Прочность титана на растяжение
Продажа проката титана
и титановых сплавов
Титан широко распространен в земной коре, где его содержится около 6 %, а по распространенности он занимает четвертое место после алю-миния, железа и магния. Однако промышленный способ его извлечения был разработан лишь в 40-х годах ХХ века. Благодаря прогрессу в области самолето- и ракетостроения производство титана и его сплавов интенсивно развивалось. Это объясняется сочетанием таких ценных свойств титана, как малая плотность, высокая удельная прочность (s в/r × g), коррозионная стойкость, технологичность при обработке давлением и свариваемость, хладостойкость, немагнитность и ряд других ценных физико-механических характеристик.
Основные сведения о титане
Титан — химический элемент с порядковым номером 22, атомный вес 47,88, легкий серебристо-белый металл. Плотность 4,51 г/см3, Tпл=1668+(-)5 °С, Tкип=3260 °С. Титан и титановые сплавы сочетают легкость, прочность, высокую коррозионную стойкость, низкий коэффициент теплового расширения, возможность работы в широком диапазоне температур.
История открытия титана
Оксид титана TiO2 впервые был обнаружен в 1789 году английским ученым, специалистом в области минералогии У. Грегором, который при исследовании магнитного железистого песка выделил окись неизвестного металла, назвав ее менакеновой. Первый образец металлического титана получил в 1825 году шведский химик и минераловед Й. Я. Берцелиус.
Свойства титана
В периодической системе элементов Д. И. Менделеева титан расположен в IV группе 4-го периода под номером 22. В важнейших и наиболее устойчивых соединениях металл четырехвалентен. По внешнему виду похож на сталь. Титан относится к переходным элементам. Данный металл плавится при довольно высокой температуре (1668±4 °С) и кипит при 3300 °С, скрытая теплота плавления и испарения титана почти в два раза больше, чем у железа.
Известны две аллотропические модификации титана (две разновидности титана, имеющие одинаковый химический состав, но различное строение и свойства). Низкотемпературная альфа-модификация, существующая до 882,5 °С и высокотемпературная бетта-модификация, устойчивая от 882,5 °С и до температуры плавления.
По плотности и удельной теплоемкости титан занимает промежуточное место между двумя основными конструкционными металлами: алюминием и железом. Стоит также отметить, что его механическая прочность примерно вдвое больше, чем чистого железа, и почти в шесть раз выше, чем алюминия. Но титан может активно поглощать кислород, азот и водород, которые резко снижают пластические свойства металла. С углеродом титан образует тугоплавкие карбиды, обладающие высокой твердостью.
Титан обладает низкой теплопроводностью, которая в 13 раз меньше теплопроводности алюминия и в 4 раза — железа. Коэффициент термического расширения при комнатной температуре сравнительно мал, с повышением температуры он возрастает.
Модули упругости титана невелики и обнаруживают существенную анизотропию. Модули упругости характеризуют способность материала упруго деформироваться при приложении к нему силы. Анизотропия заключается в различии свойств упругости в зависимости от направления действия силы. С повышением температуры до 350 °С модули упругости уменьшаются почти по линейному закону. Небольшое значение модулей упругости титана — существенный его недостаток, т.к. в некоторых случаях для получения достаточно жестких конструкций приходится применять большие сечения изделий по сравнению с теми, которые следуют из условий прочности.
Титан имеет довольно высокое удельное электросопротивление, которое в зависимости от содержания примесей колеблется в пределах от 42·10-8до 80·10-6 Ом·см. При температурах ниже 0,45 К он становится сверхпроводником.
Титан — парамагнитный металл. Обычно у парамагнитных веществ магнитная восприимчивость при нагревании уменьшается. Магнитная восприимчивость характеризует связь между намагниченностью вещества и магнитным полем в этом веществе. Титан составляет исключение из этого правила — его восприимчивость существенно увеличивается с температурой.
Характеристики физико-механических свойств титана (ВТ1-00)
Плотность r , кг/м3 | 4,5 × 10–3 |
---|---|
Температура плавления Тпл, ° С | 1668± 4 |
Коэффициент линейного расширения a × 10–6, град–1 | 8,9 |
Теплопроводность l , Вт/(м × град) | 16,76 |
Предел прочности при растяжении s в, МПа | 300–450 |
Условный предел текучести s 0,2, МПа | 250–380 |
Удельная прочность (s в/r × g)× 10–3, км | 7–10 |
Относительное удлинение d , % | 25–30 |
Относительное сужение Y , % | 50–60 |
Модуль нормальной упругости Е´ 10–3, МПа | 110,25 |
Модуль сдвига G´ 10–3, МПа | 41 |
Коэффициент Пуассона m , | 0,32 |
Твердость НВ | 103 |
Ударная вязкость KCU, Дж/см2 | 120 |
Титан имеет две полиморфные модификации: a -титана с гексагональной плотноупакованной решеткой с периодами а = 0,296 нм, с = 0,472 нм и высокотемпературную модификацию b -титана с кубической объемно-центрированной решеткой с периодом а = 0,332 нм при 900 ° С. Температура полиморфного a « b -превращения составляет 882 ° С.
Механические свойства титана существенно зависят от содержания примесей в металле. Различают примеси внедрения — кислород, азот, углерод, водород и примеси замещения, к которым относятся железо и кремний. Хотя примеси повышают прочность, но одновременно резко снижают пластичность, причем наиболее сильное отрицательное действие оказывают примеси внедрения, особенно газы. При введении всего лишь 0,003 % Н, 0,02 % N или 0,7 % О титан полностью теряет способность к пластическому деформированию и хрупко разрушается.
Особенно вреден водород, вызывающий водородную хрупкость титановых сплавов. Водород попадает в металл при плавке и последующей обработке, в частности при травлении полуфабрикатов. Водород малорастворим в a -титане и образует пластинчатые частицы гидрида, снижающего ударную вязкость и особенно отрицательно проявляющегося в испытаниях на замедленное разрушение.
Поэтому содержание примесей, особенно газов, в титане и титановых сплавах (табл. 17.1, 17.2) строго ограничено.
Промышленный способ производства титана состоит в обогащении и хлорировании титановой руды с последующим его восстановлением из четыреххлористого титана металлическим магнием (магнийтермический метод). Полученный этим методом титан губчатый (ГОСТ 17746–79) в зависимости от химического состава и механических свойств выпускают следующих марок:
ТГ-90, ТГ-100, ТГ-110, ТГ-120, ТГ-130, ТГ-150, ТГ-ТВ (см. табл. 17.1). Цифры означают твердость по Бринеллю НВ, ТВ — твердый.
Для получения монолитного титана губка размалывается в порошок, прессуется и спекается или переплавляется в дуговых печах в вакууме или атмосфере инертных газов.
Механические свойства титана характеризуются хорошим сочетанием прочности и пластичности. Например, технически чистый титан марки ВТ1-0 имеет: s в = 375–540 МПа, s 0,2 = 295–410 МПа, d ³ 20 %, и по этим характеристикам не уступает ряду углеродистых и Cr—Ni коррозионностойких сталей.
Высокая пластичность титана по сравнению с другими металлами, имеющими ГПУ- решетку (Zn, Mg, Cd), объясняется большим количеством систем скольжения и двойникования благодаря малому сотношению с/а = 1,587. По-видимому, с этим связана высокая хладостойкость титана и его сплавов (подробнее см. гл. 13).
При повышении температуры до 250 ° С прочность титана снижается почти в 2 раза. Однако жаропрочные Ti-сплавы по удельной прочности в интервале температур 300–600 ° С не имеют себе равных; при температурах выше 600 ° С сплавы титана уступают сплавам на основе железа и никеля.
Титан имеет низкий модуль нормальной упругости (Е = 110,25 ГПа) — почти в 2 раза меньше, чем у железа и никеля, что затрудняет изготовление жестких конструкций.
Титан относится к числу химически активных металлов, однако он обладает высокой коррозионной стойкостью, так как на его поверхности образуется стойкая пассивная пленка TiO2, прочно связанная с основным металлом и исключающая его непосредственный контакт с коррозионной средой. Толщина этой пленки обычно достигает 5–6 нм.
Благодаря оксидной пленке, титан и его сплавы не корродируют в атмосфере, в пресной и морской воде, устойчивы против кавитационной коррозии и коррозии под напряжением, а также в кислотах органического происхождения.
Производство изделий из титана и его сплавов имеет ряд технологических особенностей. Из-за высокой химической активности расплавленного титана его плавку, разливку и дуговую сварку производят в вакууме или в атмосфере инертных газов.
При технологических и эксплуатационных нагревах, особенно выше 550–600 ° С, необходимо принимать меры для защиты титана от окисления и газонасыщения (альфированный слой) (см. гл. 3).
Титан хорошо обрабатывается давлением в горячем состоянии и удовлетворительно в холодном. Он легко прокатывается, куется, штампуется. Титан и его сплавы хорошо свариваются контактной и аргонодуговой сваркой, обеспечивая высокую прочность и пластичность сварного соединения. Недостатком титана является плохая обрабатываемость резанием из-за склонности к налипанию, низкой теплопроводности и плохих антифрикционных свойств.
Основной целью легирования титановых сплавов является повышение прочности, жаропрочности и коррозионной стойкости. Широкое применение нашли сплавы титана с алюминием, хромом, молибденом, ванадием, марганцем, оловом и др. элементами. Легирующие элементы оказывают большое влияние на полиморфные превращения титана.
Таблица 17.1
Марки, химический состав (%) и твердость титана губчатого (ГОСТ 17746–79)
Марка | Ti, не менее | Не более | Твердость НВ, 10/1500/30, не более | ||||||
---|---|---|---|---|---|---|---|---|---|
Fe | Si | Ni | C | Cl | N | O | |||
ТГ-90 | 99,74 | 0,05 | 0,01 | 0,04 | 0,02 | 0,08 | 0,02 | 0,04 | 90 |
ТГ-100 | 99,72 | 0,06 | 0,01 | 0,04 | 0,03 | 0,08 | 0,02 | 0,04 | 100 |
ТГ-110 | 99,67 | 0,09 | 0,02 | 0,04 | 0,03 | 0,08 | 0,02 | 0,05 | 110 |
ТГ-120 | 99,64 | 0,11 | 0,02 | 0,04 | 0,03 | 0,08 | 0,02 | 0,06 | 120 |
ТГ-130 | 99,56 | 0,13 | 0,03 | 0,04 | 0,03 | 0,10 | 0,03 | 0,08 | 130 |
ТГ-150 | 99,45 | 0,2 | 0,03 | 0,04 | 0,03 | 0,12 | 0,03 | 0,10 | 150 |
ТГ-Тв | 99,75 | 1,9 | – | – | 0,10 | 0,15 | 0,10 | – | – |
Таблица 17.2
Марки и химический состав (%) деформируемых титановых сплавов (ГОСТ 19807–91)
Обозначения марок | Ti | Al | V | Mo | Sn | Zr | Mn | Cr | Si | Fe | O | H | N | C |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
ВТ1-00 | Основа | – | – | – | – | – | – | – | 0,08 | 0,15 | 0,10 | 0,008 | 0,04 | 0,05 |
ВТ1-0 | То же | – | – | – | – | – | – | – | 0,10 | 0,25 | 0,20 | 0,010 | 0,04 | 0,07 |
ВТ1-2 | То же | – | – | – | – | – | – | – | 0,15 | 1,5 | 0,30 | 0,010 | 0,15 | 0,10 |
ОТ4-0 | То же | 0,4–1,4 | – | – | – | 0,30 | 0,5–1,3 | – | 0,12 | 0,30 | 0,15 | 0,012 | 0,05 | 0,10 |
ОТ4-1 | То же | 1,5–2,5 | – | – | – | 0,30 | 0,7–2,0 | – | 0,12 | 0,30 | 0,15 | 0,012 | 0,05 | 0,10 |
ОТ4 | То же | 3,5–5,0 | – | – | – | 0,30 | 0,8–2,0 | – | 0,12 | 0,30 | 0,15 | 0,012 | 0,05 | 0,10 |
ВТ5 | То же | 4,5–6,2 | 1,2 | 0,8 | – | 0,30 | – | – | 0,12 | 0,30 | 0,20 | 0,015 | 0,05 | 0,10 |
ВТ5-1 | То же | 4,3–6,0 | 1,0 | – | 2,0 –3,0 | 0,30 | – | – | 0,12 | 0,30 | 0,15 | 0,015 | 0,05 | 0,10 |
ВТ6 | То же | 5,3–6,8 | 3,5–5,3 | – | – | 0,30 | – | – | 0,10 | 0,60 | 0,20 | 0,015 | 0,05 | 0,10 |
ВТ6с | То же | 5,3–6,5 | 3,5–4,5 | – | – | 0,30 | – | – | 0,15 | 0,25 | 0,15 | 0,015 | 0,04 | 0,10 |
ВТ3-1 | То же | 5,5–7,0 | – | 2,0–3,0 | – | 0,50 | – | 0,8–2,0 | 0,15–0,40 | 0,2–0,7 | 0,15 | 0,015 | 0,05 | 0,10 |
ВТ8 | То же | 5,8–7,0 | – | 2,8–3,8 | – | 0,50 | – | – | 0,20–0,40 | 0,30 | 0,15 | 0,015 | 0,05 | 0,10 |
ВТ9 | То же | 5,8–7,0 | – | 2,8–3,8 | – | 1,0–2,0 | – | – | 0,20–0,35 | 0,25 | 0,15 | 0,015 | 0,05 | 0,10 |
ВТ14 | То же | 3,5–6,3 | 0,9–1,9 | 2,5–3,8 | – | 0,30 | – | – | 0,15 | 0,25 | 0,15 | 0,015 | 0,05 | 0,10 |
ВТ20 | То же | 5,5–7,0 | 0,8–2,5 | 0,5–2,0 | – | 1,5–2,5 | – | – | 0,15 | 0,25 | 0,15 | 0,015 | 0,05 | 0,10 |
ВТ22 | То же | 4,4–5,7 | 4,0–5,5 | 4,0–5,5 | – | 0,30 | – | 0,5–1,5 | 0,15 | 0,5–1,5 | 0,18 | 0,015 | 0,05 | 0,10 |
ПТ-7М | То же | 1,8–2,5 | – | – | – | 2,0–3,0 | – | – | 0,12 | 0,25 | 0,15 | 0,006 | 0,04 | 0,10 |
ПТ-3В | То же | 3,5–5,0 | 1,2–2,5 | – | – | 0,30 | – | – | 0,12 | 0,25 | 0,15 | 0,006 | 0,04 | 0,10 |
АТ3 | То же | 2,0–3,5 | – | – | – | – | – | 0,2–0,5 | 0,20–0,40 | 0,2–0,5 | 0,15 | 0,008 | 0,05 | 0,10 |
Примечание. Сумма прочих примесей во всех сплавах составляет 0,30 %, в сплаве ВТ1-00 — 0,10 %.
Источник
Механические и технологические свойства титана и его сплавов
Механические свойства титана сильно зависят от примесей атмосферных
газов — кислорода и азота, с которыми он образует сплавы типа твердых
растворов внедрения. Наиболее важное практическое значение имеет примесь
кислорода, по содержанию которого определяется сорт технического титана;
поведение кислорода в титановых сплавах можно сравнить с поведением
углерода в сталях.
Наиболее сильное упрочняющее действие на титан оказывают азот, затем
кислород и углерод. В пределах, допускаемых техническими условиями на
содержание этих примесей (<0,05%
N2,
<0,25% О2 и
<0,05% С), их действие можно считать аддитивным. Влияние 0,01% N2 эквивалентно
0,02% 02 или
0,03% С.
Механические свойства титана
Предел прочности,
МПа……………………………………………………………………………..
256
Относительное удлинение, %………………………………………………
…………………….. 72
Модуль
нормальной упругости,
ГПа…………………………………………………………..
106
С
увеличением крупности зерна предел текучести (σ0,2)
и временное сопротивление разрыву (σв)
снижаются, причем это проявляется тем заметнее, чем выше содержание
примесей кислорода и азота или их суммы. Характеристики пластичности
мало зависят от величины зерна.
Высокочистый титан не имеет четко выраженного физического предела
текучести, технический титан, содержащий 0,1-0,3% 02;
0,1-0,3% Fe,
с мелкозернистой структурой (<20 мкм) напротив имеет четко выраженный
физический предел текучести. При содержании в электролитическом металле,
%: 02 —
0,021; N2 —
0,004%; С — 0,015; Fe<0,005; Al<0,04
предел текучести — 105 МПа, временное сопротивление разрыву — 234 МПа,
относительное удлинение δ —
55%.
Упрочняющее действие примеси кислорода проявляется примерно до
температуры 350-400°С, а затем свойства нивелируются. Поэтому кислород
не может считаться полезной добавкой для повышения жаропрочности.
Титан
— нехладноломкий металл и это определяет перспективность его применения
при низких температурах. В табл. 1 приведены механические свойства
отожженного кованого титана с различной величиной кислородного
эквивалента (К) при комнатной и низких температурах, а также склонность
к хладноломкости Кχ = σв (°С)
/σв (20°С)
и чувствительность к надрезу Кн = σв (с
надрезом)/σв (без
надреза).
Табл.1.
Механические свойства
отожженного кованого титана при низких температурах (отжиг при
температуре
650°С, охлаждение на
воздухе)
К,% | Т, °С | Предел текучести σ0,2, | Временное сопротивление σb, | Относительное удлинение δ, % | Относительное сужение ψ, % | Кх | Кн |
0,05 | 20 | 250 | 320 | 41 | 82 | — | — |
-80 | 360 | 460 | 58 | 84 | 1,4 | — | |
-196 | 430 | 720 | 68 | 75 | 2,2 | — | |
0,10 | 20 | 290 | 380 | 36 | 75 | — | — |
-80 | 400 | 560 | 46 | 77 | 1,5 | — | |
-196 | 5303 | 830 | 48 | 66 | 2,2 | ||
0,18 | 20 | 400 | 530 | 27 | 59 | — | — |
-80 | 50 | 680 | 30 | 68 | 1,3 | — | |
-196 | 770 | 1030 | 46 | 62 | 1,9 | — | |
0,23 | 20 | 480(474) | 600(592) | 26(26) | 61 | — | (0,35) |
-80 | 600(628) | 720(766) | 18(25) | 53 | 1,2 | (1,19) | |
-196 | 820(956) | 970(1070) | 19 | 20 | 1,6 | (1,05) | |
(-268) | (1210) | (1310) | (7,9) | — | — | (0,68) | |
0,32 | 20 | 500 | 650 | 25 | 50 | — | — |
-80 | 770 | 840 | 20 | 54 | 1,3 | — | |
-196 | 1070 | 1120 | 23 | 62 | 1,7 | — | |
Значение в |
При
понижении температуры увеличиваются временное сопротивление разрыву и
относительное удлинение, причем тем больше, чем меньше содержание
примесей элементов внедрения, учитываемых кислородным эквивалентом. У
наиболее чистого от примесей титана при температуре -196°С временное
сопротивление разрыву вдвое выше, чем при 20°С, а относительное
удлинение — в полтора раза. При величине кислородного эквивалента
порядка 0,2 —
0,3% (технический титан) пластичность при температуре 20 и -196°С
примерно одинакова. До температуры -196°С титан не чувствителен к
надрезу. При температуре -268°С пластичность снижается, но остается
достаточно высокой для использования титана в качестве конструкционного
материала.
Неприятная особенность титана — ползучесть при комнатной температуре при
длительном воздействии напряжений около 50% от предела текучести, а для
титана повышенной чистоты — даже и при более низких напряжениях.
В
зависимости от температуры сопротивление ползучести изменяется
по-разному. В интервале температур 20-150°С наблюдается сильная
зависимость предела текучести от продолжительности действия напряжения.
При температуре 200-300°С эта зависимость почти исчезает, при дальнейшем
повышении температуры появляется снова. При температуре 200-300°С
отмечается пониженная скорость ползучести, особенно технического титана.
В этом случае уже небольшое понижение напряжения очень сильно сокращает
срок службы его. Например, технический титан σв= 600
МПа разрушается через 10 ч при напряжении 225 МПа. При снижении
напряжения до 210 МПа образцы после начальной вытяжки 10% не изменяют
длины в течение 500 часов.
Сопротивление усталости может колебаться в довольно широких пределах
(0,45-0,85 σв)
в зависимости от содержания примесей элементов внедрения, состояния
поверхности образцов, режима термической обработки и др. Технический
титан имеет более высокое сопротивление усталости, чем титан высокой
степени чистоты. Оказывает влияние и метод испытания, например, при
испытании методом растяжения-сжатия долговечность меньше, чем при методе
изгиба-вращения. При высоких частотах может влиять нагрев образца,
обусловленный низкой теплопроводностью титана.
Источник