Работа при растяжении пружины формула
Сила упругости широко используется в технике. Эта сила возникает в упругих телах при их деформации. Деформация – это изменение формы тела, под действием приложенных сил.
Виды деформации
Деформация – это изменение формы, или размеров тела.
Есть несколько видов деформации:
- сдвиг;
- кручение;
- изгиб;
- сжатие/растяжение;
Деформация сдвига возникает, когда одни части тела сдвигаются относительно других его частей. Если подействовать на верхнюю часть картонного ящика, наполненного различными предметами, горизонтальной силой, то вызовем сдвиг верхней части ящика относительно его нижней части.
Сжатие или растяжение легко представить на примере прямоугольного куска тонкой резины. Такая деформация используется, к примеру, в резинках для одежды.
Примеры изгиба и кручения показаны на рисунке 1. Пластиковая линейка, деформированная изгибом, представлена на рис. 1а, а на рисунке 1б – эта же линейка, деформируемая кручением.
Рис. 1. пластиковая линейка, деформированная изгибом – а) и кручением – б)
В деформируемом теле возникают силы, имеющие электромагнитную природу и препятствующие деформации.
Растяжение пружины
Рассмотрим подробнее деформацию растяжения на примере пружины.
Давайте прикрепим пружину к некоторой поверхности (рис. 2). На рисунке слева указана начальная длина (L_{0}) пружины.
Рис. 2. Сравнивая длину свободной пружины с длиной нагруженной, можно найти ее удлинение
Подвесим теперь к пружине груз. Пружина будет иметь длину (L), указанную на рисунке справа.
Сравним длину нагруженной пружины с длиной свободно висящей пружины.
[ large L_{0} + Delta L = L ]
Найдем разницу (разность) между длинами свободно висящей пружины и пружины с грузом. Вычтем для этого из обеих частей этого уравнения величину (L_{0}).
[ large boxed{ Delta L = L — L_{0} }]
( L_{0} left(text{м} right) ) – начальная длина пружины;
( L left(text{м} right) ) – конечная длина растянутой пружины;
( Delta L left(text{м} right) ) – кусочек длины, на который растянули пружину;
Величину ( Delta L ) называют удлинением пружины.
Иногда рассчитывают относительное удлинение. Это относительное удлинение часто выражают десятичной дробью. Или дробью, в знаменателе которой находится число 100 — такую дробь называют процентом.
Примечание: Отношение – это дробь. Относительное – значит, дробное.
[ large boxed{ frac{Delta L }{ L_{0}} = frac{ L — L_{0}}{L_{0} } = varepsilon } ]
( varepsilon ) – это отношение (доля) растяжения пружины к ее начальной длине. Измеряют в процентах и называют относительным удлинением.
Расчет силы упругости
Если растягивать пружину вручную, мы можем заметить: чем больше мы растягиваем пружину, тем сильнее она сопротивляется.
Значит, с удлинением пружины связана сила, которая сопротивляется этому удлинению.
Конечно, если пружина окажется достаточно упругой, чтобы сопротивляться. Например, разноцветная пружина-игрушка (рис. 3), изготовленная из пластмассы, сопротивляться растяжению, увеличивающему ее длину в два раза, практически не будет.
Разноцветная пластмассовая пружина-игрушка растяжению сопротивляется слабо
Закон Гука
Английский физик Роберт Гук, живший во второй половине 17-го века, установил, что сила сопротивления пружины и ее удлинение связаны прямой пропорциональностью. Силу, с которой пружина сопротивляется деформации, он назвал ( F_{text{упр}} ) силой упругости.
[ large boxed{ F_{text{упр}} = k cdot Delta L }]
Эту формулу назвали законом упругости Гука.
( F_{text{упр}} left( H right) ) – сила упругости;
( Delta L left(text{м} right) ) – удлинение пружины;
( displaystyle k left(frac{H}{text{м}} right) ) – коэффициент жесткости (упругости).
Какие деформации называют малыми
Закон Гука применяют для малых удлинений (деформаций).
Если убрать деформирующую силу и тело вернется к первоначальной форме (размерам), то деформации называют малыми.
Если же тело к первоначальной форме не вернется – малыми деформации назвать не получится.
Как рассчитать коэффициент жесткости
Груз, прикрепленный к концу пружины, растягивает ее (рис. 4). Измерим удлинение пружины и составим силовое уравнение для проекции сил на вертикальную ось. Вес груза направлен против оси, а сила упругости, противодействующая ему – по оси.
Рис. 4. Вес подвешенного на пружине груза уравновешивается силой упругости
Так как силы взаимно компенсируются, в правой части уравнения находится ноль.
[ large F_{text{упр}} — m cdot g = 0 ]
Подставим в это уравнение выражение для силы упругости
[ large k cdot Delta L — m cdot g = 0 ]
Прибавим к обеим частям вес груза и разделим на измеренное изменение длины (Delta L ) пружины. Получим выражение для коэффициента жесткости:
[ large boxed{ k = frac{ m cdot g }{Delta L} }]
(g) – ускорение свободного падения, оно связано с силой тяжести.
Соединяем две одинаковые пружины
В задачниках по физике и пособиях для подготовки к ЕГЭ встречаются задачи, в которых одинаковые пружины соединяют последовательно, либо параллельно.
Параллельное соединение пружин
На рисунке 5а представлена свободно висящая пружина. Нагрузим ее (рис. 5б), она растянется на величину (Delta L). Соединим две такие пружины параллельно и подвесим груз в середине перекладины (рис. 5в). Из рисунка видно, что конструкция из двух параллельных пружин под действием груза растянется меньше, нежели единственная такая пружина.
Рис. 5. Две пружины, соединенные параллельно, деформируются меньше одной такой пружины
Сравним растяжение двух одинаковых пружин, соединенных параллельно, с растяжением одной пружины. К пружинам подвешиваем один груз весом (mg).
Одна пружина:
[ large k_{1} cdot Delta L = m cdot g ]
Две параллельные пружины:
[ large k_{text{параллел}} cdot Delta L cdot frac{1}{2}= m cdot g ]
Так как правые части уравнений совпадают, левые части тоже будут равны:
[ large k_{text{параллел}} cdot Delta L cdot frac{1}{2}= k_{1} cdot Delta L ]
Обе части уравнения содержат величину (Delta L ). Разделим обе части уравнения на нее:
[ large k_{text{параллел}} cdot frac{1}{2}= k_{1} ]
Умножим обе части полученного уравнения на число 2:
[ large boxed{ k_{text{параллел}} = 2k_{1} } ]
Коэффициент жесткости (k_{text{параллел}}) двух пружин, соединенных параллельно, увеличился вдвое, в сравнении с одной такой пружиной
Последовательное соединение пружин
Рисунок 6а иллюстрирует свободно висящую пружину. Нагруженная пружина (рис. 6б), растянута на длину (Delta L). Теперь возьмем две такие пружины и соединим их последовательно. Подвесим груз к этим (рис. 6в) пружинам.
Практика показывает, что конструкция из двух последовательно соединенных пружин под действием груза растянется больше единственной пружины.
На каждую пружину в цепочке действует вес груза. Под действием веса пружина растягивается и передает далее по цепочке этот вес без изменений. Он растягивает следующую пружину. А та, в свою очередь, растягивается на такую же величину (Delta L).
Примечание: Под действием силы пружина растягивается и передает эту растягивающую силу далее по цепочке без изменений
Рис. 6. Система, состоящая из двух одинаковых пружин, соединенных последовательно, деформируются больше одной пружины
Сравним растяжение двух одинаковых последовательно соединенных пружин и растяжение единственной пружины. В обоих случаях к пружинам подвешиваем одинаковый груз весом (mg).
Одна пружина:
[ large k_{1} cdot Delta L = m cdot g ]
Две последовательные пружины:
[ large k_{text{послед}} cdot Delta L cdot 2 = m cdot g ]
Так как правые части уравнений совпадают, левые части тоже будут равны:
[ large k_{text{послед}} cdot Delta L cdot 2 = k_{1} cdot Delta L ]
Обе части уравнения содержат величину (Delta L ). Разделим обе части уравнения на нее:
[ large k_{text{послед}} cdot 2 = k_{1} ]
Разделим обе части полученного уравнения на число 2:
[ large boxed{ k_{text{послед}} = frac{k_{1}}{2} } ]
Коэффициент жесткости (k_{text{послед}}) двух пружин, соединенных последовательно, уменьшится вдвое, в сравнении с одной такой пружиной
Потенциальная энергия сжатой или растянутой пружины
Пружина сжатая (левая часть рис. 7), или растянутая (правая часть рис. 7) на длину (Delta L ) обладает потенциальной возможностью вернуться в первоначальное состояние и при этом совершить работу, например, по перемещению груза. В таких случаях физики говорят, что пружина обладает потенциальной энергией.
Рис. 7. Деформированная — сжатая или растянутая пружина обладает потенциальной энергией
Эта энергия зависит от коэффициента жесткости пружины и от ее удлинения (или укорочения при сжатии).
Чем больше жесткость (упругость) пружины, тем больше ее потенциальная энергия. Увеличив удлинение пружины получим повышение ее потенциальной энергии по квадратичному закону:
[ large boxed{ E_{p} = frac{k}{2} cdot left( Delta L right)^{2} }]
( E_{p} left( text{Дж} right)) – потенциальная энергия сжатой или растянутой пружины;
( Delta L left(text{м} right) ) – удлинение пружины;
( displaystyle k left(frac{H}{text{м}} right) ) – коэффициент жесткости (упругости) пружины.
Выводы
- Упругие тела – такие, которые сопротивляются деформации;
- Во время деформации в упругих телах возникает сила, она препятствует деформации, ее называют силой упругости;
- Деформация – изменение формы, или размеров тела;
- Есть несколько видов деформации: изгиб, кручение, сдвиг, растяжение/сжатие;
- Удлинение пружины – это разность ее конечной и начальной длин;
- Сжатая или растянутая пружина обладает потенциальной энергией (вообще, любое упруго деформированное тело обладает потенциальной энергией);
- Система, состоящая из нескольких одинаковых пружин, будет иметь коэффициент жесткости, отличный от жесткости единственной пружины;
- Если пружины соединяют параллельно – коэффициент жесткости системы увеличивается;
- А если соединить пружины последовательно – коэффициент жесткости системы уменьшится.
Источник
Любое тело перестает падать вниз, если его подвесить на крепкий шнурок. На него по-прежнему действует сила тяжести. Но она уравновешивается еще одной величиной – силой упругости шнурка. Как она действует на тело, что нужно для ее преодоления, — вопросы, ответы на которые найдете в материале.
Что такое сила упругости
Любое тело, совершающее заданный полет, в конце концов падает на землю под действием собственной силы тяжести. Исключение составляют предметы, подвешенные кверху либо располагающиеся на опоре. Их падение становится невозможным, поскольку силу тяжести компенсирует упругость подвеса. Опытным путем еще в школьной программе демонстрируется момент: когда две силы равны, предмет «замирает» в воздухе. При этом их направления действия строго противоположны. Явление, препятствующее падению подвешенных либо размещенных на опоре предметов, обусловлено проявлением силы упругости.
Сила упругости — сила, возникающая в теле при его деформации и стремящаяся вернуть его в прежнее состояние.
Чем сильнее растягивается нить, на которой подвешен предмет, и чем больше прогибается доска под грузом, тем значительнее сила упругости, которая в них возникает.
Источник: yaklass.ru
Нить стремится растягиваться до тех пор, пока две величины не уравновесятся.
Растяжение нити аналогично, например, следующим явлениям:
- изменению формы мяча при ударе по нему ногой (начинает действовать сила сжатия);
- противостоянию каната при закручивании его вокруг своей оси (сила кручения);
- сдвиганию частей одного предмета друг относительно друга (сила сдвига);
- сложностям согнуть прут в дугу или окружность (сила кручения).
Во всех случаях внешней силе, действующей в определенном направлении, начинает препятствовать другая величина, направленная противоположно и стремящаяся компенсировать ее абсолютное значение.
К такому выводу впервые пришел английский ученый Роберт Гук в 1660 году, отметив, что интенсивность изменения длины тел при их растягивании прямо пропорционально зависит от значения силы упругости.
Источник: questions-physics.ru
Его открытие приобрело статус закона Гука, формула которого выглядит следующим образом:
(Fупр=k*Δl)
(k) – коэффициент пропорциональности, имеющий специальное название «жесткость»;
(Δl) – величина, характеризующая изменение длины тела.
K зависит от свойств материала изготовления тела, его параметров и форм.
В физике закон Гука может применяться только для незначительных деформаций. Если наступает этап, когда предел пропорциональности превышен, взаимосвязь напряжения и изменения формы теряет свою линейность. Существуют среды, для которых закон Гука не работает.
Выражение закона Гука возможно и через другую формулу:
(xi;=;x⁄l)
где (xi;) — относительная деформация,
(sigma=F⁄S)
где (sigma) — напряжение, возникающее в материале,
(S) — площадь поперечного сечения тела,
(varepsilon=1⁄Esigma)
Коэффициент жесткости и модель Юнга имеют существенное различие: если первый зависит от материала, формы и размеров тела, то второй — только от свойств материала.
В каких условиях применяется закон Гука
Универсальным вариантом для применения закона Гука является тонкий стержень. (F) в данном случае выражает ту силу, которая к нему прилагается. Зависит она от разницы длины до и после воздействия, а также коэффициента упругости материала.
(F=kastDelta l)
Как было сказано выше, (k) зависит от качества материала и габаритов. Выражая названую зависимость через площадь сечения и длину, формула для коэффициента получает следующий вид: (F=ES/L). Буквой (Е) здесь обозначается все тот же модуль Юнга – механические свойства материала. Далее следует ввести понятия относительного удлинения:
(xi=Delta l/L)
и напряжения в поперечном сечении:
(sigma=F/S)
Конечная формула закона Гука может выглядеть и так:
(triangle l=FL/ES)
Для понимания того, какие условия необходимы для функционирования закона Гука, достаточно рассмотреть два понятия: среда и сила. В таких средах, как газы, жидкости, особенно вязкие, механические особенности процессов упругости не действуют. В то же время даже очень интенсивная сила не будет работать в ряде сред.
Обязательные условия для ее проявления:
- Незначительные изменения формы.
- Достаточная упругость материала.
- В материале ни при каком воздействии не происходит изменений линейного характера.
Рассмотрим график, отражающий зависимости:
Источник: uchim.guru
Нижний левый квадрат демонстрирует линейную зависимость при не интенсивных растяжениях. Затем пунктирная линия демонстрирует потерю этой «линейности». Визуально это проявляется «непослушанием» пружины: она перестает принимать свой первоначальный вид при интенсивном растяжении. Если его вовсе не прекращать, может нарушиться природная структура материала, произойдет полный излом.
Аналогичная картина наблюдается при процессе сжатия. В правом верхнем квадрате отражены следующие особенности:
При небольшом сжатии – связь прямая (красная линия).
При увеличении силы зависимость теряет «линейность» — см. пунктир.
Сильное сжатие заставляет пружину нагреваться, она теряет первичные свойства. Происходит слипание витков и разрушение структуры материала.
Примеры решения задач на силу упругости
Задания по определению силы упругости часто встречаются в экзаменационных работах и олимпиадах.
Задача 1
Для растяжения пружины прикладывают силу 30 Н (F1). Тогда ее длина составляет 28 см. При ее сжатии с такой же F2, длина уменьшается до 22 см. Найти начальную длину пружины, а также коэффициент ее жесткости.
Решать задачу следует по схеме:
(F1=k(l1-l0))
(F2=k(l0-l2))
Из этих формул вытекает: (l1-l0=l0-l2)
(l0=(l1+l2)/2=(28+22)/2=25)
Определение жесткости пружины нужно произвести по формуле:
(k=F1/(l1-l0)=30/(28-25)*10^{-2 }=1000)
Ответ: 25 см, 1000 Н/м
Задача 2
Пружины соединены способом, изображенным на схеме:
Источник: easy-physic.ru
Жесткость каждой составляет 10 Н/м. Определить величину силы, которую нужно приложить ко всей системе, чтобы точка ее приложения стала ниже на 10 см.
Решение происходит по этапам:
1. Растяжение верхней и нижней пружин характеризуются формулой:
(triangle x2=F/k)
2. Поскольку средние пружины подсоединены параллельно, их растяжение происходит в соответствии с формулой:
(triangle x2=F/2k)
Каждая из пружин при этом растянется на: (triangle x1/2)
Следовательно, справедливо математическое выражение: (triangle x2=triangle x1/2)
Через промежуточные формулы:
(2,5triangle x1=triangle x)
(triangle x1=triangle x/2,5)
(10/2,5=4)
находим конечную формулу для решения задачи:
(F=ktriangle x1=10ast0,04=0,4)
Ответ: сила равна 0,4 Н.
Задача 3
Один из тренажеров в спортивном зале высотой 2 м состоит из двух пружин, которые закреплены на потолке. Их длина одинакова (40 см), а жесткости обозначены k1, k2. При приложении к одной из пружин силы 360 Н (в точке А), нижняя ее часть пружина опустится до самого пола. Потянув в точке В и приложив силу 240 Н, коснется пола сама эта точка. Какова жесткость пружин?
Источник: easy-physic.ru
Прикладывая усилия к точке А, вызываем растяжение только пружины сверху. Когда ее длина достигнет 1,6 м, нижняя коснется пола. Таким образом, верхняя удлинилась на 1,2 м.
(L+triangle l1=H-L)
(triangle l1=H-2L=1,2)
(k1=F1/triangle l1=360/1,2=300)
Относительно точки В действуют формулы:
(F2/k1+F2/k2=H-2L)
(240/300+240/k2=1,2)
Значит (k2=240/0.4=600)
Ответ: коэффициенты пружин будут равны 300 и 600 Н/м.
Задача 4
Пружина массой 5 кг прикреплена к бруску, который лежит неподвижно на поверхности. Как изменится сила ее натяжения, если угол наклона будет увеличиваться от 30о до 60о?
Как видно из рисунка, брусок испытывает влияние трех сил: тяжести, натяжения пружины, реакции опоры.
Для равновесия бруска необходимо равенство величин:(mg=Fупр=N=0)
Откладывая величины на осях координат, выходим на формулы:
(mgsinalpha-;;Fупр=0)
(N;-;mg;cosalpha;=;0)
Из первого уравнения следует:
(Fупр=mast gastsinalpha)
Учитывая, что угол наклона поверхности, на которой расположен брусок, меняется, ΔFyпp можно определить по формуле:
(Delta Fyпp;=;mg(sinalpha2;-;sinalpha1);)
Подставляя в формулу значения, высчитывают значение искомой силы:
ΔFyпp=5 * 10 * (0,866 — 0,5) = 18,3 Н
Те, кому нужна практическая или теоретическая помощь в освоении темы по силе упругости, могут обратиться на Феникс.Хелп. Вам всегда помогут.
Источник
Сила упругости
Любое тело, когда его деформируют и оказывают внешнее воздействие, сопротивляется и стремиться восстановить прежние форму и размеры. Это происходит по причине электромагнитного взаимодействия в теле на молекулярном уровне.
Деформация — изменение положения частиц тела друг относительно друга. Результат деформации — изменение межатомных расстояний и перегруппировка блоков атомов.
Определение. Что такое сила упругости?
Сила упругости — сила, возникающая при деформации в теле и стремящаяся вернуть тело в начальное состояние.
Рассмотрим простейшие деформации — растяжение и сжатие
На рисунке показано, как действует сила упругости, когда мы сжимаем или растягиваем стержень.
Закон Гука
Для малых деформаций x≪ l справедлив закон Гука.
Закон Гука
Деформация, возникающая в упругом теле, пропорциональна приложенной к телу силе.
Fупр=-kx
Здесь k — коэффициент пропорциональности, называемый жесткостью. Единица измерения жесткости системе СИ Ньютон на метр. Жесткость зависит от материала тела, его формы и размеров.
Знак минус показывает, что сила упругости противодействует внешней силе и стремится вернуть тело в первоначальное состояние.
Существуют и другие формы записи закона Гука. Относительной деформацией тела называется отношение ε=xl. Напряжением в теле называется отношение σ=-FупрS. Здесь S — площадь поперечного сечения деформированного тела. Вторая формулировка закона Гука: относительная деформация пропорциональна напряжению.
ε=σE.
Здесь E — так называемый модуль Юнга, который не зависит от формы и размеров тела, а зависит только от свойств материала. Значение модуля Юнга для различных материалов широко варьируется. Например, для стали E≈2·1011 Нм2, а для резины E≈2·106 Нм2
Закон Гука можно обобщить для случая сложных деформаций. Рассмотрим деформацию изгиба стержня. При такой деформации изгиба сила упругости пропорциональна прогибу стержня.
Концы стержня лежат на двух опорах, которые действуют на тело с силой N→, называемой силой нормальной реакции опоры. Почему нормальной? Потому что эта сила направлена перпендикулярно (нормально) поверхности соприкосновения.
Если стержень лежит на столе, сила нормальной реакции опоры направлена вертикально вверх, противоположно силе тяжести, которую она уравновешивает.
Вес тела — это сила, с которой оно действует на опору.
Силу упругости часто рассматривают в контексте растяжения или сжатия пружины. Это распространенный пример, который часто встречается не только в теории, но и на практике. Пружины используются для измерения величины сил. Прибор, предназначенный для этого — динамаметр.
Динамометр — пружина, растяжение которой проградуированно в единицах силы. Характерное свойство пружин заключается в том, что закон Гука для них применим при достаточно большом изменении длины.
При сжатии и растяжении пружины действует закон Гука, возникают упругие силы, пропорциональные изменению длины пружины и ее жесткости (коэффициента k).
В отличие от пружин стержни и проволоки подчиняются закону Гука в очень узких пределах. Так, при относительной дефомации больше 1% в материале возникают необратимые именения — текучесть и разрушения.
Источник