Работа стали на растяжение при сложном напряженном состоянии

Работа стали на растяжение при сложном напряженном состоянии thumbnail

Сложное напряженное состояние характеризуется наличием двух или трех главных нормальных напряжений s1, s2 и s3, действующих одновременно (рис. 2.4). Если при одноосном напряженном состоянии (s1 ¹ 0; s2 = s3 = 0) пластические деформации развиваются при напряжениях, равных пределу текучести, то при сложном напряженном состоянии переход в пластическое состояние зависит от знака и соотношения действующих напряжений.

При однозначном поле напряжений, когда все напряжения либо растягиваю­щие, либо сжимающие, напряжения s2 иs3 сдерживают развитие деформаций в направлении напряжения s1. В этом случае развитие пластических деформаций запаздывает, предел текучести повышается, а протяженность площадки текучести уменьшается, возникает опасность хрупкого разрушения.

Рис. 2.4 — Сложное напряженное состояние

При разнозначных напряжениях (сжатие в одном и растяжение в другом направлении) наблюдается обратная картина. Пластические деформации начинаются раньше, чем главные напряжения достигли предела текучести одноосного нагружения. Сталь становится как бы более пластичной.

То же самое при двухосном напряженном состоянии (рис. 2.5).

1 – σ1σ2 < 0; 2 — σ1σ2 > 0; 3 — σ2 = 0

Рис. 2.5 — Работа стали при плоском напряженном состоянии

Явление текучести можно представить как процесс изменения формы тела без изменения его объема. Удельная энергия изменения формы при сложном напряженном состоянии будет равна соответствующей энергии одноосного напряженного состояния, для которого напряжение перехода стали в пластическую стадию известно и равно пределу текучести σу. Следовательно, условие перехода стали в пластическую стадию при сложном напряженном состоянии:

.

Левую часть этого выражения называют приведенным напряжением. Приведенное напряжение при плоском напряженном состоянии равно:

.

Концентрация напряжений

В местах искажения сечения (у отверстий, выточек, надрезов, утолщений и т. п.) происходит искривление линий силового потока и их сгущение около пре­пятствий (рис. 2.6), что приводит к повышению напряжений в этих местах.

Рис.2.6. Траектория и концентрация напряжений у мест резкого изменения формы элемента

а -около отверстий; б -около трещины; в -в сварном соединении лобовыми швами

Отношение максимального напряжения в местах концентрации к номинальному, равномерно распределенному по ослабленному сечению, называется коэффициентом концентрации. Коэффициент концентрации у круглых отверстий и полукруглых выточек имеет значение 2-3. В местах острых надрезов оно выше и тем больше, чем меньше радиус кривизны надреза и чем гуще собирается в этих местах силовой поток; коэффициент концентрации в этом случае достигает значения 6-9.

Развитие пластических деформаций и разрушение при равномерном распределении напряжений происходят под воздействием касательных напряжений, наибольшее значение которых возникает на плоскостях, наклонных под углом 45° к действующей силе (зона 1). При резком перепаде напряжений (зона 2) общие сдвиговые деформации происходить не могут (из-за задержки соседними, менее напряженными участками), поэтому в этих областях металл разрушается путем отрыва по плоскостям, нормальным к действующей силе.

При статических нагрузках и нормальной температуре концентрация напряжений существенного влияния на несущую способность не оказывает (не учитывая некоторого повышения разрушающей нагрузки). Поэтому при расчетах элементов металлических конструкций при таком виде воздействиях их влияние на прочность не учитывается.

При понижении температуры прочность на разрыв гладких образцов повышается во всем диапазоне отрицательных температур; прочность же образцов с надрезом повышается до некоторой отрицательной температуры, а затем понижается.

При длительном воздействии нагрузки сопротивление разрушению понижается.

Испытаниями установлено, что конструкции из низколегированных, особенно термоупрочненных сталей сопротивляются разрушению лучше, чем малоуглеродистые стали.


13:

Работа стали при изгибе

В изгибаемом элементе нормальные «напряжения распределяются по сечению неравномерно (как известно, в стадии упругой работы — по линейному закону): максимальные напряжения будут в фибровых (крайних) волокнах, по нейтральной оси они равны нулю. Если изгибающий момент будет продолжать увеличиваться, напряжения в крайних волокнах вследствие развития пластических деформаций останутся равными ат, а дополнительный момент будет восприниматься менее напряженными волокнами, расположенными ближе ^нейтральной оси. Наконец, Наступит время, когда напряжения по всему сечению балки будут равными пределу текучести — образуется так называемый шарнир пластичности и балка превратится в статически изменяемую «систему. Несущая способность балки полностью исчерпана.

Для разрезных прокатных и сварных (постоянного сече- по длине) балок, воспринимающих статическую нагрузку, закрепленных от потери общей устойчивости, а также при условии, что касательные напряжения в месте наибольшего изгибающего момента не превышают 0,3 расчетного сопротивления,нормы допускают развитие пластических деформаций.

В балках при изгибе, как известно, кроме нормальных возникают и касательные напряжения. Значения их изменяются как по длине балки, так и по высоте сечения. Так, для балки с шарнирными опорами при равномерно распределенной нагрузке на опоре изгибающий момент и нормальные напряжения равны нулю, в середине пролета М и а — максимальные. Касательные напряжения, являющиеся функцией поперечной силы, будут максимальными в опорном сечении и равными нулю в середине пролета балки.

Во всех остальных сечениях между опорой и серединой балки одновременно действуют нормальные и касательные напряжения. В этой зоне балки и в первую очередь в балках с измененным по длине сечением необходимо определять их суммарные значения — приведенные напряжения.

14-15:



Источник

Такая работа характеризуется наличием двух или трех главных нормальных напряжений , действующих одновременно. Переход в пластическое состояние зависит от знака и соотношения значений действующих напряжений:

1)  — одновременное растяжение, переход в пластическое состояние при ; 

2) при 3-х-основном растяжении  — хрупкое разрушение;

3) при 3-х – основном сжатии – разрушить металл не удастся;

4) при сжатии в одном направлении и растяжении в другом – сталь становится более пластичной, пластические деформации начинаются при .

Все прочностные характеристики стали определялись при одноосном растяжении стальных образцов.

Так как в реальных конструкциях материал чаще всего находится в сложном напряженном состоянии, установили энергетическую эквивалентность сложного напряженного состояния одноосному. В качестве критерия эквивалентности используют потенциальную энергию, накапливаемую в материале при его деформировании внешними воздействиями.

Из энергетической эквивалентности сложного напряженного состояния одноосному имеем:

,

где — приведенное напряжение, соответствующее приведению к некоторому состоянию с одноосным напряжением σ.

Если , то это выражение представляет собой условие перехода из упругого состояния в пластическое.

Различные случаи условия пластичности в двутавровых балках:

1) (пределу текучести)- в стенках балок вблизи приложенной поперечной нагрузки, . Остальными напряжениями пренебрегаем.

2)  (пределу текучести) — в местах, удаленных от места приложения нагрузки, локальные напряжения равны нулю.

3)  (пределу текучести) — при чистом сдвиге, когда только .

Отсюда .

В соответствии с этим выражением в СНиПе принято соотношение между расчетным сопротивлением сдвигу Rs и растяжению Ry: .

Условие прочности при чистом сдвиге ,

где Rs – расчетное сопротивление материала сдвигу.

Упруго-пластическая работа стали при изгибе. Шарнир пластичности. Основы расчета изгибаемых элементов.

Напряжение при изгибе в упругой стадии распределяется в сечении по линейному закону. Напряжения в крайних волокнах для симметричного сечения определяются формулой:

,где М – изгибающий момент;

W — момент сопротивления сечения.

С увеличением нагрузки (или изгибающего момента М) напряжения будут увеличиваться и достигнут значения предела текучести Ryn.

Ввиду того, что предела текучести достигли только крайние волокна сечения, а соединенные с ними менее напряженные волокна могут еще работать, несущая способность элемента не исчерпана. С дальнейшим увеличением изгибающего момента будет происходить удлинение волокон сечения, однако напряжения не могут быть больше Ryn. Предельной эпюрой будет такая, в которой верхняя часть сечения до нейтральной оси равномерно сжата напряжением Ryn. Несущая способность элемента при этом исчерпывается, а он может как бы поворачиваться вокруг нейтральной оси без увеличения нагрузки; образуется шарнир пластичности.

В месте пластического шарнира происходит большое нарастание деформаций, балка получает угол перелома, но не разрушается. Обычно балка теряет при этом либо общую устойчивость, либо местную устойчивость отдельных частей. Предельный момент, отвечающий шарниру пластичности,

,где Wпл = 2S – пластический момент сопротивления

S – cтатический момент половины сечения относительно оси, проходящий через центр тяжести.

Пластический момент сопротивления, а следовательно предельный момент, отвечающий шарниру пластичности больше упругого. Нормами разрешается учитывать развитие пластических деформаций для разрезных прокатных балок, закрепленных от потери устойчивости и несущих статическую нагрузку. Значение пластических моментов сопротивления при этом принимаются: для прокатных двутавров и швеллеров:

Wпл=1,12W – при изгибе в плоскости стенки

Wпл =1,2W – при изгибе параллельно полкам.

Для балок прямоугольного поперечного сечения Wпл=1,5 W.

По нормам проектирования развития пластических деформаций допускается учитывать для сварных балок постоянного сечения при отношениях ширины свеса сжатого пояса к толщине пояса  и высоты стенки к ее толщине .

В местах наибольших изгибающих моментов недопустимы наибольшие касательные напряжения; они должны удовлетворять условию: .

Если зона чистого изгиба имеет большую протяженность, соответствующий момент сопротивления во избежании чрезмерных деформаций принимается равным 0,5(Wyn+Wпл).

В неразрезных балках за предельное состояние принимается образование шарниров пластичности, но при условии сохранения системой своей неизменяемости.

Во всех случаях, когда расчетные моменты принимаются в предположении развития пластических деформаций (выравнивания моментов), проверку прочности следует производить по упругому моменту сопротивления по формуле:

При расчете балок из алюминиевых сплавов развитие пластических деформаций не учитывается. Пластические деформации пронизывают не только наиболее напряженное сечение балки в месте наибольшего изгибающего момента, но и распространяются по длине балки. Обычно в изгибаемых элементах кроме нормальных напряжений от изгибающего момента есть еще и касательное напряжение от поперечной силы. Поэтому условие начала перехода металла в пластическое состояние в этом случае должно определяться приведенными напряжениями sчеd:

.

Источник

22 ноября 2011

Если подвергнуть образец растяжению, последовательно увеличивая нагрузку Р, и производить при этом замеры получающихся удлинений ∆l, то можно построить опытную диаграмму растяжения, откладывая удлинение в функции нагрузки.

Для удобства сравнения эту диаграмму выражают в напряжениях и относительных удлинениях:

где σ — нормальное напряжение;

F — первоначальная площадь сечения образца; ε — относительное удлинение в процентах;

l0 — первоначальная длина образца.

Величина относительного удлинения зависит от длины и поперечного сечения образца и увеличивается с уменьшением отношения

. Поэтому для сохранения сравнимости результатов испытаний установлены два типа образцов — длинный и короткий — с соотношениями между длиной и площадью сечения1

Опытная диаграмма растяжения малоуглеродистой стали марки Ст. 3 показана на фигуре.

Диаграмма растяжения стали марки Ст. 3

Вначале зависимость между напряжениями и относительными удлинениями определяется законом прямой линии, т. е. они пропорциональны между собой.

Это выражается линейным уравнением (зависимость Гука)

где Е — постоянный коэффициент пропорциональности, называемый модулем упругости при растяжении. Для стали Е = 2 100 000 кг/см2.

Пропорциональная зависимость между деформацией и напряжением имеет предел. То наибольшее напряжение в материале, при котором начинается отклонение от прямолинейной зависимости, называется пределом пропорциональности σпц.

Несколько выше этой точки лежит предел упругости σуп, соответствующий наибольшей деформации, которая полностью исчезает после разгрузки. Точное определение этой точки на кривой опытным путем затруднительно, поскольку она фиксируется моментом начала получения остаточных деформаций после снятия нагрузки, что означает переход материала в пластическую стадию.

Для малоуглеродистых сталей при нагружении выше предела пропорциональности кривая диаграммы растяжения отходит от прямой и, плавно поднимаясь, делает скачок (образуя характерный «зуб»), после чего с незначительными колебаниями идет параллельно горизонтальной оси. Образец удлиняется без приращения нагрузки, материал течет. То нормальное напряжение, практически постоянное, при котором происходит течение материала, называется пределом текучести σт.

Горизонтальный участок диаграммы, называемый площадкой текучести, для малоуглеродистых сталей находится в пределах относительных удлинений от ε = 0,2% до ε = 2,5%. Наличие у материала площадки текучести является положительным фактором в работе стальных конструкций.

В других сталях, не малоуглеродистых, переход в пластическую стадию происходит постепенно, без площадки текучести и без «зуба». Для них предел упругости и предел текучести, таким образом, принципиально не отличаются друг от друга. За предел текучести этих сталей принимается то напряжение, при котором остаточная деформация достигает 0,2%.

При снятии нагрузки с образца, получившего пластическую деформацию, диаграмма разгрузки идет по прямой С — D параллельно упругой прямой нагрузки.

Когда относительное удлинение достигает определенной величины (ε ≈ 2,5% для Ст. 3), материал прекращает течь и становится опять способным к сопротивлению. Он как бы самоупрочняется. Однако зависимость между напряжениями и деформациями подчиняется уже криволинейному закону, с быстрым нарастанием деформаций, после чего в образце образуется шейка и, наконец, происходит полное разрушение его.

Предельная сопротивляемость материала, которая характеризует его прочность, определяется наибольшим напряжением в процессе разрушения. Это напряжение называется пределом прочности σпч (временным сопротивлением); оно условно; поскольку при построении диаграммы растяжения напряжения, относят к первоначальной площади сечения образца, не учитывая сужения и образования шейки.

Полное остаточное удлинение, замеренное после разрушения, является мерой пластичности стали.

Таким образом, важнейшими показателями механических свойств, характеризующими работу стали, являются: предел текучести, предел прочности и относительное удлинение. Эти показатели, так же как и химический состав, указываются в сертификатах, которые сопровождают каждую партию поставляемого металла.

Государственным стандартом на поставку строительной стали гарантируются следующие ее механические характеристики.

Таблица Показатели механических свойств строительных сталей

1  Н. А. Шапошников, Механические испытания металлов, Машгиз, 1951.

«Проектирование стальных конструкций»,
К.К.Муханов

Структура стали и явление текучести

Малоуглеродистая сталь представляет собой однородное кристаллическое тело, состоящее из мелких кристаллов феррита, образующих зерна (Fe — чистое железо), и перлита (смесь цементита Fe3C с ферритом), расположенного главным образом по стыкам ферритных зерен и образующего как бы «сетку» или вкрапления между зернами. Структура стали Ст. 3 (микрошлиф Х 80) Перлит значительно тверже феррита и более хрупок….

Работа стали при сложном напряженном состоянии

При опытном изучении образцов на растяжение устанавливается значение предела текучести σт. При этом в образцах развиваются нормальные линейные напряжения, т. е. имеет место одноосное напряженное состояние. В случае сложного напряженного состояния (например, плоского напряженного состояния, когда образец растягивается в двух направлениях, или при совместном действии нормальных и касательных напряжений при изгибе) переход в пластическое состояние,…

Источник

В случае сложного напряженного состояния (например, плоского напряженного состояния, когда образец растягивается в двух направлениях, или при совместном действии нормальных и касательных напряжений при изгибе) работу металла принято оценивать через приведенные напряжения, вычисленные по энергетической теории

,

где si, tij – соответственно нормальные и касательные напряжения.

Вид напряженного состояния влияет на механические характеристики металла.

Диаграммы деформирования стали при различных напряженных состояниях:

1. s1 ¹ 0 s2 = s3 = 0
2. s1 > 0 s2 < 0 s3 = 0
3. s1 > 0 s2 > 0 s3 = 0
4. s1 > 0 s2 > 0 s3 > 0
Рис. 8.3. Диаграммы деформирования стали при различных напряженных состояниях.

Однозначные плоское и объемное напряженные состояния (кривые 3, 4) значительно снижают относительное удлинение металла, но повышают характеристику прочности.

Напряжения различных знаков способствуют развитию пластических деформаций (кривая 2), но ухудшают характеристики прочности. Таким образом, можно сказать, что сложное напряженное состояние всегда ухудшает эксплуатационные качества металла. В первом случае повышается хрупкость металла, во втором — снижается его прочность.

В случае простого изгиба при действии нормальных и касательных напряжений приведенные напряжения вычисляются

Для плоского напряженного состояния

Через главные напряжения s1, s2 , s3

Работа стали при концентрации напряжений.

Негативно влияют на прочность конструкций концентраторы напряжений. К концентраторам относятся любые изменения формы образца (отверстия, надрезы).

В гладких образцах правильной формы напряжения во всех сечениях распределяются равномерно, а силовые линии прямолинейно.

Рис. 8.4. Траектории главных напряжений та их концентрация в местах изменения сечения.

Если в плоском образце сделать отверстия или надрезы, линии силового потока будут огибать новые границы. Отклонения силовых линий от прямой свидетельствуют о наличии напряжений, действующих в двух направлениях, т.е. возникает двухосное напряженное состояние. Отношение наибольшего напряжения в месте концентратора до среднего напряжения по сечению образца называется коэффициентом концентрации. Чем меньше радиус кривизны концентратора, тем выше значение коэффициента концентрации.

Наличие вблизи концентраторов сложного напряженного состояния с высоким уровнем напряжений создает условия хрупкого разрушения и образования трещин. Поэтому при конструировании необходимо избегать острых концентраторов, а сопряжение выполнять плавно.

Концентрация напряжений не очень влияет на прочность при статических нагрузках.

При динамических нагрузках, низких температурах, пластических деформациях, возникающих в процессе холодной обработки металла, концентраторы значительно снижают пластичность стали.

Старение металла

Старением называют свойство материала изменять свою структуру и свойства со временем. Это связано с тем, что, несмотря на небольшую растворимость углерода в феррит, со временем атомы углерода диффундируют к границам зерен. Количество хрупкого карбида железа увеличивается. Вследствие этого возрастает прочность стали, но снижаются ее пластичность и сопротивление хрупкому разрушению динамической нагрузкой. Старение ускоряется под действием переменных напряжений, повышении температур.

Влияние температуры

При росте температуры уменьшаются значения модуля упругости, предела текучести и прочности стали. При температуре 600°С предел текучести и модуль упругости стремятся к нулю.

Низкие температуры повышают хрупкость стали потому, что ухудшаются пластические свойства металла. При температурах ниже -10°С пластичность заметно уменьшается.

Ударная вязкость

Склонность стали к хрупкому разрушению и чувствительность к концентрации напряжений оцениваются по ударной вязкости.

Ударная вязкость — это работа, необходимая для разрушения стандартного образца с надрезом, относительно поперечного сечения.

Разрушение образца происходит ударным изгибом.

Рис. 8.5. Образец для испытания на ударную вязкость.

Значение ударной вязкости зависит не только от состава и структуры стали, но и от температуры. С понижением температуры ниже 0°С значение ударной вязкости резко падает.

Рис. 8.6. Ударная вязкость стали: 1 – Ст3сп; 2 – Ст3кп; 3 – 10Г2С1.

Температура, при которой происходит уменьшение ударной вязкости менее 0,3 МДж/м2, называется порог холодноломкости.

Очень сильно уменьшается ударная вязкость после старения стали. Для строительных сталей значение ударной вязкости при различных температурах и после старения помещены в нормативные документы.

Снижение показателя ударной вязкости ниже 0,3 МДж/м2 не допускается.



Источник