Расчет металлического стержня на растяжение

Расчет металлического стержня на растяжение thumbnail

где N — продольная растягивающая сила, действующая на стержень;

F — площадь поперечного сечения стержня;

σ — нормальные напряжения, возникающие в рассматриваемом поперечном сечении стержня в ответ на действие растягивающей продольной силы;

— расчетное сопротивление материала стержня растяжению (для некоторых материалов расчетные сопротивления растяжению, сжатию, изгибу и т.п. могут различаться).

Визуально это может выглядеть так:

нормальные напряжения при растяжении стержня

Рисунок 525.1. Нормальные напряжения при растяжении прямолинейного стержня.

На рисунке 525.1.а) мы видим прямолинейный стержень длиной l, показанный серым цветом, к которому приложена растягивающая сила N. При этом точка приложения силы находится на нейтральной оси стержня, совпадающей с осью х, показанной пунктирной линией.

Для упрощения расчетов заменяем опору А соответствующей опорной реакцией А (рис.525.1.б). Исходя из условий статического равновесия:

∑х = А + N = 0 (149.5.2)

А = — N (525.2)

Это означает, что опорная реакция A равна по значению растягивающей силе N, но направлена в противоположную сторону.

Если взглянуть на эту ситуацию под некоторым углом, то она будет выглядеть так, как показано на рисунке 525.1.в). На этом рисунке мы видим, что нормальные напряжения — это реакция материала на действие растягивающей силы и направлены эти напряжения в сторону, противоположную действию сил. Другими словами нормальные напряжения препятствуют деформации растяжения, и направлены на то, чтобы вернуть материалу исходную форму. Иногда для упрощения восприятия нормальные напряжения, возникающие при растяжении, принято изображать направленными от сечения, как показано на рисунке 525.1.г), а сжимающие напряжения — направленными к сечению. С точки зрения физики такая замена вполне допустима, так как нормальные напряжения (внутренние силы) можно рассматривать как плоскую нагрузку, распределенную по всей площади сечения (внешнюю силу). Как правило растягивающие нормальные напряжения рассматриваются как положительные, а сжимающие — как отрицательные.

Сечение стержня, показанное на рисунке 525.1.в) розовым цветом, является перпендикулярным нейтральной оси стержня и называется поперечным сечением.

Как следует из формулы (525.1) и из приведенного рисунка, длина стержня l на значение нормальных напряжений никак не влияет. А вот параметры поперечного сечения стержня: ширина сечения b и высота сечения h, если сечение прямоугольное, очень даже влияют, так как от этих параметров зависит площадь F поперечного сечения.

Примечание: конечно же поперечное сечение стержня далеко не всегда имеет прямоугольную форму, как показано на рисунке 525.1.в). Поперечное сечение может быть и круглым, и овальным, и ромбическим, и вообще иметь любую сколь угодно сложную форму, тем не менее форма поперечного сечения никак на значение нормальных напряжений не влияет (во всяком случае такое допущение принимается в теории сопротивления материалов), а влияет только площадь сечения, определить которую тем сложнее, чем более сложной является форма поперечного сечения.

Проверить данные постулаты теории сопротивления материалов очень легко и просто. Достаточно взять нитку и попробовать ее разорвать (вариант а)). Затем разорвать нитки с с той же катушки, но б) более короткую и в) более длинную, чем в первом случае. Во всех трех случаях усилие, которое необходимо приложить для разрыва нитки, будет примерно одинаковым.

Но если одну из ниток сложить вдвое и попробовать разорвать, то усилие, необходимое для разрыва нитки, увеличится в 2 раза. Все потому, что условная площадь сечения стержня, работающего на растяжение, увеличится при складывании нитки в 2 раза.

Таким образом известная пословица: «где тонко, там и рвется» в переводе на язык теории сопротивления материалов будет звучать примерно так: «при действии растягивающих нормальных напряжений разрушение материала, обладающего постоянным сопротивлением растяжению по всей длине, будет происходить в сечении с минимальной площадью». Это особенно актуально для стержней с изменяющейся по длине площадью сечения.

С учетом различных факторов формула (525.1) может иметь другой вид:

Nγn/Fn = σ ≤ Rрγs (512.1.2)

где γn — коэффициент надежности по нагрузке (как правило больше единицы), Fn — минимальная площадь сечения (с учетом возможных ослаблений отверстиями, пазами и т.п.), γs — коэффициент условий работы (как правило меньше единицы).

Т.е. теория сопротивления материалов допускает, что нормальные напряжения в стержне могут быть равны расчетному сопротивлению материала на растяжение, умноженному на коэффициент условий работы.

Пример расчета стержня на растяжение

Дано: На стальной стержень (см. рис.525.1.а)) с расчетным сопротивлением Rp = 2250 кг/см2 действует продольная растягивающая сила N = 30 тонн. Коэффициент надежности по нагрузке γn = 1.05, коэффициент условий работы γs = 0.9. Собственным весом стержня в виду его незначительности по сравнению с действующей нагрузкой для упрощения расчетов можно пренебречь. Предполагается, что нагрузка прикладывается по всей площади поперечного сечения стержня, т.е. возникающие нормальные напряжения будут равномерно распределенными по всей площади сечения.

Требуется: Подобрать диаметр стержня.

Решение:

1. Определяем требуемую площадь сечения стержня, преобразовав формулу (525.1.2)

F = Nγn/Rpγs = 30000·1.05/(2250·0.9) = 15.56 см2.

2. Определяем диаметр стержня

d = √4F/п = √4·15.56/3.14 = 4.45 см

Как видим сам расчет занимает гораздо меньше времени, чем описание физических характеристик используемых данных и даже формулировка условия задачи.

Источник

12 мая 2016 г.

Центрально-растянутые элементы. Работа таких элементов под нагрузкой полностью соответствует диаграмме работы матери­ала при растяжении.

Основная проверка для центрально-растянутых элементов — проверка прочности, относящаяся к первой группе предельных состояний.

Напряжения в центрально-растянутом элементе

σ=N / Aп ≤ Ryγc

где N— усилие в элементе от расчетных нагрузок; Aп — площадь поперечного сечения проверяемого элемента за вычетом ослабле­ний (площадь сечения нетто); Ry — расчетное сопротивление; γc — коэффициент условий работы.

Расчет по формуле выше предупреждает развитие пластических деформаций в ослабленном сечении элементов, выполненных из малоуглеродистых сталей и сталей повышенной прочности.

Читайте также:  Растяжение связок голеностопа сзади

Расчет на прочность растянутых элементов конструкций из стали с отношением Ruγu > Ry эксплуатация которых возможна и после достижения металлом предела текучести, выполняют по формуле σ=N / Aп ≤ Ruγu / γuγn

где γu — коэффициент надежности при расчете по временному со­противлению.

Кроме прочности растянутых элементов, необходимо обеспечить их достаточную жесткость, чтобы избежать повреждения элементов при перевозке и монтаже конструкций, а также в процессе их эксплу­атации уменьшить провисание элементов от собственного веса и пре­дотвратить вибрацию стержней при динамических нагрузках.

Для этой цели проверяют гибкость растянутых элементов, ко­торая не должна превышать максимально допустимых значений [λ], приведенных в таблице ниже 

λ = lef/i ≤ λ 

где lef — расчетная длина элемента; i — радиус инерции сечения.

Предельные гибкости [λ] растянутых элементов

Элементы конструкций

Максимальная допускаемая гибкость

в зданиях и сооружениях при нагрузках

в затво­рах ГТС

статиче­

ских

динамиче­ских, прило­женных непо­средственно к конструкции

1

2

3

4

Пояса и опорные раскосы плоских

ферм

400

250

250

Прочие элементы ферм

400

350

350

Нижние пояса подкрановых балок

и ферм

150

Элементы продольных и попе­речных связей в затворах ГТС

150

Элементы вертикальных связей между колоннами (ниже подкра­новых балок)

300

300

Прочие элементы связей

400

400

400

Примечания. I. В сооружениях, не подвергающихся динамическим воздействиям. гибкость растянутых элементов проверяют только в вертикальной плоскости. 2. К динамическим нагрузкам, приложенным непосредственно к конструкциям, относятся нагрузки, принимаемые в расчетах на выносливость или в расчетах с учетом коэффициентов динамичности. 3. Для растянутых элементов, в которых при неблагоприятном расположении нагрузки может изменяться знак усилия, предельную гибкость принимают как для сжатых элементов; при этом соединительные прокладки в составных элементах следует устанавливать не реже чем через 40i

Центрально-сжатые элементы. Эти элементы рассчитывают по первой группе предельных состояний, при этом для коротких элементов, длина которых превышает наименьший поперечный раз­мер не более чем в 5-6 раз, проверяют прочность по формуле выше, а для длинных гибких элементов — устойчивость по формуле

σ = N/φA = Ryγc/γn

где А — площадь поперечного сечения брутто; φ — коэффициент про­дольного изгиба, определяемый по таблице ниже по наибольшей гибкости λ или по формулам в зависимости от условной гибкости элемента; при 0 < λ ≤ 2,5:

Коэффициенты φ продольного изгиба центрально-сжатых стальных элементов

Гибкость элемента

Значения φ при Ry, МПа

200

240

280

320

360

400

10

0,988

0,987

0,985

0,984

0,983

0,982

20

0,967

0,962

0,959

0,955

0,952

0,949

30

0,939

0,931

0,924

0,917

0,911

0,905

40

0.906

0,894

0,883

0,873

0,863

0,854

50

0,869

0,852

0,836

0,822

0,809

0,796

60

0,827

0,805

0,785

0,766

0,749

0,721

70

0,782

0,754

0,724

0,687

0,654

0,623

80

0,734

0,686

0,641

0,602

0,566

0,532

90

0,665

0,612

0,565

0,522

0,483

0,447

100

0,599

0,542

0,493

0,448

0,408

0,369

110

0,537

0,478

0,427

0,381

0,338

0,306

120

0,479

0,419

0,366

0,321

0,287

0,260

130

0,425

0,364

0,313

0,276

0,247

0,223

140

0,376

0,315

0,272

0,240

0,215

0,195

150

0,328

0,276

0,239

0,211

0,189

0,171

160

0,290

0,244

0,212

0,187

0,167

0,152

170

0,259

0,218

0,189

0,167

0,150

0,136

180

0,233

0,196

0,170

0,150

0,135

0,123

190

0,210

0,177

0,154

0,136

0,122

0,111

200

0,191

0,161

0,140

0,124

0,111

0,101

210

0,174

0,147

0,128

0,113

0,102

0,093

220

0,160

0,135

0,118

0,104

0,094

0,086

Коэффициенты μ для определения расчетных длин колонн и стоек постоянного сечения

 Расчетная схема элемента

 μ

Расчетная схема элемента 

 μ

 1 - 0051

1

2

0,7 

1 - 0051 - копия 

0,5

1,12

0,725

Учитывая традиционное соотношение размеров элементов в металлических конструкциях, основной является проверка устойчивости.

По формуле, выведенной Эйлером, потеря устойчивости цент­рально-сжатым элементом, шарнирно закрепленным по концам (основной случай), происходит при критической силе

Ncr = π2EImin / l2ef

где Е — модуль упругости; Imin — минимальный момент инерции поперечного сечения элемента; lef — расчетная длина стержня.

Соответственно критические напряжения

1 - 0052

где imin= √Imin/A — минимальный радиус инерции.

Формула Эйлера выведена в предположении, что Е — величина постоянная, т. е. критические напряжения не превосходят предел пропорциональности материала. Для малоуглеродистых сталей, име­ющих предел пропорциональности σel = 200 МПа, из формулы ниже можно получить наименьшую гибкость, при которой применима формула Эйлера:

1 - 0052 - копия

Гибкость стержней не должна превышать предельных значений для сжатых элементов (таблица ниже).

Значения предельной допустимой гибкости [λ] для сжатых стержней

позиции

Элементы конструкций

λ

1

2

3

1

Пояса, опорные раскосы и стойки, передающие опорные реакции:

а) плоских ферм и пространственных конструк­ций из труб или парных уголков высотой до 50 м;

б) пространственных конструкций из одиноч­ных уголков труб или парных уголков высотой более 50 м

180-60α

120

2

а) плоских ферм, сварных пространственных конструкций из одиночных уголков, простран­ственных конструкций из труб или парных уголков;

б) пространственных конструкций из одиночных уголков с болтовыми соединениями

210-60α

220-40α

3

Верхние пояса ферм, остающиеся незакреплен­ными в процессе монтажа

220

4

Основные колонны

180-60α

5

Второстепенные колонны (стойки фахверка, фонарей и т. п.), элементы решетки колонн, эле­менты вертикальных связей между колоннами (ниже подкрановых балок)

210-60α

6

Элементы связей (за исключением связей, ука­занных в п. 5), а также стержни, служащие для уменьшения расчетной длины сжатых стерж­ней, и другие ненагруженные элементы

200

7

Сжатые и ненагруженные элементы простран­ственных конструкций таврового и крестового сечения, подверженные воздействию ветровых нагрузок, при проверке гибкости в вертикаль­ной плоскости; элементы связей в затворах ГТС

150

Примечание. α = N / φARyγc ≥ 0,5; в необходимых случаях вместо φ следует применять φе.

Проверка устойчивости центрально-сжатого элемента сводит­ся к сравнению напряжений, равномерно распределенных по сече­нию, с критическим вычисленным с учетом случайных эксцентри­ситетов: σ=N/A ≤ σсr. Чтобы не вычислять каждый раз σсr для про­верки устойчивости можно пользоваться формулой выше. Смысл коэффициента продольного изгиба φ состоит в том, что он умень­шает расчетное сопротивление до значений, обеспечивающих ус­тойчивое равновесие стержня, т. е. до критического напряжения:

Читайте также:  Растяжение связок голеностопа отек что делать

σсr = φ Ry или φ = σсrRy

С учетом влияния случайных эксцентриситетов

1 - 0053

где σсr — критическое напряжение стержня, вычисленное по форму­ле Эйлера; σeсr — критическое напряжение стержня, сжимаемого силой, приложенной с возможным случайным эксцентриситетом е.

Источник

Расчет на прочность при растяжении
Расчет металлического стержня на растяжение
Расчет металлического стержня на растяжение

2.4. РАСЧЕТЫ НА ПРОЧНОСТЬ ПРИ РАСТЯЖЕНИИ Основной задачей расчета конструкции на растяжение является обеспечение ее прочности в условиях эксплуатации. Условие прочности – оценка прочности элемента конструкции, сводящаяся к сравнению расчетных напряжений с допускаемыми: σ≤рσ[р ]; σ с ≤[ с],σ (2.9) где σр и σс – наибольшие расчетные растягивающие и сжимающие напряжения; [σр] и [σс] – допускаемые напряжения при растяжении и сжатии. Допускаемое напряжение – наибольшее напряжение, которое можно допустить в элементе конструкции при условии его безопасной, долговечной и надежной работы: Здесь σпред – предельное напряжение (состояние), при котором конструкция перестает удовлетворять эксплуатационным требованиям; им мо- гут быть предел текучести, предел прочности, предел выносливости, пре- дел ползучести и др. Для конструкций из пластичных материалов при определении допускаемых напряжений используют предел текучести σт (рис. 2.4, а). Это связано с тем, что в случае его превышения деформации резко возрастают при незначительном увеличении нагрузки и конструкция перестает удовлетворять условиям эксплуатации. Допускаемое напряжение в этом случае определяют как Для хрупких материалов (чугун, бетон, керамика) где σвр и σвс – пределы прочности при растяжении и сжатии (рис. 2.4, б). Здесь [n] – нормативный коэффициент запаса прочности. В зависимости от той предельной характеристики, с которой сравнивают расчетное напряжение σ, различают [nт] – нормативный коэффициент запаса прочности по отношению к пределу текучести σт и [nв] – нормативный коэффициент запаса прочности по отношению к пределу прочности σв. Запас прочности – отношение предельно допустимой теоретической нагрузки к той нагрузке, при которой возможна безопасная работа конструкции с учетом случайных перегрузок, непредвиденных дефектов и недостоверности исходных данных для теоретических расчетов. Нормативные коэффициенты запаса прочности зависят: − от класса конструкции (капитальная, временная), − намечаемого срока эксплуатации, − условий эксплуатации (радиация, коррозия, загнивание), − вида нагружения (статическое, циклическое, ударные нагрузки) − неточности задания величины внешних нагрузок, − неточности расчетных схем и приближенности методов расчета − и других факторов. Нормативный коэффициент запаса прочности не может быть единым на все случаи жизни. В каждой отрасли машиностроения сложились свои подходы, методы проектирования и приемы технологии. В изделиях общего машиностроения принимают [nт] = 1,3 – 2,2; [nв] = 3 – 5. Вероятность выхода из строя приближенно можно оценить с помощью коэффициента запаса в условии прочности: n = 1 соответствует вероятности невыхода из строя 50 %; n = 1,2 соответствует вероятности невыхода из строя 90 %; n = 1,5 соответствует вероятности невыхода из строя 99 %; n = 2 соответствует вероятности невыхода из строя 99,9 %. Для неответственных деталей n = 2 много. Для ответственных – мало. Так для каната подъемного лифта это означает на 1000 подъемов одно падение. При расчете конструкций на прочность встречаются три вида задач, которые вытекают из условия прочности а) поверочный расчет (проверка прочности). Известны усилие N и площадь A. Вычисляют σ = N/A и, сравнивая его с предельным σт или σв (для пластичного и хрупкого материалов соответственно), находят фактический коэффициент запаса прочности который затем сопоставляют с нормативным [n]; б) проектный расчет (подбор сечения). Известны внутреннее усилие N и допускаемое напряжение [σ]. Определяют требуемую площадь поперечного сечения стержня в) определение грузоподъемности (несущей способности). Известны площадь А и допускаемое напряжение [σ]. Вычисляют внутреннее усилие N≤N[ ] = ⋅[σ]A, (2.15) а затем в соответствие со схемой нагружения – величину внешней нагрузки F ≤ [F].

Источник

Внутренние усилия при растяжении-сжатии.

Осевое (центральное) растяжение или сжатие прямого бруса вызывается внешними силами, вектор равнодействующей которых совпадает с осью бруса. При растяжении или сжатии в поперечных сечениях бруса возникают только продольные силы N. Продольная сила N в некотором сечении равна алгебраической сумме проекции на ось стержня всех внешних сил, действующих по одну сторону от рассматриваемого сечения. По правилу знаков продольной силы N принято считать, что от растягивающих внешних нагрузок возникают положительные продольные силы N, а от сжимающих — продольные силы N отрицательны (рис. 5).

правило знаков для продольных сил

Чтобы выявить участки стержня или его сечения, где продольная сила имеет наибольшее значение, строят эпюру продольных сил, применяя метод сечений, подробно рассмотренный в статье:
Анализ внутренних силовых факторов в статистически определимых системах
Ещё настоятельно рекомендую взглянуть на статью:
Расчёт статистически определимого бруса
Если разберёте теорию в данной статье и задачи по ссылкам, то станете гуру в теме «Растяжение-сжатие» =)

Напряжения при растяжении-сжатии.

Определенная методом сечений продольная сила N, является равнодействующей внутренних усилий распределенных по поперечному сечению стержня (рис. 2, б). Исходя из определения напряжений, согласно выражению (1), можно записать для продольной силы:

напряжения при растяжении-сжатии

где σ — нормальное напряжение в произвольной точке поперечного сечения стержня.


Чтобы определить нормальные напряжения в любой точке бруса необходимо знать закон их распределения по поперечному сечению бруса. Экспериментальные исследования показывают: если нанести на поверхность стержня ряд взаимно перпендикулярных линий, то после приложения внешней растягивающей нагрузки поперечные линии не искривляются и остаются параллельными друг другу (рис.6, а). Об этом явлении говорит гипотеза плоских сечений (гипотеза Бернулли): сечения, плоские до деформации, остаются плоскими и после деформации.

Читайте также:  Троксевазин при растяжении мышц

механизм деформации растяжения

Так как все продольные волокна стержня деформируются одинаково, то и напряжения в поперечном сечении одинаковы, а эпюра напряжений σ по высоте поперечного сечения стержня выглядит, как показано на рис.6, б. Видно, что напряжения равномерно распределены по поперечному сечению стержня, т.е. во всех точках сечения σ = const. Выражение для определения величины напряжения имеет вид:

формула напряжения

Таким образом, нормальные напряжения, возникающие в поперечных сечениях растянутого или сжатого бруса, равны отношению продольной силы к площади его поперечного сечения. Нормальные напряжения принято считать положительными при растяжении и отрицательными при сжатии.

Деформации при растяжении-сжатии.

Рассмотрим деформации, возникающие при растяжении (сжатии) стержня (рис.6, а). Под действием силы F брус удлиняется на некоторую величину Δl называемую абсолютным удлинением, или абсолютной продольной деформацией, которая численно равна разности длины бруса после деформации l1 и его длины до деформации l

абсолютное удлинение

Отношение абсолютной продольной деформации бруса Δl к его первоначальной длине l называют относительным удлинением, или относительной продольной деформацией:

относительное удлинение

При растяжении продольная деформация положительна, а при сжатии – отрицательна. Для большинства конструкционных материалов на стадии упругой деформации выполняется закон Гука (4), устанавливающий линейную зависимость между напряжениями и деформациями:

закон гука

где модуль продольной упругости Е, называемый еще модулем упругости первого рода является коэффициентом пропорциональности, между напряжениями и деформациями. Он характеризует жесткость материала при растяжении или сжатии (табл. 1).

Таблица 1

Модуль продольной упругости для различных материалов

модуль продольной упругости для различных материалов

Абсолютная поперечная деформация бруса равна разности размеров поперечного сечения после и до деформации:

абсолютная поперечная деформация бруса

Соответственно, относительную поперечную деформацию определяют по формуле:

относительная поперечная деформация

При растяжении размеры поперечного сечения бруса уменьшаются, и ε’ имеет отрицательное значение. Опытом установлено, что в пределах действия закона Гука при растяжении бруса поперечная деформация прямо пропорциональна продольной. Отношение поперечной деформации ε’ к продольной деформации ε называется коэффициентом поперечной деформации, или коэффициентом Пуассона μ:

коэффициент пуассона

Экспериментально установлено, что на упругой стадии нагружения любого материала значение μ = const и для различных материалов значения коэффициента Пуассона находятся в пределах от 0 до 0,5 (табл. 2).

Таблица 2

Коэффициент Пуассона.

коэффициент пуассона для материалов

Абсолютное удлинение стержня Δl прямо пропорционально продольной силе N:

абсолютное удлинение стержня

Данной формулой можно пользоваться для вычисления абсолютного удлинения участка стержня длиной l при условии, что в пределах этого участка значение продольной силы постоянно. В случае, когда продольная сила N изменяется в пределах участка стержня, Δl определяют интегрированием в пределах этого участка:

Расчет металлического стержня на растяжение

Произведение (Е·А) называют жесткостью сечения стержня при растяжении (сжатии).

Механические свойства материалов.

Основными механическими свойствами материалов при их деформации являются прочность, пластичность, хрупкость, упругость и твердость.

Прочность — способность материала сопротивляться воздействию внешних сил, не разрушаясь и без появления остаточных деформаций.

Пластичность – свойство материала выдерживать без разрушения большие остаточные деформации. Неисчезающие после снятия внешних нагрузок деформации называются пластическими.

Хрупкость – свойство материала разрушаться при очень малых остаточных деформациях (например, чугун, бетон, стекло).

Идеальная упругость – свойство материала (тела) полностью восстанавливать свою форму и размеры после устранения причин, вызвавших деформацию.

Твердость – свойство материала сопротивляться проникновению в него других тел.

Рассмотрим диаграмму растяжения стержня из малоуглеродистой стали. Пусть круглый стержень длинной l0 и начальным постоянным поперечным сечением площади A0 статически растягивается с обоих торцов силой F.

растягивание стержня до разрушения

Диаграмма сжатия стержня имеет вид (рис. 10, а)

диаграмма растяжения стали

где Δl = l — l0 абсолютное удлинение стержня; ε = Δl / l0 — относительное продольное удлинение стержня; σ = F / A0 — нормальное напряжение; E — модуль Юнга; σп — предел пропорциональности; σуп — предел упругости; σт — предел текучести; σв — предел прочности (временное сопротивление); εост — остаточная деформация после снятия внешних нагрузок. Для материалов, не имеющих ярко выраженную площадку текучести, вводят условный предел текучести σ0,2 — напряжение, при котором достигается 0,2% остаточной деформации. При достижении предела прочности в центре стержня возникает локальное утончение его диаметра («шейка»). Дальнейшее абсолютное удлинение стержня идет в зоне шейки ( зона местной текучести). При достижении напряжением предела текучести σт глянцевая поверхность стержня становится немного матовой – на его поверхности появляются микротрещины (линии Людерса-Чернова), направленные под углом 45° к оси стержня.

примеры разрушения материалов

Расчеты на прочность и жесткость при растяжении и сжатии.

Опасным сечением при растяжении и сжатии называется поперечное сечение бруса, в котором возникает максимальное нормальное напряжение. Допускаемые напряжения вычисляются по формуле:

формула допускаемые напряжения

где σпред — предельное напряжение (σпред = σт — для пластических материалов и σпред = σв — для хрупких материалов); [n] — коэффициент запаса прочности. Для пластических материалов [n] = [nт] = 1,2 … 2,5; для хрупких материалов [n] = [nв] = 2 … 5, а для древесины [n] = 8 ÷ 12.

Расчеты на прочность при растяжении и сжатии.

Целью расчета любой конструкции является использование полученных результатов для оценки пригодности этой конструкции к эксплуатации при минимальном расходе материала, что находит отражение в методах расчета на прочность и жесткость.

Условие прочности стержня при его растяжении (сжатии):

Условие прочности стержня

При проектном расчете определяется площадь опасного сечения стержня:

площадь при проектном расчёте

При определении допускаемой нагрузки рассчитывается допускаемая нормальная сила:

допускаемая нормальная сила

Расчет на жесткость при растяжении и сжатии.

Работоспособность стержня определяется его предельной деформацией [ l ]. Абсолютное удлинение стержня должно удовлетворять условию:

ограничение абсолютного удлинения стержня

Часто дополнительно делают расчет на жесткость отдельных участков стержня.

Следующая важная статья теории:
Изгиб балки

Источник