Пружины растяжения сжатия кручения

Пружины растяжения сжатия кручения thumbnail

Хотите начать сотрудничать с нами?

Оставьте заявку на бесплатный звонок и мы свяжемся с Вами.

⭐⭐⭐⭐⭐ Пружины растяжения-изделия спирально-цилиндрической формы, состоящее из витков стали с
крючками или кольцами на концах. Они широко используются в приборостроении, машиностроительной, хозяйственной отрасли,
ими комплектуется промышленное оборудование. Основная функция – передача упруго-поступательных движений, поглощение
колебаний. У пружины растяжения в ненагруженном состоянии сомкнуты витки. Она ориентирована на воздействие сил направленных
противоположно друг другу вдоль оси пружины. Так обеспечивается высокий коэффициент жесткости по сравнению с другими типами
при одинаковых технических параметрах. Для придания определенных характеристик используется термообработка, специальные
защитные составы. Для обеспечения точности готовые изделия подвергаются испытаниям, проверке на специализированных
электронных приборах.

Что такое пружина растяжения?

пружина растяжения

Для оформления заказа на изготовление пружины растяжения, необходимо предоставить образец или чертеж.
Важно укатать требуемые характеристики изделия:
• диаметр проволоки;
• диаметр пружины;
• длину;
• направление навивки: правое или левое.
Первый вариант – стандарт, во втором случае наносится специальное обозначение.
Заказчик определяет и материал, применяемый для производства. Это сплавы, устойчивые к
коррозии, температурному воздействию, пружинные и непружинные марки стали. Отечественные
материалы соответствуют стандартам ГОСТ, сталь и сплавы, поставляемые зарубежными
производителями, отвечают международным стандартам. Так обеспечивается устойчивость
к нагрузкам, упругость изделия.

Как заказать расчет пружины растяжения?

Чтобы купить пружины растяжения полностью соответствующие определенным техническим,
технологическим требованиям, необходимо выполнить расчет. Для этого требуются исходные параметры.

Заказчику необходимо указать следующие параметры пружины:

• D2- внутренний диаметр зацепа

• L0′- длина пружины по телу

• L0 — длина пружины между зацепами

• индекс пружины

• рабочий ход

• размер открытой части зацепа

• жёсткость пружины

• F1 — предварительная нагрузка

• F2 — рабочая нагрузка

• F3 — максимальная нагрузка

• F1, L1 — длина пружины между зацепами при нагрузке

• максимальные касательные напряжения

• масса, вес пружины обозначается буквой «m» выражается в кг

Все вышеперечисленные данные используются вместе с данными об оборудовании, механизмах, для которых
заказывается изделие. Тут важен допустимый срок эксплуатации, наличие агрессивных сред, температурные
режимы. Для предотвращения растяжения пружины выполняется проверка максимальных касательных напряжений.
Еще один важный параметр – величина расчета усилий, она может выражаться в килограммах или Ньютонах.
Также следует учесть компоновку зацепа. Это стандартная схема, где зацеп выводится на центр из полного
витка к центру или зацеп вытянутой формы крючкового типа. Также зацепы выводятся из витков под
определенным углом. Конструкция зависит от технических условий

Гост пружины растяжения

ГОСТ для пружин растяжения определяет нормативные требования, обеспечивающие необходимые технические,
эксплуатационные характеристики. Стандарт позволяет подобрать характеристики, соответствующие
технологической среде, произвести расчеты изделия. Процесс, начинающийся с формирования перечня
параметров, заканчивающийся расчетом, называет проектированием. Тут закладывается надежность,
соответствие техническим параметрам, эксплуатационным требованиям.

Виды пружин растяжения

навитые заготовки пружин  растяжения

Магазин пружин растяжения предлагает различные виды изделий, производит их по индивидуальному заказу.
В зависимости от специфики работы они бывают:

• спиральными – ориентированы на накопление, преобразование энергии широко применяются в машиностроении,
изготавливаются из проволоки тонкого диаметра;

• конические – универсальный тип пружин, применяемый в различных отраслях для равномерного распределения нагрузки.

Заказать или купить пружину растяжения в Москве, выполненную из высококачественных материалов на высокоточном оборудовании,
соответствующую на 100% заявленным параметрам характеристикам предлагаем у нас. Клиентам гарантируется современный сервис,
включающий квалифицированную информационную поддержку, гибкую систему сотрудничества, удобную систему оплаты,
доступную ценовую политику. Договоренности выполняются в полном объеме с соблюдением сроков, штат опытных менеджеров
и мастеров исключает организационные, технические ошибки. Это инвестиции в качество, точность, которое обеспечивает
бесперебойную работу оборудования, машин и механизмов.

Источник

ФОРМУЛЫ И СПОСОБЫ РАСЧЕТА ПРУЖИН
ИЗ СТАЛИ КРУГЛОГО СЕЧЕНИЯ
(по ГОСТ 13765-86)

расчет пружин

МЕТОДИКА ОПРЕДЕЛЕНИЯ РАЗМЕРОВ ПРУЖИН ПО ГОСТ 13765-86

    1. Исходными величинами для определения размеров пружин являются силы F1 и F2 , рабочий ход h, наибольшая скорость перемещения подвижного конца пружины при нагружении
или при разгрузке vmax, выносливость Np и наружный диаметр пружины D1 (предварительный).Если задана только одна F2 сила то вместо рабочего хода h для подсчета берут величину рабочей деформации S    2, соответствующую заданной силе.

    2. По величине заданной выносливости Np предварительно определяют принадлежность пружины к соответствующему классу по табл. 1.

    3. По заданной силе F2 и крайним значениям инерционного зазора δ вычисляют по формуле (2) значение силы F3.

    4. По значению F3, пользуясь табл. 2, предварительно определяют разряд пружины.

    5. По табл. 11-17 находят строку, в которой наружный диаметр витка пружины наиболее близок к предварительно заданному значению D1. В этой же строке находят соответствующие значения силы F3 и диаметра проволоки d.

    6. Для пружин из закаливаемых марок сталей максимальное касательное напряжение τ3 находят по табл. 2, для пружин из холоднотянутой и термообработанной τ3 вычисляют с учето значений временного сопротивления Rm. Для холоднотянутой проволоки Rm определяют из ГОСТ 9389-75, для термообработанной — из ГОСТ 1071-81.

    7. По полученным значениям F3и τ3, a также по заданному значению F2 по формулам (5) и (5а) вычисляют критическую скорость vk и
отношение vmax / vk, подтверждающее или отрицающее принадлежность пружины к предварительно установленному классу. При несоблюдении условий vmax / vk < 1 пружины I и II классов относят к последующему классу или повторяют расчеты, изменив исходные условия.
Если невозможно изменение исходных условий, работоспособность обеспечивается комплектом запасных пружин.

    8. По окончательно установленному классу и разряду в соответствующей таблице на параметры витков пружин, помимо ранее найденных величин F3, D1 и d, находят величины c1 и s3, после чего остальные размеры пружины и габариты узла вычисляют по формулам (6)-(25).

КЛАССЫ И РАЗРЯДЫ ПРУЖИН

Ниже рассматриваются винтовые цилиндрические пружины сжатия и растяжения из стали круглого сечения с индексами i = d/D от 4 до 12.

Приводимые данные распространяются на пружины для работы при температурах от -60 до +120°С в неагрессивных средах. Пружины разделяют на классы, виды и разряды (см. ниже).

Класс пружин характеризует режим нагружения и выносливости, а также определяет основные требования к материалам и технологии изготовления.

Разряды пружин отражают сведения о диапазонах сил, марках применяемых пружинных сталей, а также нормативах по допускаемым напряжениям.

Отсутствие соударения витков у пружин сжатия определяется условием vmax / vk < 1,

где,

vmax — наибольшая скорость перемещения подвижного конца пружины при нагружении или при разгрузке, м/с;

vk — критическая скорость пружин сжатия, м/с (соответствует возникновению соударения витков пружины от сил инерции).

ВЫНОСЛИВОСТЬ И СТОЙКОСТЬ ПРУЖИН

При определении размеров пружин необходимо учитывать, что при vmax> vk, помимо касательных напряжений кручения, возникают контактные напряжения от соударения витков, движущихся по инерции после замедления и остановок сопрягаемых с пружинами деталей. Если соударение витков отсутствует, то лучшую выносливость имеют пружины с низкими напряжениями τ3, т.е. пружины класса I по табл. 1, промежуточную — циклические пружины класса II и худшую — пружины класса III.

При наличии интенсивного соударения витков выносливость располагается в обратном порядке, т.е. повышается не с понижением, а с ростом τ3. В таком же порядке располагается и стойкость, т.е. уменьшение остаточных деформаций или осадок пружин в процессе работы.

1. КЛАССЫ ПРУЖИН по ГОСТ 13765-86

Класс пружинВид
пружин
НагружениеВыносливость NF
(установленная безотказная наработка), циклы,
не менее
Инерционное
соударение витков
IСжатия и растяженияЦиклическое1×107Отсутствует
IIЦиклическое и статическое1×105
IIIСжатияЦиклическое2×103Допускается

   Примечание. Указанная выносливость не распространяется на зацепы пружин растяжения.

2. РАЗРЯДЫ ПРУЖИН по ГОСТ 13765-86

Пружины растяжения сжатия крученияПружины растяжения сжатия крученияПружины растяжения сжатия крученияСила пружины при максим. деформации F3, HДиаметр проволоки (прутка) d, ммМатериалТвердость после термооб­работки HRCМакси­мальное касательное напряжение при кручении τ3, МПаПружины растяжения сжатия крученияПружины растяжения сжатия кручения
Марка сталиСтандарт на заготовку
I1Пружины растяжения сжатия кручения1 — 8500,2 — 5,0по ГОСТ 1050 и ГОСТ 1435Проволока класса I по ГОСТ 93890,3RmПружины растяжения сжатия крученияГОСТ 13766
21 — 800Проволока классов II и IIА по ГОСТ 9389ГОСТ 13767
22,4 — 8001,2 — 5,051ХФА-Ш по ГОСТ 14959Проволока по ГОСТ 10710,32Rm
3140 — 600003,0 — 12,060С2А, 65С2ВА, 70СА3 по ГОСТ 14959Проволока по ГОСТ 1496347,5…53,5560ГОСТ 13768
51ХФА по ГОСТ 14959Проволока по ГОСТ 1496345,5…51,5
42800 — 18000014 — 7060С2А, 65С2ВА, 70С3А, 60С2, 60С2ХА, 60С2ХФА, 51ХФА по ГОСТ 14959Сталь горячекат. круглая по ГОСТ 259044,0…51,5480ГОСТ 13769
II1Пружины растяжения сжатия кручения1,5 — 14000,2 — 5,0по ГОСТ 1050 и ГОСТ 1435Проволока класса I по ГОСТ 93890,5RmГОСТ 13770
21,25 — 1250Проволока класса II и IIA по ГОСТ 9389ГОСТ 13771
37,5 — 12501,2 — 5,051ХФА-Ш по ГОСТ 14959Проволока по ГОСТ 10710,52Rm
3236 — 100003,0 — 12,060С2А, 65С2ВА по ГОСТ 14959Проволока по ГОСТ 1496347,5…53,5960ГОСТ 13772
65Г по ГОСТ 14959Проволока по ГОСТ 2771
51ХФА по ГОСТ 14959Проволока по ГОСТ 1496345,5…51,5
44500 — 28000014 — 7060С2А, 60С2, 65С2ВА, 70С3А, 51ХФА, 65Г, 60С2ХФА, 60С2ХА по ГСТ 14959Сталь горячекат. круглая по ГОСТ 259044,0…51,5800ГОСТ 13773
III1Пружины растяжения сжатия кручения12,5 — 10000,3 — 2,8по ГОСТ 1050 и ГОСТ 1435Проволока класса I по ГОСТ 93890,6RmГОСТ 13774
2Пружины растяжения сжатия кручения315 — 140003,0 — 12,060С2А, 65С2ВА, 70С3А по ГОСТ 14959Проволока по ГОСТ 1496354,5…58,013509Пружины растяжения сжатия крученияГОСТ 13775
36000 — 2000014 — 2560С2А, 65С2ВА, 70С3А по ГОСТ 14959Сталь горячекат. круглая по ГОСТ 259051,5…56,01050ГОСТ 13776

   Примечания:

1. Максимальное касательное напряжение при кручении приведено с учетом кривизны витков.

2. Rm — предел прочности пружинных материалов

    Средствами регулирования выносливости и стойкости циклических пружин в рамках каждого класса при неизменных заданных значениях рабочего хода служат изменения разности между максимальным касательным напряжением при кручении τ3 и касательным напряжением при рабочей деформации τ2.

    Возрастания разности τ3 — τ2 обусловливают увеличение выносливости и стойкости
циклических пружин всех классов при одновременном возрастании размеров узлов.
Уменьшение разностей τ3 — τ2 сопровождается обратными изменениями служебных качеств и размеров пространств в механизмах для размещения пружин.

   Для пружин I класса расчетные напряжения и свойства металла регламентированы так, что при
νmax/ νk ≤ 1 обусловленная выносливость пружин при действии силы F1 (сила пружины при предварительной деформации) не менее 0,2F3 (сила пружины при максимальной деформации) обеспечивается при всех осуществимых расположениях и величинах рабочих участков на силовых диаграммах разности напряжений τ3 — τ2, и τ2 — τ1, (касательное напряжение при предварительной деформации).

   Циклические пружины II класса при νЕЙ ПРУЖИН СЖАТИЯ И РАСТЯЖЕНИЯ

1. Пружина сжатия из проволоки круглого сечения с неподжатыми и нешлифованными крайними витками.

расчет  пружин

2. Пружина сжатия с поджатыми по 3/4 витка с каждого конца и шлифованными на 3/4 окружности опорными поверхностями.

расчет  пружин

3. Пружины растяжения из проволоки круглого сечения с зацепами, открытыми с одной стороны и расположенными в одной плоскости.

расчет  пружин
ОПОРНЫЕ ВИТКИ ПРУЖИН СЖАТИЯ
расчет  пружин
ДЛИНА ПРУЖИН СЖАТИЯ

Длину пружин сжатия рекомендуется принимать Lo <= (D1 — d).

Можно брать Lo до 5 х (D — d), но тогда пружины должны работать на направляющем стержне или в направляющей гильзе. При этом между пружиной и сопрягаемой деталью выдерживают зазор z в зависимости от величины среднего диаметра D пружины.

Значение зазора z, мм
расчет  пружин

Похожие документы:

чертеж пружины сжатия;

чертеж пружины параболоидной;

расчет пластинчатой пружины изгиба;

расчет пружин кручения из круглой проволоки;

ГОСТ 13764-86 » Пружины винтовые цилиндрические сжатия и растяжения из стали круглого сечения. Классификация»;

ГОСТ 13766-86 «Пружины винтовые цилиндрические сжатия и растяжения 1 класса, разряда 1 из стали круглого сечения. Основные параметры витков»;

ГОСТ 13767-86 «Пружины винтовые цилиндрические сжатия и растяжения 1 класса, разряда 2 из стали круглого сечения. Основные параметры витков»;

ГОСТ 13768-86 «Пружины винтовые цилиндрические сжатия и растяжения 1 класса, разряда 3 из стали круглого сечения. Основные параметры витков»;

ГОСТ 13769-86 «Пружины винтовые цилиндрические сжатия 1 класса, разряда 4 из стали круглого сечения. Основные параметры витков»;

ГОСТ 13770-86 «Пружины винтовые цилиндрические сжатия и растяжения II класса, разряда 1 из стали круглого сечения. Основные параметры витков»;

ГОСТ 13771-86 «Пружины винтовые цилиндрические сжатия и растяжения II класса, разряда 2 из стали круглого сечения. Основные параметры витков»;

ГОСТ 13772-86 «Пружины винтовые цилиндрические сжатия и растяжения II класса, разряда 3 из стали круглого сечения. Основные параметры витков»;

ГОСТ 13773-86 «Пружины винтовые цилиндрические сжатия II класса, разряда 4 из стали круглого сечения. Основные параметры витков»;

ГОСТ 13774-86 «Пружины винтовые цилиндрические сжатия III класса, разряда 1 из стали круглого сечения. Основные параметры витков»;

ГОСТ 13775-86 «Пружины винтовые цилиндрические сжатия III класса, разряда 2 из стали круглого сечения. Основные параметры витков»;

ГОСТ 13776-86 «Пружины винтовые цилиндрические сжатия III класса, разряда 3 из стали круглого сечения. Основные параметры витков».

Источник

Механические, а соответственно эксплуатационные свойства пружин — очень серьезный вопрос из-за того, что ни один механизм в технике не может работать без упругих элементов и деталей.

К таким деталям относятся не только пружины. Это могут быть распорные прокладки, контакты, растяжки. Самым знаменитым представителем пружинных изделий наверное являются шайбы Гровера, которые применяются в качестве прокладок в болтовых соединениях и благодаря упругим свойствам которых, создается некоторый перекос гайки, предотвращающий ее от саморазвинчивания. Такое название шайб происходит от фамилии Джона Гровера — английского инженера, который изобрел этот тип шайб.

Для того, чтобы эти изделия отлично справлялись со своей работой, они должны обладать рядом особых свойств.

  1. Высокая релаксационная стойкость
    — это стойкость против перераспределения напряжений путем микропластических сдвигов в условиях длительного нагружения. Проба на релаксационную стойкость – заневоливание, т.е. сжатие до соприкосновения витков и выдержка в этом состоянии определенное время. После снятия нагрузки пружина не должна изменять свои размеры. Как правило, требования по времени выдержки в заневоленном состоянии рагламентируются отраслевыми стандартами.
  2. Сопротивление микропластическим и малым пластическим деформация
    м — важнейшая характеристика качества пружинных сплавов, так как чем выше это сопротивление, тем меньше при данном приложенном напряжении неупругие и остаточные деформации и, следовательно, ниже все неупругие эффекты, определяющие свойства пружины. Как показывает практика, для получения высокого сопротивления малым пластическим деформациям стали должны иметь определенную микроструктуру. Хотя для разных пружинных сплавов используются различные методы обработки, все они имеют одну цель — обеспечение мелкозернистой микроструктуры, при которй все дислокации будут заблокированы.
  1. Материал для изготовления пружинных изделий должен обладать достаточной циклической стойкостью
    . Циклическая стойкость — способность материала сопротивляться действию знакопеременных циклических нагрузок. Характеристикой этой величины является предел выносливости, под которым понимают максимальное напряжение, которое не вызывает разрушения образца при любом числе циклов (физический предел выносливости) или заданном числе циклов (ограниченный предел выносливости). Предел выносливости при симметричном числе циклов обозначается σ-1.
  2. Определенный комплекс стандартных механических свойств
    в условиях статического нагружения, при испытаниях на растяжение, кручение, изгиб. Должна обеспечиваться высокая прочность, твердость и одновременно достаточная вязкость, во избежание хрупкого разрушения. Требуемые свойства обеспечиваются определенной микроструктурой и субструктурой. В микроструктуре пружинной стали должно присутствовать как можно больше препятствий для перемещения практически всех дислокаций, что создается мелкозернистым трением и равномерным распределением высоко дисперсных фаз, что характерно для структуры сорбита.

Методы торможения и блокировки дислокации в сплавах:

1) легирование твердого раствора, приводящее к повышению сопротивления кристаллической решетки движению дислокации;

2) дислокационный и фазовый наклеп, повышающие плотность дислокации;

3) создание сегрегаций на дислокациях, т.е. повышенная концентрация элементов внедрения и образование частиц выделения;

4) частицы карбидной фазы в повышенном количестве;

5) измельчение зерна.

Наиболее эффективный способ создания необходимых вышеперечисленных свойств это сочетание различных способов упрочнения:

Создание определенного химического состава сплава;

Создание определенной степени деформации, создающей благоприятную дислокационную структуру (ячеистую), но не вызывающую перенаклепа;

Проведение определенной термической обработки, которая сохранит определенную дислокационную структуру.

Устройство используется главным образом для поглощения и накопления механической энергии.


1. Материалы для изготовления пружин

5. Пружина Бурдона
или трубчатая пружина в манометрах для измерения давления, выполняет роль чувствительного элемента.


3.2. По конструктивному исполнению

4. Свойства пружин

4.1. Закон Гука

Большинство пружин, не испытывают деформаций при пределом упругости) описываются законом Гука, согласно которому приложена сила, прямо пропорциональная линейном удлинение пружины относительно равновесного положения:

x
— вектор смещения — расстояние и направление деформации пружины; F
— результирующий вектор силы — величина и направление усилия, направленного на возвращение пружины к равновесному состоянию; k
— коэффициент жесткости пружины (константа пружины).

Цилиндрические пружины характеризуются устойчивым коэффициентом жесткости . Но есть конструкции пружин (например конические, тарельчатые, пластинчатые), коэффициент жесткости которых меняется по мере деформирования. В этом случае зависимость закону Гука усложняется и между усилием и деформацией проявляется нелинейная зависимость.

Энергия упругой деформации стержня или пружины выражается через коэффициент жесткости по формуле:

.

4.2. Гармонические колебания

Поскольку согласно вторым законом Ньютона усилия равен произведению массы тела на ускорение, то с учетом

Упругие свойства рессорного подвешивания оценивают с помощью силовых характеристик и коэффициентом жесткости или коэффициентом гибкости (гибкостью). Кроме того, рессоры и пружины характеризуются геометрическими размерами. К основным размерам (рис. 1) относятся: высота рессоры или пружины в свободном состоянии без груза Н св и высота под грузом H гр, длина рессоры, диаметр пружины, диаметр прутка, число рабочих витков пружины. Разность между Н св и H гр называется прогибом рессоры (пружины)
f
. Прогиб, полученный от спокойно лежащего на рессоре груза, называется статическим. У листовых рессор для более удобного измерения прогиб определяется размерами Н св и H гр около хомута. Гибкие свойства рессор (пружин)
определяются одной из двух величин:

  • коэффициентом гибкости
    (или просто гибкостью);
  • коэффициентом жесткости
    (или просто жесткостью).

Рис. 1 — Основные размеры рессор и пружин

Прогиб рессоры (пружины) под действием силы, равной единице, называется гибкостью f 0:

где Р — внешняя сила, действующая на рессору, Н;

f — прогиб рессоры, м.

Важной характеристикой рессоры является ее жесткость ж
, которая численно равна силе, вызывающей прогиб, равный единице. Таким образом,

ж
= P/f.

Для рессор, у которых прогиб пропорционален нагрузке, справедлива равенство

P = ж
f.

Жесткость
— величина, обратная гибкости. Гибкость и жесткость рессор (пружин)
зависят от их основных размеров. При увеличении длины рессоры или при уменьшении числа и сечения листов гибкость ее увеличивается, а жесткость уменьшается. У пружин с увеличением среднего диаметра витков и их числа и с уменьшением сечения прутка гибкость увеличивается, а жесткость уменьшается.

По величине жесткости и прогиба пружины или рессоры определяется линейная зависимость между ее прогибом и силой упругости P = ж
f, представленная графически на (рис. 2). Диаграмма работы цилиндрической пружины, не имеющей трения (рис. 2, а), изображается одной прямой линией 0А, соответствующей как нагружению пружины (возрастанию Р), так и ее разгрузке (уменьшению Р). Жесткость в этом случае величина постоянная:

ж
= P/f∙tg α.

Пружины переменной жесткости (апериодические) без трения имеют диаграмму в виде линии 0АВ (рис. 2, б).

Рис. 2 — Диаграммы работы пружин (а, б) и рессоры (в)

При работе листовой рессоры
возникает трение между ее листами, что способствует затуханию колебаний подрессоренного экипажа и создает более спокойное его движение. В то же время слишком большое трение, увеличивая жесткость рессоры, ухудшает качество подвешивания. Характер изменения силы упругости рессоры при статическом нагружении изображен на (рис. 2, в). Эта зависимость представляет замкнутую кривую линию, верхняя ветвь которой 0A 1 показывает зависимость между нагрузкой и прогибом рессоры при ее нагружении, а нижняя А 1 А 2 0 — при разгрузке. Разница между ветвями, характеризующими изменение сил упругости рессоры при ее нагружении и разгрузке, обусловливается силами трения. Площадь, ограниченная ветвями, равна работе, затраченной на преодоление сил трения между листами рессоры. При нагрузке силы трения как бы сопротивляются увеличению прогиба, а при разгрузке препятствуют выпрямлению рессоры. В вагонных рессорах сила трения увеличивается пропорционально прогибу, так как соответственно возрастают силы прижатия листов друг к другу. Величина трения в рессоре обычно оценивается так называемым коэффициентом относительного трения φ, равным отношению силы трения R тр к силе Р, создающей упругую деформацию рессоры:

Величина силы трения связана с прогибом f и жесткостью рессоры ж
, обусловленной ее упругими свойствами, зависимостью

Пружинящие элементы представляют из себя упругие изделия, особенностью которых является самостоятельное восстановление первоначальной формы после воздействия на них нагрузок, приводящих к деформации. Для производства пружин применяют различные материалы: твердые материалы (рессоры из металла), газообразные (воздух в шинах транспортных средств) и гидравлические (масляные амортизаторы). Однако, когда речь идет о пружинах, то чаще всего подразумеваются изделия из твердых материалов, преимущественно различных металлов и сплавов — латуни, различных сталей, бронзы. Однако в некоторых случаях применяются и пружины из специальных сплавов, армированных пластмасс, резины.

Самыми распространенными пружинами являются винтовые или, как их еще называют, витые. Так же пружины делятся на несколько типов: плоские пружины (пластинчатые), спиральные и тарельчатые . Плоские пружины чаще всего используются в подвесках автомобилей, например, в качестве рессор. В качестве примера применения спиральные пружин, имеющих вид плоской ленты, свернутой по спирали, можно назвать их использование в заводных механизмах часов. Тарельчатые пружины состоят из одного или нескольких дисков из металла, где силы с разными направлениями векторов воздействуют от самой большой тарелки в направлении центра пружины. В качестве примера тарельчатой пружины можно привести такую деталь, как контрящая шайба. Принцип ее работы заключается в том, что будучи прижатой к деталям крепления, она не дает им сместиться за счет того, что стремиться к распрямлению.

Пружина — деталь

Самым общим определением для пружин может послужить следующее утверждение: пружина — это деталь, подвергающаяся упругой деформации и под действием этих внешних сил накапливает энергию, которая затем расходуется при ее распрямлении. Главными функциями пружин можно назвать поддержание крепежных деталей в рамках заданного расстояния и передачи и контроле движения. Благодаря своим механическим свойствам пружины нашли широкое применение практически во всех отраслях промышленности и хозяйства. Способ движения пружин описал английский физик Р. Гук
(1635 – 1703), в честь которого данный закон и был назван. Согласно этому закону, деформация пружины и сила, ее вызывающая, прямо пропорциональны. Соответственно, чем большая сила была приложена, тем больше пружина подвергается деформации.

Закон Гука

Однако закон Гука
справедлив только до тех пор, пока не превышен предел текучести, текучестью по закону Гука
называется максимально допустимый уровень напряжения, после превышения которого разрушается молекулярная структура материала. После превышения предела текучести деформация становится необратимой и наступает разрушение изделия. Однако, в связи с тем, что многие пружины изготавливаются из таких материалов, которые определенного предела не имеют, к ним применяется такой термин, как «условный предел текучести».

Под общим названием пружины объединяют упругие элементы, накапливающие и передающие энергию вследствие упругих деформаций под действием переменных нагрузок. Упругие элементы могут быть металлическими, жидкостными и газовыми.

Разные типы пружин широко применяются в конструкции самых разных механизмах и приборах. В сложных механизмах и агрегатах количество пружинных элементов может исчисляться сотнями и каждый из них выполняет сложные функции. Пружины используются как элемент измерительных приборов, двигателей, находят применение в устройствах, предназначенных для амортизации и виброизоляции, обеспечивают перемещения подвижных элементов кулачковых механизмов и клапанов, необходимую силу сжатия и натяжения в тормозных элементах, муфтах. При внешней простоте конструкции пружины представляют собой ответственные детали, требующие сложных расчетов при разработке и высокой точности изготовления.

Пружины растяжения сжатия кручения

Пружины классифицируют по характеристикам жесткости, типу нагрузки, особенностям конструкции.

По типу нагрузки различают пружины изгиба, сжатия, растяжения и кручения.

Витые пружины
растяжения предназначены для работы в условиях продольно-осевых нагрузок, растягивающих пружину. Витки пружин растяжения в ненагруженном состоянии, как правило, сомкнуты. Пружины этого типа под нагрузкой растягиваются. Для крепления к конструкции на концах пружины при изготовлении формируют кольца или крючки.

Продольно-осевые нагрузки на сжатие воспринимаются пружинами сжатия. Пружины сжатия отличаются сравнительно широким шагом витков, который уменьшается при нагружении детали. Для равномерного распределения нагрузки вдоль оси пружины, на торцах изделия предусмотрены плоские опорные поверхности (торцовки).

Витые пружины растяжения и сжатия изготавливают из высокоуглеродистых сталей разных марок. В зависимости от требуемых технических и эксплуатационных качеств пружины малых сечений изготавливают из углеродистых сталей марок У9А… У12А и кремнистых, в частности 60С2А. Для производства пружин ответственного назначения применяются сложнолегированные хромомарганцевые, хромокремнемарганцевые, хромованадиевые стали, устойчивые к переменным напряжениям. Детали, предназначенные для эксплуатации в химически агрессивных средах, изготавливают из цветных металлов, в частности бериллиевых бронз, которые представляют собой самый совершенный материал для производства упругих элементов. Бериллиевые бронзы устойчивы к износу и не искрят, что особенно важно в некоторых видах производства. В некоторых случаях вместо бериллиевых бронз предпочтительнее использовать различные марки кремнемарганцевых бронз.

Изготовление пружин происходит по следующей схеме:

Навивка;

Формирование зацепов (для пружин растяжения) или отделка торцов (пружины сжатия) ;

Термическая обработка;

Заневоливание.

Порядок действий зависит от диаметра проволоки. Проволока малых сечений (до 10 мм) как правило подвергается термообработке до навивки пружины. Навивка производится холодным методом, готовое изделие подвергается отпуску. Проволока сечением свыше 10 мм подвергается навивке горячим методом, после чего готовая пружина проходит полный цикл термообработки. Пружинная проволока подразделяется на три класса: высокой, повышенной и нормальной прочности.

В случаях, когда кроме упругости требуется податливость элемента при минимальных габаритах, применяются многожильные пружины, изготовленные из стальных тросов, свитых из 2…6 проволок. Такие пружины представляют собой один из лучших элементов для виброзащиты конструкции. Обычно многожильные пружины эксплуатируются как пружины сжатия, иногда — как пружины кручения.

Пружины изгиба
имеют сравнительно простую геометрию. К этому типу относятся разнообразные зажимы, стопорные элементы, торсионы и прочие детали, предназначенные для передачи упругих деформаций с минимальными изменениями геометрии.

Пружины кручения
работают на скручивание под действием пары сил, прилагаемых в параллельных плоскостях, расположенных перпендикулярно относительно оси пружины. Подразделяются на витые и торсионные. Витыми называют пружины, применяющиеся в бельевых прищепках, мышеловках и прочих устройствах, срабатывающих на открывание-закрывание. В торсионных пружинах момент кручения передается на вал, а пружина накручивается на него. Торсионные пружины, они же плоские спиральные ленточные пружины используются как аккумуляторы энергии в заводных механизмах и некоторых измерительных приборах. Изготавливаются из углеродистой стали высокого качества, прочной и пластичной.

При необходимости уменьшить вероятность возникновения резонанса сила воздействия и упругая деформация пружины должны находиться в нелинейной зависимости. Эта задача решается за счет применения в конструкции так называемых фвасонных пружин, работающих преимущественно на сжатие. К этому типу относятся параболоидные, конические и телескопические пружины.

Пружины могут быть и жесткими, таким как пружины прорезного типа, изготовленные из отрезков труб круглого сечения. Такие пружины работают как на сжатие, так и на растяжение.

Для восприятия больших нагрузок в условиях ограниченного пространства применяются пружины тарельчатого типа
. Основное предназначение тарельчатых пружин — гашение ударных нагрузок и демпфирование энергии колебаний, они применяются в буферных устройствах. Для производства тарельчатых пружин чаще всего используется сталь 60С2А.

В амортизаторах ис?