Работа стали на растяжение

Работа стали на растяжение thumbnail

Если подвергнуть образец растяжению, последовательно увеличивая нагрузку Р, и производить при этом замеры получающихся удлинений ∆l, то можно построить опытную диаграмму растяжения, откладывая удлинение в функции нагрузки.

Для удобства сравнения эту диаграмму выражают в напряжениях и относительных удлинениях:

где σ — нормальное напряжение;

F — первоначальная площадь сечения образца; ε — относительное удлинение в процентах;

l0 — первоначальная длина образца.

Величина относительного удлинения зависит от длины и поперечного сечения образца и увеличивается с уменьшением отношения

. Поэтому для сохранения сравнимости результатов испытаний установлены два типа образцов — длинный и короткий — с соотношениями между длиной и площадью сечения1

Опытная диаграмма растяжения малоуглеродистой стали марки Ст. 3 показана на фигуре.

Диаграмма растяжения стали марки Ст. 3

Вначале зависимость между напряжениями и относительными удлинениями определяется законом прямой линии, т. е. они пропорциональны между собой.

Это выражается линейным уравнением (зависимость Гука)

где Е — постоянный коэффициент пропорциональности, называемый модулем упругости при растяжении. Для стали Е = 2 100 000 кг/см2.

Пропорциональная зависимость между деформацией и напряжением имеет предел. То наибольшее напряжение в материале, при котором начинается отклонение от прямолинейной зависимости, называется пределом пропорциональности σпц.

Несколько выше этой точки лежит предел упругости σуп, соответствующий наибольшей деформации, которая полностью исчезает после разгрузки. Точное определение этой точки на кривой опытным путем затруднительно, поскольку она фиксируется моментом начала получения остаточных деформаций после снятия нагрузки, что означает переход материала в пластическую стадию.

Для малоуглеродистых сталей при нагружении выше предела пропорциональности кривая диаграммы растяжения отходит от прямой и, плавно поднимаясь, делает скачок (образуя характерный «зуб»), после чего с незначительными колебаниями идет параллельно горизонтальной оси. Образец удлиняется без приращения нагрузки, материал течет. То нормальное напряжение, практически постоянное, при котором происходит течение материала, называется пределом текучести σт.

Горизонтальный участок диаграммы, называемый площадкой текучести, для малоуглеродистых сталей находится в пределах относительных удлинений от ε = 0,2% до ε = 2,5%. Наличие у материала площадки текучести является положительным фактором в работе стальных конструкций.

В других сталях, не малоуглеродистых, переход в пластическую стадию происходит постепенно, без площадки текучести и без «зуба». Для них предел упругости и предел текучести, таким образом, принципиально не отличаются друг от друга. За предел текучести этих сталей принимается то напряжение, при котором остаточная деформация достигает 0,2%.

При снятии нагрузки с образца, получившего пластическую деформацию, диаграмма разгрузки идет по прямой С — D параллельно упругой прямой нагрузки.

Когда относительное удлинение достигает определенной величины (ε ≈ 2,5% для Ст. 3), материал прекращает течь и становится опять способным к сопротивлению. Он как бы самоупрочняется. Однако зависимость между напряжениями и деформациями подчиняется уже криволинейному закону, с быстрым нарастанием деформаций, после чего в образце образуется шейка и, наконец, происходит полное разрушение его.

Предельная сопротивляемость материала, которая характеризует его прочность, определяется наибольшим напряжением в процессе разрушения. Это напряжение называется пределом прочности σпч (временным сопротивлением); оно условно; поскольку при построении диаграммы растяжения напряжения, относят к первоначальной площади сечения образца, не учитывая сужения и образования шейки.

Полное остаточное удлинение, замеренное после разрушения, является мерой пластичности стали.

Таким образом, важнейшими показателями механических свойств, характеризующими работу стали, являются: предел текучести, предел прочности и относительное удлинение. Эти показатели, так же как и химический состав, указываются в сертификатах, которые сопровождают каждую партию поставляемого металла.

Государственным стандартом на поставку строительной стали гарантируются следующие ее механические характеристики.

Таблица Показатели механических свойств строительных сталей

1  Н. А. Шапошников, Механические испытания металлов, Машгиз, 1951.

«Проектирование стальных конструкций»,
К.К.Муханов

Источник

Под работой стали на сжатие понимают работу на сжатие коротких элементов, которые не могут потерять устойчивость, т. е. получить изгиб на длине.

Напряжение в сжатом элементе определяют так же, как и в растянутом

Работа стали на растяжение

В зависимости от нагрузок сжатия или растяжения стали ведут себя по-разному. Это очень важно учитывать при разработке сварных конструкций. При растяжении образца силой образуется удлинение его. Увеличивая силу и замеряя удлинение, можно построить диаграмму работы стали на растяжение и сжатие в осях координат. Между напряжением и удлинением на первоначальном этапе испытания, т. е. в зоне пропорциональности, когда остаточное удлинение отсутствует, а после снятия нагрузки образец занимает прежнюю длину, имеется зависимость, называемая законом Гука.

Свойства стали при сжатии. Знание характера работы стали при сжатии позволяет грамотно решить вопросы надежности сварных конструкций с учетом коэффициента запаса прочности, который в принципе правильнее назвать коэффициентом незнания. Многие факторы влияют на работоспособность, прочность сварных конструкций, которые либо мало изучены, либо вообще невозможно определить, например, величину внутренних напряжений после сварки, или влияние отрицательных температур на сварку и качество. Под работой стали на сжатие понимают работу на сжатие коротких элементов, которые не могут потерять устойчивость, т. е. получить изгиб на длине.

Вначале сталь при сжатии ведет себя так же, как при растяжении тот же модуль упругости, совпадение пределов пропорциональности, упругости и текучести. В дальнейшем происходит раздвоение диаграмм: временное сопротивление сжатию получить у мягких малоуглеродистых сталей не удается, материал сплющивается, воспринимая все большую нагрузку. В последующем у мягких сталей появляются трещины по периметру образца, высокоуглеродистые хрупкие стали разрушаются по наклонным плоскостям. Ввиду того, что в упругой и упруго-пластической стадиях сталь ведет себя одинаково, соответствующие расчетные характеристики ее принимаются также одинаковыми. Повышенная несущая способность при сжатии в области самоупрочнения используется при работе стали на смятие (сжатие коротких элементов, которые не могут потерять устойчивость). Но в этом случае расчетное сопротивление принимается более высоким, чем при растяжении и сжатии.

Читайте также:  Мазь от ушибов и растяжений согревающая

 При пластических деформациях малоуглеродистых сталей на растянутых образцах заметно появление характерных линий, называемых линиями текучести (линиями Чернова-Людерса), направленных под углом 45° к линии действия растягивающих сил. Эти линии, заметные на глаз, представляют собой след пластических смещений слоев металла; направление их в основном совпадает с направлением наибольших касательных напряжений. Пластические смещения представляются как следствие массового накопления пластической деформации кристаллов феррита.При нагружении образца выше предела текучести, когда прорабатывается вся площадка текучести (т. е, преодолевается сдерживающее влияние всей перлитной прослойки), материал приобретает способность к дальнейшему сопротивлению, и диаграмма растяжения становится криволинейной, отражая равномерное развитие пластических деформаций во всей массе металла вплоть до момента разрушения. В изломе можно наблюдать мелкозернистую кристаллическую структуру.

Внимание!

Если вам нужна помощь в написании работы, то рекомендуем обратиться к
профессионалам. Более 70 000 авторов готовы помочь вам прямо сейчас. Бесплатные
корректировки и доработки. Узнайте стоимость своей работы.

Получить выполненную работу или консультацию специалиста по вашему
учебному проекту

Узнать стоимость

Источник

Теоретическая часть по курсу

Металлоконструкции

(вопросы 2, 12, 26)

Выполнил: студент 312гр.

Иванов Гордей

Проверил:Шафрай С. Д.

Новосибирск 2016

Содержание:

Вопрос №2 – Работа стали на растяжение. Понятия о расчетных сопротивлениях стали по пределу текучести и временному сопротивлению разрыва.

Вопрос №12 – Стальной прокат для строительных конструкций.

Вопрос №26 – Типы решеток в металлических фермах.

Список источников.

Вопрос №2 – Работа стали на растяжение. Понятия о расчетных сопротивлениях стали по пределу текучести и временному сопротивлению разрыва.

Если подвергнуть образец растяжению, последовательно увеличивая нагрузку Р, и производить при этом замеры получающихся удлинений ∆l, то можно построить опытную диаграмму растяжения, откладывая удлинение в функции нагрузки.

Для удобства сравнения эту диаграмму выражают в напряжениях и относительных удлинениях:

Формула (1.II)

где σ — нормальное напряжение;

F — первоначальная площадь сечения образца; ε — относительное удлинение в процентах;

l0 — первоначальная длина образца.

Величина относительного удлинения зависит от длины и поперечного сечения образца и увеличивается с уменьшением отношения . Поэтому для сохранения сравнимости результатов испытаний установлены два типа образцов — длинный и короткий — с соотношениями между длиной и площадью сечения.

Опытная диаграмма растяжения малоуглеродистой стали марки Ст. 3 показана на фигуре.

Диаграмма растяжения стали марки Ст. 3

Вначале зависимость между напряжениями и относительными удлинениями определяется законом прямой линии, т. е. они пропорциональны между собой.

Это выражается линейным уравнением (зависимость Гука)

где Е — постоянный коэффициент пропорциональности, называемый модулем упругости при растяжении. Для стали Е = 2 100 000 кг/см2.

Пропорциональная зависимость между деформацией и напряжением имеет предел. То наибольшее напряжение в материале, при котором начинается отклонение от прямолинейной зависимости, называется пределом пропорциональности σпц.

Несколько выше этой точки лежит предел упругости σуп, соответствующий наибольшей деформации, которая полностью исчезает после разгрузки. Точное определение этой точки на кривой опытным путем затруднительно, поскольку она фиксируется моментом начала получения остаточных деформаций после снятия нагрузки, что означает переход материала в пластическую стадию.

Для малоуглеродистых сталей при нагружении выше предела пропорциональности кривая диаграммы растяжения отходит от прямой и, плавно поднимаясь, делает скачок (образуя характерный «зуб»), после чего с незначительными колебаниями идет параллельно горизонтальной оси. Образец удлиняется без приращения нагрузки, материал течет. То нормальное напряжение, практически постоянное, при котором происходит течение материала, называется пределом текучести σц.

Горизонтальный участок диаграммы, называемый площадкой текучести, для малоуглеродистых сталей находится в пределах относительных удлинений от ε = 0,2% до ε = 2,5%. Наличие у материала площадки текучести является положительным фактором в работе стальных конструкций.

В других сталях, не малоуглеродистых, переход в пластическую стадию происходит постепенно, без площадки текучести и без «зуба». Для них предел упругости и предел текучести, таким образом, принципиально не отличаются друг от друга. За предел текучести этих сталей принимается то напряжение, при котором остаточная деформация достигает 0,2%.

При снятии нагрузки с образца, получившего пластическую деформацию, диаграмма разгрузки идет по прямой С — D параллельно упругой прямой нагрузки.

Когда относительное удлинение достигает определенной величины (ε ≈ 2,5% для Ст. 3), материал прекращает течь и становится опять способным к сопротивлению. Он как бы самоупрочняется. Однако зависимость между напряжениями и деформациями подчиняется уже криволинейному закону, с быстрым нарастанием деформаций, после чего в образце образуется шейка и, наконец, происходит полное разрушение его.

Предельная сопротивляемость материала, которая характеризует его прочность, определяется наибольшим напряжением в процессе разрушения. Это напряжение называется пределом прочности σпч, временным сопротивлением разрыва; оно условно; поскольку при построении диаграммы растяжения напряжения, относят к первоначальной площади сечения образца, не учитывая сужения и образования шейки.

Полное остаточное удлинение, замеренное после разрушения, является мерой пластичности стали.

Таким образом, важнейшими показателями механических свойств, характеризующими работу стали, являются: предел текучести, предел прочности и относительное удлинение. Эти показатели, так же как и химический состав, указываются в сертификатах, которые сопровождают каждую партию поставляемого металла.

Читайте также:  Внутренние усилия напряжения и перемещения при растяжении и сжатии

Вопрос №12 – Стальной прокат для строительных конструкций.

Область применения

Стандарт распространяется на горячекатаный фасонный (уголки, двутавры, швеллеры), листовой, широкополосный универсальный прокат и гнутые профили из углеродистой и низколегированной стали, предназначенные для строительных стальных конструкций со сварными и другими соединениями.

Классификация

Фасонный прокат изготовляют из стали С235, С245, С255, С275, С285, С345, С345К, С375.

Листовой, универсальный прокат и гнутые профили – из стали С235, С245, С255, С275, С285, С345, С345К, С375, С390, С390К, С440, С590, С590К.

Буква С означает – сталь строительная, цифры условно обозначают предел текучести проката; буква К – вариант химического состава.

Плоскостность листового проката должна соответствовать требованиям ГОСТ 19903-74. Состояние поверхности и кромок для листового и широкополосного проката должно соответствовать требованиям ГОСТ 14637-79 и ГОСТ 16523-70, фасонного проката – ГОСТ 535-79, подгруппы 1. Свариваемость стали гарантируется изготовителем. Необходимость проведения УЗК и класс прочности указывают в заказе. Прокат из стали С345 и С375 изготовляют категорий 1, 2, 3 и 4 в зависимости от требований по испытаниям на ударный изгиб.

Дата добавления: 2016-12-31; просмотров: 1243 | Нарушение авторских прав | Изречения для студентов

Читайте также:

Рекомендуемый контект:

Поиск на сайте:

© 2015-2020 lektsii.org — Контакты — Последнее добавление

Источник

Если растягивать стальной стержень
силой Р, приложенной в центре тяжести сечения, в нем возникнут нор« мальные
напряжения. Их значения будут прямо пропорциональны- нагрузке.

При растяжении стержень удлиняется, и удлинение до
некоторого предела так же пропорционально нагрузке.

Стали испытывают на растяжение на специальных •машинах,
при этом используют стандартные образцы.

Различают три стадии работы малоуглеродистых сталей;
стадии упругой, пластической и упругопластической работы. Характерной
особенностью стадии упругой работы стали является то, что деформация
(удлинение) ее после снятия нагрузки исчезает, т. е. длина образца после
снятия нагрузки остается прежней. Такую деформацию называют упругой. В стадии
упругой работы стали различают два предела: предел пропорциональности аПц с
напряжением для стали класса С38/23 около 20 кгс/мм2 и предел упругости аПу,
равный для указанной стали примерно 21 кгс/мм2.

Удлинение образцов упругой работы стали СтЗ очень мало,
оно составляет около 0,2% полного удлинения образца. При дальнейшем
увеличении нагрузки кривая, отражающая работу стали при растяжении, начинает резко
отклоняться вправо. За пределом упругости сталь начинает работать как
упругопластичес- кий материал. Наступает момент, когда деформация (удлинение)
стали нарастает без увеличения нагрузки па образец. Напряжение,
соответствующее этому моменту, называют пределом текучести. Предел текучести
является наименьшим браковочным значением для стали. Для СтЗ он равен ат = 23
кгс/мм2, или 230 МПа. Это — стадия пластической работы стали. Протяженность
ее 8=1,5—3%. Участок диаграммы, отвечающий стадии’пластической работы стали,
называют площадкой текучести.

Предел текучести — важнейший показатель механических
свойств стали.

За стадией пластической работы, когда относительное
удлинение достигает примерно 2,5—3%, сталь приобретает способность дальше
воспринимать нагрузку, она как бы самоупрочняется. Наступает весьма
протяженная стадия упругопластической работы — стадия самоупрочнения. С
увеличением нагрузки нарастает и деформация.

Разрушение образца из СтЗ происходит при напряжении
<Тв=38—49 кгс/мм2, называемом временным сопротивлением, или пределом
прочности, и при относительном’ удлинении 8=23—25%. Разрушению в наиболее
слабом месте образца предшествует появление шейки, т. е. уменьшение площади
сечения образца в результате поперечной деформации.

Установленные значения временного сопротивления условны,
так как получены делением приложенной к образцу силы на его первоначальную
площадь сечения.

действительности же при растяжении образца наряду с его
удлинением происходит сужение, особенно резкое при образовании шейки. Следовательно,
действительные — напряжения в момент разрушения образца будут значительно
выше

Углеродистые стали (с содержанием углерода более 0,3%), а
также низколегированные и термоупрочненные не имеют площадки текучести
(кривая b на  IX.1). В-них после стадии упругой работы начинается’ стадия

упругопластической работы. Для этих сталей за условный
предел текучести принимают напряжение, которое на диаграмме работы стали на
растяжение соответствует относительному удлинению 0,2%.

Из рассмотрения диаграммы работы стали на растяжение
видно, что к основным показателям механических свойств относятся: предел
текучести <jT, временное сопротивление <Тв и относительное удлинение е.
Относительное удлинение характеризует пластичность стали: чем оно больше, тем
сталь пластичнее

Источник

Лабораторная работа № 1

Цель работы – изучить поведение малоуглеродистой стали при растяжении и определить ее механические характеристики.

Основные сведения

Испытания на растяжение являются основным и наиболее распространенным методом лабораторного исследования и контроля механических свойств материалов.

Эти испытания проводятся и на производстве для установления марки поставленной заводом стали или для разрешения конфликтов при расследовании аварий.

В таких случаях, кроме металлографических исследований, определяются главные механические характеристики на образцах, взятых из зоны разрушения конструкции. Образцы изготавливаются по ГОСТ 1497-84 и могут иметь различные размеры и форму (рис. 1.1).

Образцы для испытания на растяжение

Рис. 1.1. Образцы для испытания на растяжение

Между расчетной длиной образца lо и размерами поперечного сечения Ао (или dо для круглых образцов) выдерживается определенное соотношение:

В испытательных машинах усилие создается либо вручную — механическим приводом, либо гидравлическим приводом, что присуще машинам с большей мощностью.

В данной работе используется универсальная испытательная машина УММ-20 с гидравлическим приводом и максимальным усилием 200 кН, либо учебная универсальная испытательная машина МИ-40КУ (усилие до 40 кН).

Порядок выполнения и обработка результатов

Образец, устанавливаемый в захватах машины, после включения насоса, создающего давление в рабочем цилиндре, будет испытывать деформацию растяжения. В измерительном блоке машины есть шкала с рабочей стрелкой, по которой мы наблюдаем рост передаваемого усилия F.

Читайте также:  Упражнения для укрепления голеностопа после растяжения

Зависимость удлинения рабочей части образца от действия растягивающей силы во время испытания отображается на миллиметровке диаграммного аппарата в осях F-Δl (рис. 1.2).

В начале нагружения деформации линейно зависят от сил, потому участок I диаграммы называют участком пропорциональности. После точки В начинается так называемый участок текучести II.

На этой стадии стрелка силоизмерителя как бы спотыкается, приостанавливается, от точки В на диаграмме вычерчивается либо прямая, параллельная горизонтальной оси, либо слегка извилистая линия — деформации растут без увеличения нагрузки. Происходит перестройка структуры материала, устраняются нерегулярности в атомных решетках.

Далее самописец рисует участок самоупрочнения III. При дальнейшем увеличении нагрузки в образце происходят необратимые, большие деформации, в основном концентрирующиеся в зоне с макронарушениями в структуре – там образуется местное сужение — «шейка».

На участке IV фиксируется максимальная нагрузка, затем идет снижение усилия, ибо в зоне «шейки» сечение резко уменьшается, образец разрывается.

При нагружении на участке I в образце возникают только упругие деформации, при дальнейшем нагружении появляются и пластические — остаточные деформации.

Если в стадии самоупрочнения начать разгружать образец (например, от т. С), то самописец будет вычерчивать прямую СО1. На диаграмме фиксируются как упругие деформации Δlу (О1О2), так и остаточные Δlост (ОО1). Теперь образец будет обладать иными характеристиками.

Так, при новом нагружении этого образца будет вычерчиваться диаграмма О1CDЕ, и практически это будет уже другой материал. Эту операцию, называемую наклеп, широко используют, например, в арматурных цехах для улучшения свойств проволоки или арматурных стержней.

Диаграмма растяжения (рис. 1.2) характеризует поведение конкретного образца, но отнюдь не обобщенные свойства материала. Для получения характеристик материала строится условная диаграмма напряжений, на которой откладываются относительные величины – напряжения σ=F/A0 и относительные деформации ε=Δl/l0 (рис. 1.3), где А0, l0 – начальные параметры образца.

Диаграмма растяжения образца из малоуглеродистой стали

Рис. 1.2. Диаграмма растяжения образца из малоуглеродистой стали

Условная диаграмма напряжений при растяжении

Рис. 1.3. Условная диаграмма напряжений при растяжении

Условная диаграмма напряжений при растяжении позволяет определить следующие характеристики материала (рис. 1.3):

σпц – предел пропорциональности – напряжение, превышение которого приводит к отклонению от закона Гука. После наклепа σпц может быть увеличен на 50-80%;

σу – предел упругости – напряжение, при котором остаточное удлинение достигает 0,05%. Напряжение σу очень близко к σпц и обнаруживается при более тонких испытаниях. В данной работе σу не устанавливается;

σт – предел текучести – напряжение, при котором происходит рост деформаций при постоянной нагрузке.

Иногда явной площадки текучести на диаграмме не наблюдается, тогда определяется условный предел текучести, при котором остаточные деформации составляют ≈0,2% (рис. 1.4);

Определение предела упругости и условного предела текучести

Рис. 1.4. Определение предела упругости и условного предела текучести

σпч (σв) – предел прочности (временное сопротивление) – напряжение, соответствующее максимальной нагрузке;

σр – напряжение разрыва. Определяется условное σур и истинное σир=Fр/Аш, где Аш – площадь сечения «шейки» в месте разрыва.

Определяются также характеристики пластичности – относительное остаточное удлинение

δ = (l1 – l0)∙100% / l0,

где l1 – расчетная длина образца после разрыва,
и относительное остаточное сужение

ψ = (А0 — Аш)∙100% / А0.

По диаграмме напряжений можно приближенно определить модуль упругости I рода

E=σпц/ε=tgα,

причем после операции наклепа σпц возрастает на 20-30%.

Работа, затраченная на разрушение образца W, графически изображается на рис. 1.2 площадью диаграммы OABDEO3. Приближенно эту площадь определяют по формуле:
W = 0,8∙Fmax∙Δlmax.

Удельная работа, затраченная на разрушение образца, говорит о мере сопротивляемости материала разрушению w = W/V, где V = A0∙l0 – объем рабочей части образца.

По полученным прочностным и деформационным характеристикам и справочным таблицам делается вывод по испытуемому материалу о соответствующей марке стали

Контрольные вопросы

  1. Изобразите диаграмму растяжения образца из малоуглеродистой стали (Ст.3). Покажите полные, упругие и остаточные абсолютные деформации при нагружении силой, большей, чем Fт.
  2. На каком участке образца происходят основные деформации удлинения? Как это наблюдается на образце? Какие нагрузки фиксируются в этот момент?
  3. Объясните, почему после образования шейки дальнейшее растяжение происходит при все уменьшающейся нагрузке?
  4. Перечислите механические характеристики, определяемые в результате испытаний материала на растяжение. Укажите характеристики прочности и пластичности.
  5. Дайте определение предела пропорциональности.
  6. Дайте определение предела упругости.
  7. Дайте определение предела текучести.
  8. Дайте определение предела прочности.
  9. Как определить предел текучести при отсутствии площадки текучести? Покажите, как это сделать, по конкретной диаграмме.
  10. Какие деформации называются упругими, какие остаточными? Укажите их на полученной в лабораторной работе диаграмме растяжения стали.
  11. Как определяется остаточная деформация после разрушения образца?
  12. Выделите на диаграмме растяжения образца из мягкой стали упругую часть его полного удлинения для момента действия максимальной силы.
  13. Какое явление называется наклепом? До какого предела можно довести предел пропорциональности материалов с помощью наклепа?
  14. Как определяется работа, затраченная на разрушение образца? О каком свойстве материала можно судить по удельной работе, затраченной на разрушение образца?
  15. Как определить марку стали и допускаемые напряжения для нее после проведения лабораторных испытаний?
  16. Чем отличается диаграмма истинных напряжений при растяжении от условной диаграммы?
  17. Можно ли определить модуль упругости материала по диаграмме напряжений?
  18. Как определить работу, затрачиваемую на деформации текучести лабораторного образца?

Испытание материалов на сжатие >
Краткая теория >
Примеры решения задач >

Источник