Проверка стержня на прочность сжатие растяжение

Проверка стержня на прочность сжатие растяжение thumbnail

Внутренние усилия при растяжении-сжатии.

Осевое (центральное) растяжение или сжатие прямого бруса вызывается внешними силами, вектор равнодействующей которых совпадает с осью бруса. При растяжении или сжатии в поперечных сечениях бруса возникают только продольные силы N. Продольная сила N в некотором сечении равна алгебраической сумме проекции на ось стержня всех внешних сил, действующих по одну сторону от рассматриваемого сечения. По правилу знаков продольной силы N принято считать, что от растягивающих внешних нагрузок возникают положительные продольные силы N, а от сжимающих — продольные силы N отрицательны (рис. 5).

правило знаков для продольных сил

Чтобы выявить участки стержня или его сечения, где продольная сила имеет наибольшее значение, строят эпюру продольных сил, применяя метод сечений, подробно рассмотренный в статье:
Анализ внутренних силовых факторов в статистически определимых системах
Ещё настоятельно рекомендую взглянуть на статью:
Расчёт статистически определимого бруса
Если разберёте теорию в данной статье и задачи по ссылкам, то станете гуру в теме «Растяжение-сжатие» =)

Напряжения при растяжении-сжатии.

Определенная методом сечений продольная сила N, является равнодействующей внутренних усилий распределенных по поперечному сечению стержня (рис. 2, б). Исходя из определения напряжений, согласно выражению (1), можно записать для продольной силы:

где σ — нормальное напряжение в произвольной точке поперечного сечения стержня.


Чтобы определить нормальные напряжения в любой точке бруса необходимо знать закон их распределения по поперечному сечению бруса. Экспериментальные исследования показывают: если нанести на поверхность стержня ряд взаимно перпендикулярных линий, то после приложения внешней растягивающей нагрузки поперечные линии не искривляются и остаются параллельными друг другу (рис.6, а). Об этом явлении говорит гипотеза плоских сечений (гипотеза Бернулли): сечения, плоские до деформации, остаются плоскими и после деформации.

механизм деформации растяжения

Так как все продольные волокна стержня деформируются одинаково, то и напряжения в поперечном сечении одинаковы, а эпюра напряжений σ по высоте поперечного сечения стержня выглядит, как показано на рис.6, б. Видно, что напряжения равномерно распределены по поперечному сечению стержня, т.е. во всех точках сечения σ = const. Выражение для определения величины напряжения имеет вид:

Таким образом, нормальные напряжения, возникающие в поперечных сечениях растянутого или сжатого бруса, равны отношению продольной силы к площади его поперечного сечения. Нормальные напряжения принято считать положительными при растяжении и отрицательными при сжатии.

Деформации при растяжении-сжатии.

Рассмотрим деформации, возникающие при растяжении (сжатии) стержня (рис.6, а). Под действием силы F брус удлиняется на некоторую величину Δl называемую абсолютным удлинением, или абсолютной продольной деформацией, которая численно равна разности длины бруса после деформации l1 и его длины до деформации l

Отношение абсолютной продольной деформации бруса Δl к его первоначальной длине l называют относительным удлинением, или относительной продольной деформацией:

При растяжении продольная деформация положительна, а при сжатии – отрицательна. Для большинства конструкционных материалов на стадии упругой деформации выполняется закон Гука (4), устанавливающий линейную зависимость между напряжениями и деформациями:

где модуль продольной упругости Е, называемый еще модулем упругости первого рода является коэффициентом пропорциональности, между напряжениями и деформациями. Он характеризует жесткость материала при растяжении или сжатии (табл. 1).

Таблица 1

Модуль продольной упругости для различных материалов

модуль продольной упругости для различных материалов

Абсолютная поперечная деформация бруса равна разности размеров поперечного сечения после и до деформации:

Соответственно, относительную поперечную деформацию определяют по формуле:

При растяжении размеры поперечного сечения бруса уменьшаются, и ε’ имеет отрицательное значение. Опытом установлено, что в пределах действия закона Гука при растяжении бруса поперечная деформация прямо пропорциональна продольной. Отношение поперечной деформации ε’ к продольной деформации ε называется коэффициентом поперечной деформации, или коэффициентом Пуассона μ:

Экспериментально установлено, что на упругой стадии нагружения любого материала значение μ = const и для различных материалов значения коэффициента Пуассона находятся в пределах от 0 до 0,5 (табл. 2).

Таблица 2

Коэффициент Пуассона.

коэффициент пуассона для материалов

Абсолютное удлинение стержня Δl прямо пропорционально продольной силе N:

Данной формулой можно пользоваться для вычисления абсолютного удлинения участка стержня длиной l при условии, что в пределах этого участка значение продольной силы постоянно. В случае, когда продольная сила N изменяется в пределах участка стержня, Δl определяют интегрированием в пределах этого участка:

Произведение (Е·А) называют жесткостью сечения стержня при растяжении (сжатии).

Механические свойства материалов.

Основными механическими свойствами материалов при их деформации являются прочность, пластичность, хрупкость, упругость и твердость.

Прочность — способность материала сопротивляться воздействию внешних сил, не разрушаясь и без появления остаточных деформаций.

Пластичность – свойство материала выдерживать без разрушения большие остаточные деформации. Неисчезающие после снятия внешних нагрузок деформации называются пластическими.

Хрупкость – свойство материала разрушаться при очень малых остаточных деформациях (например, чугун, бетон, стекло).

Идеальная упругость – свойство материала (тела) полностью восстанавливать свою форму и размеры после устранения причин, вызвавших деформацию.

Твердость – свойство материала сопротивляться проникновению в него других тел.

Рассмотрим диаграмму растяжения стержня из малоуглеродистой стали. Пусть круглый стержень длинной l0 и начальным постоянным поперечным сечением площади A0 статически растягивается с обоих торцов силой F.

растягивание стержня до разрушения

Диаграмма сжатия стержня имеет вид (рис. 10, а)

диаграмма растяжения стали

где Δl = l — l0 абсолютное удлинение стержня; ε = Δl / l0 — относительное продольное удлинение стержня; σ = F / A0 — нормальное напряжение; E — модуль Юнга; σп — предел пропорциональности; σуп — предел упругости; σт — предел текучести; σв — предел прочности (временное сопротивление); εост — остаточная деформация после снятия внешних нагрузок. Для материалов, не имеющих ярко выраженную площадку текучести, вводят условный предел текучести σ0,2 — напряжение, при котором достигается 0,2% остаточной деформации. При достижении предела прочности в центре стержня возникает локальное утончение его диаметра («шейка»). Дальнейшее абсолютное удлинение стержня идет в зоне шейки ( зона местной текучести). При достижении напряжением предела текучести σт глянцевая поверхность стержня становится немного матовой – на его поверхности появляются микротрещины (линии Людерса-Чернова), направленные под углом 45° к оси стержня.

примеры разрушения материалов

Расчеты на прочность и жесткость при растяжении и сжатии.

Опасным сечением при растяжении и сжатии называется поперечное сечение бруса, в котором возникает максимальное нормальное напряжение. Допускаемые напряжения вычисляются по формуле:

где σпред — предельное напряжение (σпред = σт — для пластических материалов и σпред = σв — для хрупких материалов); [n] — коэффициент запаса прочности. Для пластических материалов [n] = [nт] = 1,2 … 2,5; для хрупких материалов [n] = [nв] = 2 … 5, а для древесины [n] = 8 ÷ 12.

Расчеты на прочность при растяжении и сжатии.

Целью расчета любой конструкции является использование полученных результатов для оценки пригодности этой конструкции к эксплуатации при минимальном расходе материала, что находит отражение в методах расчета на прочность и жесткость.

Условие прочности стержня при его растяжении (сжатии):

При проектном расчете определяется площадь опасного сечения стержня:

При определении допускаемой нагрузки рассчитывается допускаемая нормальная сила:

Расчет на жесткость при растяжении и сжатии.

Работоспособность стержня определяется его предельной деформацией [ l ]. Абсолютное удлинение стержня должно удовлетворять условию:

Часто дополнительно делают расчет на жесткость отдельных участков стержня.

Следующая важная статья теории:
Изгиб балки

Источник

Содержание

Задача № 1 Проверка прочности ступенчатого стержня при деформации растяжение и сжатие.……………………………………………………………………3
Задача № 2 Расчет оптимального сечения ступенчатого стержня при деформации растяжение и сжатие……………………………………………..8
Задача № 3 Расчет статически определимой стержневой системы, работающей на растяжение и сжатие………………………………………….12
Задача № 4 Расчет вала на прочность и жесткость……………………………15
Задача № 5 Расчет балки на прочность при плоском изгибе…………………20
Задача №6 Расчет балки на прочность при плоском изгибе…………………23
Задача № 7 Сравнение прочности балок различных сечений……………….27
Задача № 8 Расчет сжатого стержня на устойчивость……………………….29
Список литературы………………………………………………………………33

Задача № 2 Расчет оптимального сечения ступенчатого стержня при деформации растяжение и сжатие.

Задание:Определить оптимальный диаметр сечения круглого стержня на каждом участке по условию прочности. Определить продольные деформации, возникающие на каждом участке стержня. Стержень изготовлен из стали:

Е = 2*105 МПа; σТ = 240 МПа. Допускаемый коэффициент запаса статической прочности [n] выбрать самостоятельно ([n]= 1,2…1,8). Весом стержня пренебречь. Схема стержня приведена на рис. 2.

Исходные данные:F1=17 кН; F2=28 кН; F3=7кН; l1=130 см=1,3 м;

l2=140 см=1,4 м; l3=65 см=0,65 м.

Решение:Для определения продольной силы используем метод сечений.

Эпюру продольных сил необходимо строим, руководствуясь правилом: продольная сила в любом сечении стержня равна алгебраической сумме проекций всех внешних сил, расположенных по одну сторону от сечения на ось стержня. Продольная сила считается положительной, если она соответствует деформации растяжения (направлена от сечения) и отрицательной, если она вызывает сжатие (направлена к сечению).

1.Разобьем стержень на отдельные участки, начиная от свободного конца. Границы участков определяются точками приложения внешних сил. Всего по длине стержня в данной задаче будет три участка. Проведя сечения и отбрасывая левые части стержня, можно определить продольные силы в его поперечных сечениях без вычисления опорных реакций в заделке.

1 участок (сечение 1-1) : NI = -F3 = -7 кН.

на первом участке осуществляется деформация сжатия.

2 участок (сечение 2-2): N2 = -F3 +F2 = -7+28=21 кН.

на втором участке осуществляется деформация растяжения.

3 участок (сечение 3-3) N3 =-F3 +F2+F1 = -7+28+17=38 кН.

на третьем участке осуществляется деформация растяжения.

Таким образом, в заделке действует реакция равная N3 =38кН.

Эпюра продольных сил показана на рис.1. Эпюру продольных сил строим в масштабе = .

2. Допускаемое напряжение вычисляем по формуле: .

Допускаемые напряжения при сжатии и растяжении для пластичного материала, при условии, что коэффициент запаса n=1,8.

=240/1,8=133,3Мпа

3. Требуемая площадь сечения определяется из формулы условия прочности на растяжения.

Þ

Площадь круглого сечения А=

1 участок:

Принимаем d1=0,09м, А1=

2 участок:

Принимаем d2=0,015 м, А2=

3 участок:

Принимаем d1=0,02м, А3=

Удлинения (укорочения) части стержня определяем по формуле ,где – соответственно длина участка, внутреннее усилие, площадь поперечного сечения, Е–модуль упругости материала.

Укорочение 1 участка .

Удлинение 2 участка

Удлинение 3 участка .

В правом конце стержня заделка, перемещение в этом конце отсутствует. Поэтому построение эпюры смещения стержня необходимо строить, начиная с левого конца.

На третьем участке смещение изменяется от нуля до =7,87*10-4 м;

на втором участке: от =7,87*10-4м до

=16,17*10-4 м;

на первом участке: от 16,17*10-4 м

до 7,87*10-4 +8,3*10-4 -3,55*10-4=12,62*10-4 м.

Эпюры смещения строим в масштабе:

= .

Ответ: Полное удлинение стержня составило 12,62*10-4м.

Задача № 3 Расчет статически определимой стержневой системы,

Задача № 4 Расчет вала на прочность и жесткость.

Задание:Определить диаметры ступенчатого вала из условия прочности и жесткости на кручение. Определить угол закручивания вала.

Вал изготовлен из стали: [Θ] = 1,75 *10-2 рад/м, G = 8 *1010 Па

Схема вала приведена на рис. 4.

Исходные данные: а=1,4м; b=0,6м, c=0,6м, М1 =360Н*м; М2 = 400Н*м;

М3 = 400Н*м; М4 = 500Н*м; [t] = 55 Мпа.

Решение.

1. Определение внутренних крутящих моментов по участкам.

Для определения знака крутящего момента примем следующее правило: если смотреть на отсеченную часть бруса со стороны внешней нормали к сечению, то момент сечении будет положителен в том случае, когда сумма внешних скручивавших моментов поворачивает отсеченную часть бруса по часовой стрелке, и отрицателен при повороте части бруса в противоположном направлении.

Неизвестный момент М5 в заделке найдем из уравнения равновесия для всего вала. Условно примем направление момента М5 за отрицательное. Тогда уравнение равновесия принимает вид

-М1 +М2 +М3 -М4-М5 = 0

Из решения этого уравнения получим

М5 =-М1 +М2 +М3 -М4=-360+400+400-500= -60Н*м.

Для построения эпюры крутящих моментов применяем метод сечений к каждому участку вала в отдельности (следует заметить, что построение эпюры крутящих моментов совершенно аналогично построению эпюры продольных сил). Крутящие моменты в сечениях определяются как алгебраические суммы внешних моментов, приложенных по одну сторону от сечения.

Определим крутящие моменты на каждом участке, проведя последовательно

сечения на четырехучастках вала и рассмотрим равновесие соответствующих

оставшихся правых частей.

В сечении 1-1: .

В сечении 2-2: .

В сечении 3-3:

В сечении 4-4:

По полученным данным строим эпюру крутящих моментов, откладывая по вертикальной оси значения моментов. Отрицательные моменты откладываем вниз по осевой линии (рис. 4). Эпюру моментов строим в масштабе = .

2. По найденным значениям крутящих моментов из расчетов на прочность и жесткость в каждом сечении определим диаметры валов.

Расчет на прочность ведется по допускаемому напряжению при кручении

где –крутящий момент, действующий в сечении бруса;

–полярный момент сопротивления для круглого сечения, –диаметр вала. Из формулы выразим диаметр

По формуле определим диаметры для всех сечений.

Сечение 1-1: 0,0359м, принимаем d1=0,036м.

Сечение 2-2: 0,021м, принимаем d2=0,022м.

Сечение 3-3: 0,0303м, принимаем d1=0,032м.

Сечение 4-4: 0,0177м, принимаем d4=0,018м.

3. Расчет на жесткость ведется по допускаемому относительному углу закручиванию , где –полярный момент сопротивления круглого сечения.

В соответствии с формулой определим диаметр вала из условия жесткости

По формуле определим диаметры для всех участков.

Сечение 1-1: 0,0437м, принимаем d1=0,045м.

Сечение 2-2: 0,0292м, принимаем d2=0,03м.

Сечение 3-3: 0,0384м, принимаем d1=0,04м.

Сечение 4-4: 0,0257м, принимаем d4=0,026м.

4. В соответствии с расчетами на прочность и жесткость выбираем наибольшее значение диаметров для каждого участка. В результате получим следующие значения:

5. Абсолютные углы закручивания для каждого участка можно определить по формуле , где – длина участка.

Полярные моменты инерции для каждого сечения

Сечение 1-1: м4;

Сечение 2-2: м4.

Сечение 3-3: м4;

Сечение 4-4: м4.

Далее определим углы закручивания.

= -0,0218 рад – угол поворота сечения В относительно сечения А (или угол закручивания участка АВ).

= -0,0095 рад – угол поворота сечения С относительно сечения В (или угол закручивания участка ВС).

= 0,009 рад – угол поворота сечения D относительно сечения C (или угол закручивания участка CD).

=- 0,0233 рад – угол поворота сечения Е относительно сечения D (или угол закручивания участка DЕ).

Строим эпюру углов закручивания для всего вала (рис. 4). За начало координат выбран крайний левый конец бруса (сечение D). В пределах каждого из участков бруса эпюра линейна, поэтому достаточно знать углы поворота только для граничных сечений участков.

В сечении от Е до D полный угол закручивания вала равен

-0,0233 рад;

В сечении от Е до С полный угол закручивания вала равен

-0,0233+0,009=-0,0143 рад;

В сечении от Е до В полный угол закручивания вала равен

— 0,0233+0,009-0,0095=-0,0238 рад;

В сечении от Е до А полный угол закручивания вала равен

— 0,0233+0,009-0,0095-0,0218=-0,0456рад.

Ординаты этой эпюры дают значения углов поворота соответствующих поперечных сечений вала.

Эпюру углов поворота строим в масштабе

= .

Ответ: и полный угол закручивания -0,0456 рад.

Список литературы

1. Сопротивление материалов: учебное пособие для вузов/ Н.Н.Вассерман и др. — Пермь: Изд-ва ПНИПУ, 2011 – 364 с.

2. Прикладная механика: Учеб. Для вузов/ В.В.Джамай, Ю.Н.Дроздов, Е.А.Самойлов и др. – М. Дрофа, 2004. – 414 с.

3. Феодосьев В.И. Сопротивление материалов. М.: МГТУ им. Н.Э. Баумана, 1999 – 592 с.

Содержание

Задача № 1 Проверка прочности ступенчатого стержня при деформации растяжение и сжатие.……………………………………………………………………3
Задача № 2 Расчет оптимального сечения ступенчатого стержня при деформации растяжение и сжатие……………………………………………..8
Задача № 3 Расчет статически определимой стержневой системы, работающей на растяжение и сжатие………………………………………….12
Задача № 4 Расчет вала на прочность и жесткость……………………………15
Задача № 5 Расчет балки на прочность при плоском изгибе…………………20
Задача №6 Расчет балки на прочность при плоском изгибе…………………23
Задача № 7 Сравнение прочности балок различных сечений……………….27
Задача № 8 Расчет сжатого стержня на устойчивость……………………….29
Список литературы………………………………………………………………33

Задача № 1 Проверка прочности ступенчатого стержня при деформации растяжение и сжатие.

Задание:Оценить прочность ступенчатого стержня из хрупкого материала. Определить его деформацию. Стержень изготовлен из чугуна: Е = 1,2*105 МПа; σвр= 113 МПа; σвсж= 490 МПа. Допускаемый коэффициент запаса статической прочности [n] выбрать самостоятельно (в данной задаче принимаем [n]= 1,2…1,8). Весом стержня пренебречь.

Схема стержня приведена на рис. 1.

Исходные данные: l1=0,5м; l2=0,2м; l3=0,4м; А=4*10-4м2; А1=А=

=4*10-4м2; А2=3А=12*10-4м2; А3=1,5А=6*10-4м2; F1=30кН; F2=60кН; F3=20кН.

Решение. Разобьем стержень на отдельные участки, начиная от свободного конца. Границы участков определяются точками приложения внешних сил или местами изменения размеров поперечного сечения. Всего по длине стержня в данной задаче будет три участка. Проведя сечения и отбрасывая левые части стержня, можно определить продольные силы в его поперечных сечениях без вычисления опорных реакций в заделке.

Для того, чтобы определить усилие NI, проводим сечения в пределах первого участка. Рассмотрим равновесие оставшейся правой части стержня.

Из уравнения равновесия оставшейся правой части выразим внутреннюю продольную силу NIчерез внешние силы, приложенные к оставленной части

NI =- F1 = -30 кН

Так как положительное направление совпадает с деформацией растяжения, то знак минус означает, что на первом участке осуществляется деформация сжатия.

Аналогично находим внутреннее усилие NII, действующее на втором

участке. Для этого проводим произвольное сечение на втором участке и рассматриваем равновесие оставшейся правой части стержня .

Уравнение равновесия в проекции на ось стержня для второго участка

-F1 + F2 -NII = 0

Решая это уравнение, получим

NII = -F1 -F2 = -30+60 = 30 кН.

на втором участке осуществляется деформация растяжения.

Для того, чтобы определить внутреннее усилие NIII, действующее на третьем участке рассмотрим равновесие оставшейся части стержня.

-F1 +F2 + F3 – NIII = 0.

Решая это уравнение, получим

NIII =-F1 + F2 +F3 = -30+60 +20=50 кН.

Таким образом, в заделке действует реакция равная NIII =50 кН.

на третьем участке осуществляется деформация растяжения.

Эпюра продольных сил показана на рис.1. Эпюру продольных сил строим в масштабе =

Чтобы определить напряжение в поперечных сечениях бруса, нужно разделить числовые значения продольных сил на площади этих сечений.

Для первого участка

.

Допускаемые напряжения при сжатии, при условии, что коэффициент запаса n=1,2

=490/1,2=408 Мпа.

Условие прочности для первого участка выполняется .

Недогруз конструкции на первом участке составил

*100%= = 81,7%, что выше допустимого (10%).

Для сечения 2-2: .

На втором участке деформация растяжения. Допускаемые напряжения при растяжении, при условии, что коэффициент запаса n=1,2

=113/1,2=94,2 Мпа.

Условие прочности для первого участка выполняется .

Недогруз конструкции на втором участке составил

*100%= = 73,4%, что выше допустимого (10%).

Для сечения 3-3: .

На третьем участке деформация растяжения. Допускаемые напряжения при растяжении =94,2 Мпа.

Условие прочности для третьего участка выполняется .

Недогруз конструкции на третьем участке составил

*100%= =11,6 %, что выше допустимого (10%).

Эпюра нормальных напряжений по длине бруса показана на рис. 1.

Эпюры нормальных напряжений строим в масштабе:

= .

укорочение участков бруса определяются по формуле

,

где – соответственно длина участка, внутреннее усилие, площадь поперечного сечения, напряжение в сечении. Е–модуль упругости материала.

укорочение первого участка

.

удлинение второго участка

удлинение третьего участка

.

В левом конце стержня заделка, перемещение в этом конце отсутствует. Поэтому построение эпюры деформации стержня необходимо строить, начиная с левого конца.

На третьем участке деформация изменяется от нуля до =27,78*10-5м;

на втором от =27,78*10-5м

до =31,95*10-5м;

на первом от 31,95*10-5м

до 27,78*10-5 +4,17*10-5-31,25*10-5=0,7*10-5м.

Эпюры смещения строим в масштабе:

= .

Ответ: Полное удлинение бруса составило 0,7*10-5м и прочность стержня по допускаемым напряжениям выполняется.



Источник