчет на прочность при растяжении сжатии стержней

Принимаем по сортаменту сечения стержней в виде двух стальных прокатных равнобоких уголков, определяем действующие в стержнях напряжения и проверяем их прочность. Стержень BD (2|_75х75х8)

Расчет на прочность при растяжении сжатии стержнейРасчет на прочность при растяжении сжатии стержней

Стержень (2L 110x110x7)
Расчет на прочность при растяжении сжатии стержней

Расчет на прочность при растяжении сжатии стержней

Прочность стержней обеспечена.

Пример 3.11. Для данной системы (рис. 3.28) определим величину допустимой силы Р из условий прочности стержней Л В и ВС. Определим усилия и напряжения в стержнях. В расчетах примем R = 220 МПа = 22 кН/см2 иус = 0,9.

Расчет на прочность при растяжении сжатии стержней

Рис. 3.28

Составим уравнения равновесия:


Расчет на прочность при растяжении сжатии стержней

Определим площади поперечных сечений стержней и выразим действующие в них напряжения через силу Р:

Расчет на прочность при растяжении сжатии стержней

Напряжения в стержне АВ являются большими по величине. Определим из условия прочности этого стержня величину силы Р:

Расчет на прочность при растяжении сжатии стержней

Примем Р = 245 кН и вычислим значения усилий и напряжений в стержнях:

Расчет на прочность при растяжении сжатии стержней

Прочность стержней обеспечена.

Пример 3.12. Для латунного стержня ступенчато-постоянного сечения (рис. 3.29, а) определим величину силы .Риз условия прочности стержня. Определим напряжения в пределах каждого участка стержня. В расчетах используем метод допускаемых напряжений, приняв [о] = 80 МПа = 8 кН/см2.

Площади поперечных сечений стержня равны:

Расчет на прочность при растяжении сжатии стержней

Строим эпюру продольных сил (рис. 3.29, б). Определяем нормальные напряжения в пределах участков стержня и выражаем их через силу Р.

Первый участок

Расчет на прочность при растяжении сжатии стержней

Второй участок

Расчет на прочность при растяжении сжатии стержнейРасчет на прочность при растяжении сжатии стержней

Рис. 3.29

Эпюра о приведена на рис. 3.29, в. Ставим условие прочности по напряжениям на первом участке и определяем величину Р:

Расчет на прочность при растяжении сжатии стержней

Примем Р = 40 кН и определим усилия и напряжения в стержне:

Расчет на прочность при растяжении сжатии стержней

Источник

Сопротивление материалов

Решение задач на растяжение и сжатие



Расчеты на прочность при растяжении и сжатии

В результате проведения механических испытаний устанавливают предельные напряжения, при которых происходит нарушение работы или разрушение деталей конструкции.
Предельным напряжением при статической нагрузке для пластичных материалов является предел текучести, для хрупких — предел прочности.
Для обеспечения прочности деталей необходимо, чтобы возникающие в них в процессе эксплуатации наибольшие напряжения были меньше предельных.

Отношение предельного напряжения к напряжению, возникающему в процессе работы детали, называют коэффициентом запаса прочности и обозначают буквой s:

s = σпред / σ,

где σ = N / А – реальное напряжение, возникающее в элементе конструкции.

Недостаточный коэффициент запаса прочности может привести к потере работоспособности конструкции, а избыточный (слишком высокий) — к перерасходу материала и утяжелению конструкции. Минимально необходимый коэффициент запаса прочности называют допускаемым, и обозначают [s].
Отношение предельного напряжения к допускаемому запасу прочности называют допускаемым напряжением, и обозначают [σ]:

[σ] = σпред / [s].

Условие прочности в деталях и конструкциях заключается в том, что наибольшее возникающее в ней напряжение (рабочее напряжение) не должно превышать допускаемого:

σmax≤ [σ], или в другом виде: s ≥ [s].

Если допускаемые напряжения при растяжении и сжатии различны, их обозначают [σр] и [σс].

Расчетная формула при растяжении и сжатии имеет вид:

σ = N / А ≤ [σ]

и читается следующим образом: нормальное напряжение в опасном сечении, вычисленное по формуле σ = N /А, не должно превышать допустимое.

На практике расчеты на прочность проводят для решения задач:

— проектный расчет, при котором определяются минимальные размеры опасного сечения;
— проверочный расчет, при котором определяется рабочее напряжение и сравнивается с предельно допустимым;
-определение допускаемой нагрузки при заданных размерах опасного сечения.

***

Растяжение под действием собственного веса

Если ось бруса вертикальна, то его собственный вес вызывает деформацию растяжения или сжатия.
решение задач по сопромату
Рассмотрим брус постоянного сечения весом G, длиной l, закрепленный верхним концом и нагруженный только собственным весом G (рис.1).
Для определения напряжений в поперечном сечении на переменном расстоянии z от нижнего конца применим метод сечений.
Рассмотрим равновесие нижней части бруса и составим уравнение равновесия:

Σ Z = 0;     Nz — Gz = 0,    откуда:

Читайте также:  Построения эпюр при центральном растяжении и сжатии

Nz = Gz = γ А z,

где γ — удельный вес материала бруса, А – площадь его поперечного сечения, z — длина части бруса от свободного конца до рассматриваемого сечения.

Напряжения, возникающие в сечениях бруса, нагруженного собственным весом, определяются по формуле:

σz = Nz / А = γ А z / А = γ z,

т. е. для нагруженного собственным весом бруса нормальное напряжение не зависит от площади поперечного сечения. Очевидно, что опасное сечение будет находиться в заделке:

σmax = γ l.

Эпюра распределения напряжений вдоль оси бруса представляет собой треугольник.
Если требуется определить максимальную длину бруса, нагруженного собственным весом, используют расчет по предельному допустимому напряжению в сечении:

lпр = [σ] / γ.

***



Статически неопределимые задачи

Иногда в практике расчета конструкций требуется определить неизвестные силовые факторы (например, реакции связей или внутренние силы), при этом количество неизвестных силовых факторов превышает количество возможных уравнений равновесия для данной конструкции, и расчет произвести рассмотренными ранее способами не представляется возможным.

Задачи на расчет конструкций, в которых внутренние силовые факторы не могут быть определены с помощью одних лишь уравнений равновесия статики, называют статически неопределимыми. Подобные задачи нередко встречаются при расчете конструкций, подверженных температурным деформациям.
Для решения таких задач помимо уравнений равновесия составляют уравнение перемещений или деформаций.

Рассмотрим невесомый стержень постоянного сечения площадью А, длиной l, жестко защемленный по концам (см. рис. 2).
статически неопределимые задачи
При нагревании в стержне возникают температурные напряжения сжатия.
Попробуем определить эти напряжения.

Составим для стержня уравнение равновесия:

Σ Z = 0; RС — RВ = 0,

откуда следует, что реакции RС и RВ равны между собой, а применив метод сечений установим, что продольная сила N в сечениях стержня равна неизвестным реакциям:

N = RС = RВ.

Составим дополнительное уравнение, для чего мысленно отбросим правую заделку и заменим ее реакцией RВ, тогда дополнительное уравнение деформации будет иметь вид:

Δlt = ΔlСВ

т. е. температурное удлинение стержня равно его укорочению под действием реакции RB, так как связи предполагаются абсолютно жесткими.

Температурное удлинение стержня определяется по формуле: Δlt = αtl, где α — коэффициент линейного расширения стержня.

Укорочение стержня под действием реакции: ΔlСВ = RB l / (EА).

Приравняв правые части равенств, получим:

αtl = RB l / (EА), откуда RB = αtEА.

Температурные напряжения в реальных конструкциях могут достигать значительных величин. Чтобы исключить их отрицательное влияние на прочность конструкций, прибегают к различным методам. Мосты, например, закрепляют лишь на одном конце (на одном берегу), а второй конец оставляют подвижным.
В длинных трубопроводах, подверженных температурным напряжениям, делают компенсирующие карманы, петли и т. д.

***

Материалы раздела «Растяжение и сжатие»:

  • Примеры решения задач по сопромату.
  • Основные понятия о деформации растяжения и сжатия.
  • Деформации при растяжении и сжатии. Потенциальная энергия деформации растяжения.

Срез

Правильные ответы на вопросы Теста № 6

№ вопроса

1

2

3

4

5

6

7

8

9

10

Правильный вариант ответа

2

1

1

3

3

2

1

3

2

1

Источник

Внутренние усилия при растяжении-сжатии.

Осевое (центральное) растяжение или сжатие прямого бруса вызывается внешними силами, вектор равнодействующей которых совпадает с осью бруса. При растяжении или сжатии в поперечных сечениях бруса возникают только продольные силы N. Продольная сила N в некотором сечении равна алгебраической сумме проекции на ось стержня всех внешних сил, действующих по одну сторону от рассматриваемого сечения. По правилу знаков продольной силы N принято считать, что от растягивающих внешних нагрузок возникают положительные продольные силы N, а от сжимающих — продольные силы N отрицательны (рис. 5).

правило знаков для продольных сил

Чтобы выявить участки стержня или его сечения, где продольная сила имеет наибольшее значение, строят эпюру продольных сил, применяя метод сечений, подробно рассмотренный в статье:
Анализ внутренних силовых факторов в статистически определимых системах
Ещё настоятельно рекомендую взглянуть на статью:
Расчёт статистически определимого бруса
Если разберёте теорию в данной статье и задачи по ссылкам, то станете гуру в теме «Растяжение-сжатие» =)

Напряжения при растяжении-сжатии.

Определенная методом сечений продольная сила N, является равнодействующей внутренних усилий распределенных по поперечному сечению стержня (рис. 2, б). Исходя из определения напряжений, согласно выражению (1), можно записать для продольной силы:

напряжения при растяжении-сжатии

где σ — нормальное напряжение в произвольной точке поперечного сечения стержня.


Чтобы определить нормальные напряжения в любой точке бруса необходимо знать закон их распределения по поперечному сечению бруса. Экспериментальные исследования показывают: если нанести на поверхность стержня ряд взаимно перпендикулярных линий, то после приложения внешней растягивающей нагрузки поперечные линии не искривляются и остаются параллельными друг другу (рис.6, а). Об этом явлении говорит гипотеза плоских сечений (гипотеза Бернулли): сечения, плоские до деформации, остаются плоскими и после деформации.

механизм деформации растяжения

Так как все продольные волокна стержня деформируются одинаково, то и напряжения в поперечном сечении одинаковы, а эпюра напряжений σ по высоте поперечного сечения стержня выглядит, как показано на рис.6, б. Видно, что напряжения равномерно распределены по поперечному сечению стержня, т.е. во всех точках сечения σ = const. Выражение для определения величины напряжения имеет вид:

Читайте также:  Спиртовые компрессы при растяжении

формула напряжения

Таким образом, нормальные напряжения, возникающие в поперечных сечениях растянутого или сжатого бруса, равны отношению продольной силы к площади его поперечного сечения. Нормальные напряжения принято считать положительными при растяжении и отрицательными при сжатии.

Деформации при растяжении-сжатии.

Рассмотрим деформации, возникающие при растяжении (сжатии) стержня (рис.6, а). Под действием силы F брус удлиняется на некоторую величину Δl называемую абсолютным удлинением, или абсолютной продольной деформацией, которая численно равна разности длины бруса после деформации l1 и его длины до деформации l

абсолютное удлинение

Отношение абсолютной продольной деформации бруса Δl к его первоначальной длине l называют относительным удлинением, или относительной продольной деформацией:

относительное удлинение

При растяжении продольная деформация положительна, а при сжатии – отрицательна. Для большинства конструкционных материалов на стадии упругой деформации выполняется закон Гука (4), устанавливающий линейную зависимость между напряжениями и деформациями:

закон гука

где модуль продольной упругости Е, называемый еще модулем упругости первого рода является коэффициентом пропорциональности, между напряжениями и деформациями. Он характеризует жесткость материала при растяжении или сжатии (табл. 1).

Таблица 1

Модуль продольной упругости для различных материалов

модуль продольной упругости для различных материалов

Абсолютная поперечная деформация бруса равна разности размеров поперечного сечения после и до деформации:

абсолютная поперечная деформация бруса

Соответственно, относительную поперечную деформацию определяют по формуле:

относительная поперечная деформация

При растяжении размеры поперечного сечения бруса уменьшаются, и ε’ имеет отрицательное значение. Опытом установлено, что в пределах действия закона Гука при растяжении бруса поперечная деформация прямо пропорциональна продольной. Отношение поперечной деформации ε’ к продольной деформации ε называется коэффициентом поперечной деформации, или коэффициентом Пуассона μ:

коэффициент пуассона

Экспериментально установлено, что на упругой стадии нагружения любого материала значение μ = const и для различных материалов значения коэффициента Пуассона находятся в пределах от 0 до 0,5 (табл. 2).

Таблица 2

Коэффициент Пуассона.

коэффициент пуассона для материалов

Абсолютное удлинение стержня Δl прямо пропорционально продольной силе N:

абсолютное удлинение стержня

Данной формулой можно пользоваться для вычисления абсолютного удлинения участка стержня длиной l при условии, что в пределах этого участка значение продольной силы постоянно. В случае, когда продольная сила N изменяется в пределах участка стержня, Δl определяют интегрированием в пределах этого участка:

Расчет на прочность при растяжении сжатии стержней

Произведение (Е·А) называют жесткостью сечения стержня при растяжении (сжатии).

Механические свойства материалов.

Основными механическими свойствами материалов при их деформации являются прочность, пластичность, хрупкость, упругость и твердость.

Прочность — способность материала сопротивляться воздействию внешних сил, не разрушаясь и без появления остаточных деформаций.

Пластичность – свойство материала выдерживать без разрушения большие остаточные деформации. Неисчезающие после снятия внешних нагрузок деформации называются пластическими.

Хрупкость – свойство материала разрушаться при очень малых остаточных деформациях (например, чугун, бетон, стекло).

Идеальная упругость – свойство материала (тела) полностью восстанавливать свою форму и размеры после устранения причин, вызвавших деформацию.

Твердость – свойство материала сопротивляться проникновению в него других тел.

Рассмотрим диаграмму растяжения стержня из малоуглеродистой стали. Пусть круглый стержень длинной l0 и начальным постоянным поперечным сечением площади A0 статически растягивается с обоих торцов силой F.

растягивание стержня до разрушения

Диаграмма сжатия стержня имеет вид (рис. 10, а)

диаграмма растяжения стали

где Δl = l — l0 абсолютное удлинение стержня; ε = Δl / l0 — относительное продольное удлинение стержня; σ = F / A0 — нормальное напряжение; E — модуль Юнга; σп — предел пропорциональности; σуп — предел упругости; σт — предел текучести; σв — предел прочности (временное сопротивление); εост — остаточная деформация после снятия внешних нагрузок. Для материалов, не имеющих ярко выраженную площадку текучести, вводят условный предел текучести σ0,2 — напряжение, при котором достигается 0,2% остаточной деформации. При достижении предела прочности в центре стержня возникает локальное утончение его диаметра («шейка»). Дальнейшее абсолютное удлинение стержня идет в зоне шейки ( зона местной текучести). При достижении напряжением предела текучести σт глянцевая поверхность стержня становится немного матовой – на его поверхности появляются микротрещины (линии Людерса-Чернова), направленные под углом 45° к оси стержня.

примеры разрушения материалов

Расчеты на прочность и жесткость при растяжении и сжатии.

Опасным сечением при растяжении и сжатии называется поперечное сечение бруса, в котором возникает максимальное нормальное напряжение. Допускаемые напряжения вычисляются по формуле:

формула допускаемые напряжения

где σпред — предельное напряжение (σпред = σт — для пластических материалов и σпред = σв — для хрупких материалов); [n] — коэффициент запаса прочности. Для пластических материалов [n] = [nт] = 1,2 … 2,5; для хрупких материалов [n] = [nв] = 2 … 5, а для древесины [n] = 8 ÷ 12.

Расчеты на прочность при растяжении и сжатии.

Целью расчета любой конструкции является использование полученных результатов для оценки пригодности этой конструкции к эксплуатации при минимальном расходе материала, что находит отражение в методах расчета на прочность и жесткость.

Условие прочности стержня при его растяжении (сжатии):

Условие прочности стержня

При проектном расчете определяется площадь опасного сечения стержня:

площадь при проектном расчёте

При определении допускаемой нагрузки рассчитывается допускаемая нормальная сила:

допускаемая нормальная сила

Расчет на жесткость при растяжении и сжатии.

Работоспособность стержня определяется его предельной деформацией [ l ]. Абсолютное удлинение стержня должно удовлетворять условию:

ограничение абсолютного удлинения стержня

Часто дополнительно делают расчет на жесткость отдельных участков стержня.

Следующая важная статья теории:
Изгиб балки

Источник