Работа стали на растяжение и сжатие диаграмма работы стали

Инструкция к лабораторной работе №2
по сопротивление материалов
Тема: «Определение механических характеристик
при растяжении стального образца»
Симферополь – 2014
Инструкция.
К лабораторной работе № 2 по сопротивлению материалов
Тема: «Определение механических характеристик при растяжении
стального образца»
Цель работы: Определить марки данной обезличенной, т.е. не имеющей
сертификата (паспорта), стали путем сравнения измеренных
механических характеристик этой стали с данными ГОСТа.
Содержание работы.
Диаграмма растяжения стали
Рассмотрим диаграмму растяжения, которая показывает зависимость между растягивающей силой F, действующей на образец, и вызываемой ею деформацией Δl (рис. 1)
На диаграмме можно указать пять характерных точек:
Рис.1Диаграмма растяжения малоуглеродистой стали.
Прямолинейный участок диаграммы ОА указывает на пропорциональность между нагрузкой F и удлинением Δl. (Эта пропорциональность впервые была замечена в 1670 г. Робертом Гуком и получила в дальнейшем название закона Гука).
Величина силы Fпц (точка А), до которой остается справедливым закон Гука, зависит от размеров образца и физических свойств материала.
Если испытуемый образец нагрузить растягивающей силой, не превышающей величину ординаты точки B (силы Fy), а потом разгрузить, то при разгрузке деформации образца будут уменьшаться по тому же закону, по которому они увеличивались при нагружении. Следовательно, в этом случае в образце возникают только упругие деформации.
В случае, если растягивающее усилие выше Fy, при разгрузке образца деформации полностью не исчезают и на диаграмме линия разгрузки будет представлять собой прямую B’О’, уже не совпадающую с линией нагружения, а параллельную ей. В этом случае деформация образца состоит из упругой ΔlупрB’ и остаточной (пластической) ΔlостB’ деформации.
Таким образом, характерной особенностью точки B является то, что при превышении нагрузки Fy образец испытывает остаточные деформации при разгружении.
Выше точки В диаграмма растяжения значительно отходит от прямой (деформация начинает расти быстрее нагрузки, и диаграмма имеет криволинейный вид), а при нагрузке, соответствующей Fт (точка С), переходит в горизонтальный участок. В этой стадии испытания в материале образца по всему его объему распространяются пластические деформации. Образец получает значительное остаточное удлинение практически без увеличения нагрузки.
Свойство материала деформироваться при практически постоянной нагрузке называется текучестью. Участок диаграммы растяжения, параллельный оси абсцисс, называется площадкой текучести.
В процессе текучести на отшлифованной поверхности образца можно наблюдать появление линий (полос скольжения), наклоненных примерно под углом 45° к оси образца (рис. 2а). Эти линии являются следами взаимных сдвигов кристаллов, вызванных касательными напряжениями.
Рис. 2Образование линий сдвига (а) и местного сужения—шейки (б)
Линии сдвига называются линиями Чернова по имени знаменитого русского металлурга Д. К. Чернова (1839 — 1921), впервые обнаружившего их.
Удлинившись на некоторую величину при постоянном значении силы, т.е. претерпев состояние текучести, материал снова приобретает способность сопротивляться растяжению (упрочняться), и диаграмма поднимается вверх, хотя гораздо более полого, чем раньше. В точке D усилие достигает максимального значения Fmax.
Наличие участка упрочнения (от конца площадки текучести до наивысшей точки диаграммы растяжения) объясняется микроструктурными изменениями материала: когда нагрузка на образец возрастает, микроскопические дефекты (линейные и точечные) группируются так, что развитие сдвигов кристаллов, вызванных касательными напряжениями, затрудняется, а потому сопротивление материала сдвигу начинает возрастать и приближаться к его сопротивлению отрыву.
При достижении усилия Fmax на образце появляется резкое местное сужение, так называемая шейка (рис. 2б), быстрое уменьшение площади сечения которой вызывает падение нагрузки, и в момент, соответствующий точке К диаграммы, происходит разрыв образца по наименьшему сечению шейки.
До точки D диаграммы, соответствующей Fmax, каждая единица длины образца удлинилась примерно одинаково; точно так же во всех сечениях одинаково уменьшались поперечные размеры образца. С момента образования шейки вся деформация образца локализуется на малой длине (lш~ 2d0) в области шейки, а остальная часть образца практически не деформируется.
Абсциссы диаграммы растягивания OE, OF и FE, характеризующие способность образца деформироваться до наступления разрушения, соответствуют полному абсолютному удлинению образца Δlполн, остаточному абсолютному удлинению Δlост и абсолютному упругому удлинению образца Δlупр.
Для определения упругой деформации в момент разрыва необходимо из точки K диаграммы провести прямую KF, параллельную прямолинейному участку OA, так как упругие деформации при разрыве также подчиняются закону Гука.
При выполнении работы для выбора марки стали необходимо определить предел текучести, предел прочности и относительное удлинение образца после разрыва.
Пределом текучести называется условное напряжение, соответствующее нагрузкеFт (точка С):
где:
— предел текучести, кг/см2 (МПа);
— нагрузка, соответствующая наступлению стадии текучести, кг (кН);
— первоначальная площадь поперечного сечения образца (см2);
Пределом прочности при растяжении называется условное напряжение, соответствующее максимальной нагрузке, которую способен выдержать материал при испытании и определяется отношением:
где:
— предел прочности, кг/см2 (МПа);
— разрушающая нагрузка, Т.е. максимальная нагрузка, которую способен выдержать образец при испытании до разрушения, кг (кН).
Относительное остаточное удлинение образца определяется соотношением:
где:
— длина образца после испытания, см;
— длина образца до испытания, см;
В соответствии с ГОСТ 380-60 углеродистая сталь обыкновенного качества должна иметь следующие механические свойства:
Таблица 1
Марка | Предел текучести, МПа | Предел прочности, МПа | Относительное удлинение, % |
Ст.0 | — | ||
Ст.1 | — | 320-400 | |
Ст.2 | 190-220 | 340-420 | |
Ст.3 | 220-240 | 380-400 | |
410-430 | |||
440-470 | |||
Ст.4 | 240-260 | 420-440 | |
450-480 | |||
490-520 | |||
Ст.5 | 260-280 | 500-530 | |
540-570 | |||
580-620 | |||
Ст.6 | 300-310 | 600-630 | |
640-670 | |||
680-720 | |||
Ст.7 | — | 700-740 | |
750-800 |
Указанные характеристики (см. таблицу №1) механических свойств стали могут быть определены при испытании на растяжение. Путем сравнения полученных величин с вышеуказанными требованиями ГОСТ 380-60 обезличенной стали может быть присвоена соответствующая марка.
Образец.
Образцы для испытания на растяжение обычно выполняются круглыми.
Для испытаний берут так называемый, нормальный длинный или нормальный короткий образец.
Для испытаний используем круглый цилиндрический стержень диаметром 7мм, с расчетной длиной 70мм, с утолщениями на концах, служащими для захвата образца в машине и с плавными переходами к этим утолщениям, для предотвращения концентрации напряжения.
а)
б)
Рис. 3Цилиндрический образец до испытания(а), после испытания(б).
Инструмент
а) Штангенциркуль — для обмера первоначальных размеров
поперечного сечения образца.
б) Карандаш для разметки образца по его длине.
Машина для испытаний.
В нашей лаборатории испытание на сжатие производится на силовой установке ПСУ-10. Испытательная машина ПСУ-10 предназначена для статических испытаний на сжатие, а так же на растяжение с использованием реверса.
Максимальное развиваемое машиной усилие 10 000 кг. Шкала силоизмерителя имеет 300 делений.
Возможно использование двух режимов работы: 5 000 кг (цена деления 16,7 кг) и 10 000 кг (цена деления 33,3 кг).
Рис. 4Устройство реверса. Рис. 5Реверс в установке.
Выполнение работы.
Получив все необходимое для работы и ознакомившись с машиной, необходимо измерить и разметить образцы.
Измерение диаметра образца следует производить с точностью до трех значащих цифр, причем размер находится как среднее арифметическое из четырех размеров, взятых в разных местах расчетной длины образца. По среднему размеру определяются площадь поперечного сечения образца и его расчетная длина. После зарисовки (фотографирования) эскиза образца с указанием его размеров приступают, при обязательном присутствии ассистента, к самому испытанию.
Так как величина нагрузки на образец измеряется величиной перемещения стрелки по шкале, то основное внимание испытателя, должно быть сосредоточено на показаниях циферблата.
Нагрузка, соответствующая явлению текучести, определяется по временной остановке стрелки, во время работы нагружающего механизма, а разрушающая нагрузка по максимальному отклонению (по часовой стрелке).
Как известно, в момент, соответствующий разрушающей нагрузке, при испытании малоуглеродистой стали, на образце появляется шейка, поэтому, когда стрелка начинает сдвигаться в направлении против часовой, нужно обратить внимание на появление шейки. После окончательного разрыва вынимают реверсор и исследуют характер разрушения разрушенного образца.
Для определения относительного удлинения при разрыве складывают возможно плотнее части разорванного образца и измеряют расстояние между кернами, соответствующими концам расчетной длины. Вид образца после разрыва также следует заэскизировать (сфотографировать) со всеми найденными размерами. В случае разрыва образца вне расчетной длины испытание считается неудавшимся и повторяется. Замеры и показания снимаются в системе кг и см и вычисления производятся с точностью до трех значащих цифр, а протокол испытания оформляется в соответствии с прилагаемой в конце инструкции формой, переводя в систему СИ (кН и МПа).
Сравнивая полученные результаты с требованиями ГОСТа для стали, приведенных выше марок, следует в конце работы сделать заключение, что на основании произведенных испытаний материал можно отнести к стали определенной марки. После окончания работы, весь инструмент в исправном состоянии должен быть сдан дежурному по лаборатории.
Таблицу с данными об испытаниях необходимо заполнять следующим образом. Первоначально полученный по шкале результат нагрузки в соответствии с ценой деления записывать единицами измерения «кг». Затем приводить результат в соответствие со стандартом СИ, переводя в «кН». Следует учесть, что 1 кг = 0,01 кН (т.е. чтоб получить «кН», надо результат в «кг» умножить на 0,01 или разделить на 100). Далее предел прочности или текучести вычисляется вначале как «кг/см2», а после приводится к системе СИ «МПа». При этом 1 кг/см2 = 0,1 МПа (т.е. чтоб получить «МПа», надо результат в «кг/см2» умножить на 0,1 или разделить на 10).
Форма отчета
Лабораторная работа №2
___________________
___________________
(ФИО, группа студента)
«Определение механических характеристик
при растяжении стального образца»
1. Необходимые приборы и инструменты:
Силовая установка ПСУ-10, штангенциркуль.
2. Эскиз образца до испытания и после испытания (фотография).
3. Журнал наблюдений при определении механических характеристик.
Вывод: в ходе выполнения лабораторный работы провели испытание стали на растяжение, определили марку данной стали путем сравнения измеренных
механических характеристик этой стали с данными ГОСТа.
Размеры расчетной части образца до испытания | Нагрузки, соответствующие пределам | Предел теку-чести, кг/см2 | Предел прочности кг/см2 | Размеры расчетной части образца после испытания | ||||||
Расчет-ная длина, см | Диа-метр, см | Площадь поперечного сечения, см2 | Теку-чести, кг (кН) | Прочнос-ти, кг (кН) | Расчет-ная длина, см | Диа-метр, см | Площадь поперечного сечения, см2 | Относительное удлинение, % | ||
5.97 | 0.59 | 0.273 | 868.4 | 1469.6 | 3180.95 | 5383.15 | 6.54 | 0.39 | 0.119 | 10.1 |
«___» _________ 201__ г. _______________
(подпись студента)
Дата добавления: 2016-03-28; просмотров: 5154 | Нарушение авторских прав | Изречения для студентов
Читайте также:
Рекомендуемый контект:
Поиск на сайте:
© 2015-2020 lektsii.org — Контакты — Последнее добавление
Источник
Под работой стали на сжатие понимают работу на сжатие коротких элементов, которые не могут потерять устойчивость, т. е. получить изгиб на длине.
Напряжение в сжатом элементе определяют так же, как и в растянутом
В зависимости от нагрузок сжатия или растяжения стали ведут себя по-разному. Это очень важно учитывать при разработке сварных конструкций. При растяжении образца силой образуется удлинение его. Увеличивая силу и замеряя удлинение, можно построить диаграмму работы стали на растяжение и сжатие в осях координат. Между напряжением и удлинением на первоначальном этапе испытания, т. е. в зоне пропорциональности, когда остаточное удлинение отсутствует, а после снятия нагрузки образец занимает прежнюю длину, имеется зависимость, называемая законом Гука.
Свойства стали при сжатии. Знание характера работы стали при сжатии позволяет грамотно решить вопросы надежности сварных конструкций с учетом коэффициента запаса прочности, который в принципе правильнее назвать коэффициентом незнания. Многие факторы влияют на работоспособность, прочность сварных конструкций, которые либо мало изучены, либо вообще невозможно определить, например, величину внутренних напряжений после сварки, или влияние отрицательных температур на сварку и качество. Под работой стали на сжатие понимают работу на сжатие коротких элементов, которые не могут потерять устойчивость, т. е. получить изгиб на длине.
Вначале сталь при сжатии ведет себя так же, как при растяжении тот же модуль упругости, совпадение пределов пропорциональности, упругости и текучести. В дальнейшем происходит раздвоение диаграмм: временное сопротивление сжатию получить у мягких малоуглеродистых сталей не удается, материал сплющивается, воспринимая все большую нагрузку. В последующем у мягких сталей появляются трещины по периметру образца, высокоуглеродистые хрупкие стали разрушаются по наклонным плоскостям. Ввиду того, что в упругой и упруго-пластической стадиях сталь ведет себя одинаково, соответствующие расчетные характеристики ее принимаются также одинаковыми. Повышенная несущая способность при сжатии в области самоупрочнения используется при работе стали на смятие (сжатие коротких элементов, которые не могут потерять устойчивость). Но в этом случае расчетное сопротивление принимается более высоким, чем при растяжении и сжатии.
При пластических деформациях малоуглеродистых сталей на растянутых образцах заметно появление характерных линий, называемых линиями текучести (линиями Чернова-Людерса), направленных под углом 45° к линии действия растягивающих сил. Эти линии, заметные на глаз, представляют собой след пластических смещений слоев металла; направление их в основном совпадает с направлением наибольших касательных напряжений. Пластические смещения представляются как следствие массового накопления пластической деформации кристаллов феррита.При нагружении образца выше предела текучести, когда прорабатывается вся площадка текучести (т. е, преодолевается сдерживающее влияние всей перлитной прослойки), материал приобретает способность к дальнейшему сопротивлению, и диаграмма растяжения становится криволинейной, отражая равномерное развитие пластических деформаций во всей массе металла вплоть до момента разрушения. В изломе можно наблюдать мелкозернистую кристаллическую структуру.
Внимание!
Если вам нужна помощь в написании работы, то рекомендуем обратиться к
профессионалам. Более 70 000 авторов готовы помочь вам прямо сейчас. Бесплатные
корректировки и доработки. Узнайте стоимость своей работы.
Получить выполненную работу или консультацию специалиста по вашему
учебному проекту
Узнать стоимость
Источник
Диаграмма растяжения показывает зависимость удлинения образца от продольной растягивающей силы.
Ее построение является промежуточным этапом в процессе определения механических характеристик материалов (в основном металлов).
Диаграмму растяжения материалов получают экспериментально, при испытаниях образцов на растяжение.
Для этого образцы стандартных размеров закрепляют в специальных испытательных машинах (например УММ-20 или МИ-40КУ) и растягивают до их полного разрушения (разрыва). При этом специальные приборы фиксируют зависимость абсолютного удлинения образца от прикладываемой к нему продольной растягивающей нагрузки и самописец вычерчивает кривую характерную для данного материала.
На рис. 1 показана диаграмма для малоуглеродистой стали. Она построена в системе координат F-Δl, где:
F — продольная растягивающая сила, [Н];
Δl — абсолютное удлинение рабочей части образца, [мм]
Рис. 1 Диаграмма растяжения стального образца
Как видно из рисунка, диаграмма имеет четыре характерных участка:
I — участок пропорциональности;
II — участок текучести;
III — участок самоупрочнения;
IV — участок разрушения.
Построение диаграммы
Рассмотрим подробнее процесс построения диаграммы.
В самом начале испытания на растяжение, растягивающая сила F, а следовательно, и деформация Δl стержня равны нулю, поэтому диаграмма начинается из точки пересечения соответствующих осей (точка О).
На участке I до точки A диаграмма вычерчивается в виде прямой линии. Это говорит о том, что на данном отрезке диаграммы, деформации стержня Δl растут пропорционально увеличивающейся нагрузке F.
После прохождения точки А диаграмма резко меняет свое направление и на участке II начинающемся в точке B линия какое-то время идет практически параллельно оси Δl, то есть деформации стержня увеличиваются при практически одном и том же значении нагрузки.
В этот момент в металле образца начинают происходить необратимые изменения. Перестраивается кристаллическая решетка металла. При этом наблюдается эффект его самоупрочнения.
После повышения прочности материала образца, диаграмма снова «идет вверх» (участок III) и в точке D растягивающее усилие достигает максимального значения. В этот момент в рабочей части испытуемого образца появляется локальное утоньшение (рис. 2), так называемая «шейка», вызванное нарушениями структуры материала (образованием пустот, микротрещин и т.д.).
Рис. 2 Стальной образец с «шейкой»
Вследствие утоньшения, и следовательно, уменьшения площади поперечного сечения образца, растягиваещее усилие необходимое для его растяжения уменьшается, и кривая диаграммы «идет вниз».
В точке E происходит разрыв образца. Разрывается образец конечно же в сечении, где была образована «шейка»
Работа затраченная на разрыв образца W равна площади фигуры образованной диаграммой. Ее приближенно можно вычислить по формуле:
W=0,8Fmax∙Δlmax
По диаграмме также можно определить величину упругих и остаточных деформаций в любой момент процесса испытания.
Для получения непосредственно механических характеристик металла образца диаграмму растяжения необходимо преобразовать в диаграмму напряжений.
Предел пропорциональности >
Примеры решения задач >
Лабораторные работы >
Источник