Прочность стержня на растяжение

Прочность стержня на растяжение thumbnail

где N — продольная растягивающая сила, действующая на стержень;

F — площадь поперечного сечения стержня;

σ — нормальные напряжения, возникающие в рассматриваемом поперечном сечении стержня в ответ на действие растягивающей продольной силы;

— расчетное сопротивление материала стержня растяжению (для некоторых материалов расчетные сопротивления растяжению, сжатию, изгибу и т.п. могут различаться).

Визуально это может выглядеть так:

нормальные напряжения при растяжении стержня

Рисунок 525.1. Нормальные напряжения при растяжении прямолинейного стержня.

На рисунке 525.1.а) мы видим прямолинейный стержень длиной l, показанный серым цветом, к которому приложена растягивающая сила N. При этом точка приложения силы находится на нейтральной оси стержня, совпадающей с осью х, показанной пунктирной линией.

Для упрощения расчетов заменяем опору А соответствующей опорной реакцией А (рис.525.1.б). Исходя из условий статического равновесия:

∑х = А + N = 0 (149.5.2)

А = — N (525.2)

Это означает, что опорная реакция A равна по значению растягивающей силе N, но направлена в противоположную сторону.

Если взглянуть на эту ситуацию под некоторым углом, то она будет выглядеть так, как показано на рисунке 525.1.в). На этом рисунке мы видим, что нормальные напряжения — это реакция материала на действие растягивающей силы и направлены эти напряжения в сторону, противоположную действию сил. Другими словами нормальные напряжения препятствуют деформации растяжения, и направлены на то, чтобы вернуть материалу исходную форму. Иногда для упрощения восприятия нормальные напряжения, возникающие при растяжении, принято изображать направленными от сечения, как показано на рисунке 525.1.г), а сжимающие напряжения — направленными к сечению. С точки зрения физики такая замена вполне допустима, так как нормальные напряжения (внутренние силы) можно рассматривать как плоскую нагрузку, распределенную по всей площади сечения (внешнюю силу). Как правило растягивающие нормальные напряжения рассматриваются как положительные, а сжимающие — как отрицательные.

Сечение стержня, показанное на рисунке 525.1.в) розовым цветом, является перпендикулярным нейтральной оси стержня и называется поперечным сечением.

Как следует из формулы (525.1) и из приведенного рисунка, длина стержня l на значение нормальных напряжений никак не влияет. А вот параметры поперечного сечения стержня: ширина сечения b и высота сечения h, если сечение прямоугольное, очень даже влияют, так как от этих параметров зависит площадь F поперечного сечения.

Примечание: конечно же поперечное сечение стержня далеко не всегда имеет прямоугольную форму, как показано на рисунке 525.1.в). Поперечное сечение может быть и круглым, и овальным, и ромбическим, и вообще иметь любую сколь угодно сложную форму, тем не менее форма поперечного сечения никак на значение нормальных напряжений не влияет (во всяком случае такое допущение принимается в теории сопротивления материалов), а влияет только площадь сечения, определить которую тем сложнее, чем более сложной является форма поперечного сечения.

Проверить данные постулаты теории сопротивления материалов очень легко и просто. Достаточно взять нитку и попробовать ее разорвать (вариант а)). Затем разорвать нитки с с той же катушки, но б) более короткую и в) более длинную, чем в первом случае. Во всех трех случаях усилие, которое необходимо приложить для разрыва нитки, будет примерно одинаковым.

Но если одну из ниток сложить вдвое и попробовать разорвать, то усилие, необходимое для разрыва нитки, увеличится в 2 раза. Все потому, что условная площадь сечения стержня, работающего на растяжение, увеличится при складывании нитки в 2 раза.

Таким образом известная пословица: «где тонко, там и рвется» в переводе на язык теории сопротивления материалов будет звучать примерно так: «при действии растягивающих нормальных напряжений разрушение материала, обладающего постоянным сопротивлением растяжению по всей длине, будет происходить в сечении с минимальной площадью». Это особенно актуально для стержней с изменяющейся по длине площадью сечения.

С учетом различных факторов формула (525.1) может иметь другой вид:

Nγn/Fn = σ ≤ Rрγs (512.1.2)

где γn — коэффициент надежности по нагрузке (как правило больше единицы), Fn — минимальная площадь сечения (с учетом возможных ослаблений отверстиями, пазами и т.п.), γs — коэффициент условий работы (как правило меньше единицы).

Т.е. теория сопротивления материалов допускает, что нормальные напряжения в стержне могут быть равны расчетному сопротивлению материала на растяжение, умноженному на коэффициент условий работы.

Пример расчета стержня на растяжение

Дано: На стальной стержень (см. рис.525.1.а)) с расчетным сопротивлением Rp = 2250 кг/см2 действует продольная растягивающая сила N = 30 тонн. Коэффициент надежности по нагрузке γn = 1.05, коэффициент условий работы γs = 0.9. Собственным весом стержня в виду его незначительности по сравнению с действующей нагрузкой для упрощения расчетов можно пренебречь. Предполагается, что нагрузка прикладывается по всей площади поперечного сечения стержня, т.е. возникающие нормальные напряжения будут равномерно распределенными по всей площади сечения.

Требуется: Подобрать диаметр стержня.

Решение:

1. Определяем требуемую площадь сечения стержня, преобразовав формулу (525.1.2)

F = Nγn/Rpγs = 30000·1.05/(2250·0.9) = 15.56 см2.

2. Определяем диаметр стержня

d = √4F/п = √4·15.56/3.14 = 4.45 см

Как видим сам расчет занимает гораздо меньше времени, чем описание физических характеристик используемых данных и даже формулировка условия задачи.

Источник

Внутренние усилия при растяжении-сжатии.

Осевое (центральное) растяжение или сжатие прямого бруса вызывается внешними силами, вектор равнодействующей которых совпадает с осью бруса. При растяжении или сжатии в поперечных сечениях бруса возникают только продольные силы N. Продольная сила N в некотором сечении равна алгебраической сумме проекции на ось стержня всех внешних сил, действующих по одну сторону от рассматриваемого сечения. По правилу знаков продольной силы N принято считать, что от растягивающих внешних нагрузок возникают положительные продольные силы N, а от сжимающих — продольные силы N отрицательны (рис. 5).

Читайте также:  Цементобетон прочность на растяжение при изгибе

правило знаков для продольных сил

Чтобы выявить участки стержня или его сечения, где продольная сила имеет наибольшее значение, строят эпюру продольных сил, применяя метод сечений, подробно рассмотренный в статье:
Анализ внутренних силовых факторов в статистически определимых системах
Ещё настоятельно рекомендую взглянуть на статью:
Расчёт статистически определимого бруса
Если разберёте теорию в данной статье и задачи по ссылкам, то станете гуру в теме «Растяжение-сжатие» =)

Напряжения при растяжении-сжатии.

Определенная методом сечений продольная сила N, является равнодействующей внутренних усилий распределенных по поперечному сечению стержня (рис. 2, б). Исходя из определения напряжений, согласно выражению (1), можно записать для продольной силы:

где σ — нормальное напряжение в произвольной точке поперечного сечения стержня.


Чтобы определить нормальные напряжения в любой точке бруса необходимо знать закон их распределения по поперечному сечению бруса. Экспериментальные исследования показывают: если нанести на поверхность стержня ряд взаимно перпендикулярных линий, то после приложения внешней растягивающей нагрузки поперечные линии не искривляются и остаются параллельными друг другу (рис.6, а). Об этом явлении говорит гипотеза плоских сечений (гипотеза Бернулли): сечения, плоские до деформации, остаются плоскими и после деформации.

механизм деформации растяжения

Так как все продольные волокна стержня деформируются одинаково, то и напряжения в поперечном сечении одинаковы, а эпюра напряжений σ по высоте поперечного сечения стержня выглядит, как показано на рис.6, б. Видно, что напряжения равномерно распределены по поперечному сечению стержня, т.е. во всех точках сечения σ = const. Выражение для определения величины напряжения имеет вид:

Таким образом, нормальные напряжения, возникающие в поперечных сечениях растянутого или сжатого бруса, равны отношению продольной силы к площади его поперечного сечения. Нормальные напряжения принято считать положительными при растяжении и отрицательными при сжатии.

Деформации при растяжении-сжатии.

Рассмотрим деформации, возникающие при растяжении (сжатии) стержня (рис.6, а). Под действием силы F брус удлиняется на некоторую величину Δl называемую абсолютным удлинением, или абсолютной продольной деформацией, которая численно равна разности длины бруса после деформации l1 и его длины до деформации l

Отношение абсолютной продольной деформации бруса Δl к его первоначальной длине l называют относительным удлинением, или относительной продольной деформацией:

При растяжении продольная деформация положительна, а при сжатии – отрицательна. Для большинства конструкционных материалов на стадии упругой деформации выполняется закон Гука (4), устанавливающий линейную зависимость между напряжениями и деформациями:

где модуль продольной упругости Е, называемый еще модулем упругости первого рода является коэффициентом пропорциональности, между напряжениями и деформациями. Он характеризует жесткость материала при растяжении или сжатии (табл. 1).

Таблица 1

Модуль продольной упругости для различных материалов

модуль продольной упругости для различных материалов

Абсолютная поперечная деформация бруса равна разности размеров поперечного сечения после и до деформации:

Соответственно, относительную поперечную деформацию определяют по формуле:

При растяжении размеры поперечного сечения бруса уменьшаются, и ε’ имеет отрицательное значение. Опытом установлено, что в пределах действия закона Гука при растяжении бруса поперечная деформация прямо пропорциональна продольной. Отношение поперечной деформации ε’ к продольной деформации ε называется коэффициентом поперечной деформации, или коэффициентом Пуассона μ:

Экспериментально установлено, что на упругой стадии нагружения любого материала значение μ = const и для различных материалов значения коэффициента Пуассона находятся в пределах от 0 до 0,5 (табл. 2).

Таблица 2

Коэффициент Пуассона.

коэффициент пуассона для материалов

Абсолютное удлинение стержня Δl прямо пропорционально продольной силе N:

Данной формулой можно пользоваться для вычисления абсолютного удлинения участка стержня длиной l при условии, что в пределах этого участка значение продольной силы постоянно. В случае, когда продольная сила N изменяется в пределах участка стержня, Δl определяют интегрированием в пределах этого участка:

Произведение (Е·А) называют жесткостью сечения стержня при растяжении (сжатии).

Механические свойства материалов.

Основными механическими свойствами материалов при их деформации являются прочность, пластичность, хрупкость, упругость и твердость.

Прочность — способность материала сопротивляться воздействию внешних сил, не разрушаясь и без появления остаточных деформаций.

Пластичность – свойство материала выдерживать без разрушения большие остаточные деформации. Неисчезающие после снятия внешних нагрузок деформации называются пластическими.

Хрупкость – свойство материала разрушаться при очень малых остаточных деформациях (например, чугун, бетон, стекло).

Идеальная упругость – свойство материала (тела) полностью восстанавливать свою форму и размеры после устранения причин, вызвавших деформацию.

Твердость – свойство материала сопротивляться проникновению в него других тел.

Рассмотрим диаграмму растяжения стержня из малоуглеродистой стали. Пусть круглый стержень длинной l0 и начальным постоянным поперечным сечением площади A0 статически растягивается с обоих торцов силой F.

Читайте также:  Испытание материалов при растяжении диаграммы растяжений и напряжений

растягивание стержня до разрушения

Диаграмма сжатия стержня имеет вид (рис. 10, а)

диаграмма растяжения стали

где Δl = l — l0 абсолютное удлинение стержня; ε = Δl / l0 — относительное продольное удлинение стержня; σ = F / A0 — нормальное напряжение; E — модуль Юнга; σп — предел пропорциональности; σуп — предел упругости; σт — предел текучести; σв — предел прочности (временное сопротивление); εост — остаточная деформация после снятия внешних нагрузок. Для материалов, не имеющих ярко выраженную площадку текучести, вводят условный предел текучести σ0,2 — напряжение, при котором достигается 0,2% остаточной деформации. При достижении предела прочности в центре стержня возникает локальное утончение его диаметра («шейка»). Дальнейшее абсолютное удлинение стержня идет в зоне шейки ( зона местной текучести). При достижении напряжением предела текучести σт глянцевая поверхность стержня становится немного матовой – на его поверхности появляются микротрещины (линии Людерса-Чернова), направленные под углом 45° к оси стержня.

примеры разрушения материалов

Расчеты на прочность и жесткость при растяжении и сжатии.

Опасным сечением при растяжении и сжатии называется поперечное сечение бруса, в котором возникает максимальное нормальное напряжение. Допускаемые напряжения вычисляются по формуле:

где σпред — предельное напряжение (σпред = σт — для пластических материалов и σпред = σв — для хрупких материалов); [n] — коэффициент запаса прочности. Для пластических материалов [n] = [nт] = 1,2 … 2,5; для хрупких материалов [n] = [nв] = 2 … 5, а для древесины [n] = 8 ÷ 12.

Расчеты на прочность при растяжении и сжатии.

Целью расчета любой конструкции является использование полученных результатов для оценки пригодности этой конструкции к эксплуатации при минимальном расходе материала, что находит отражение в методах расчета на прочность и жесткость.

Условие прочности стержня при его растяжении (сжатии):

При проектном расчете определяется площадь опасного сечения стержня:

При определении допускаемой нагрузки рассчитывается допускаемая нормальная сила:

Расчет на жесткость при растяжении и сжатии.

Работоспособность стержня определяется его предельной деформацией [ l ]. Абсолютное удлинение стержня должно удовлетворять условию:

Часто дополнительно делают расчет на жесткость отдельных участков стержня.

Следующая важная статья теории:
Изгиб балки

Источник

Расчеты на прочность стержней и других элементов конструкций составляют одну из основных задач сопротивления материалов. Целью этих расчетов является обеспечение надежной и безопасной работы элементов конструкций и сооружений в течение всего периода эксплуатации при минимальном расходе материала.

Расчеты на прочность производятся на основе определенных методов, позволяющих сформулировать условия прочности элементов конструкций при различных воздействиях.

Основным методом расчета на прочность элементов строительных конструкций является метод предельных состояний. В этом методе значения всех нагрузок, действующих на конструкцию в течение всего периода ее эксплуатации, разделяются на нормативные и расчетные. Нормативные значения нагрузок характеризуют их действие на конструкцию при нормальных условиях ее эксплуатации. Это собственный вес конструкции, атмосферные воздействия снега, ветра, вес технологического оборудования, людей и т.п. Нормативные значения нагрузок приведены в строительных нормах и правилах (СНиП).

Расчетные значения нагрузок Рр определяются путем умножения нормативных значений Рн на коэффициенты надежности по нагрузке уу-:

С помощью коэффициентов производится учет возможного отклонения нагрузок от их нормативных значений в неблагоприятную для работы конструкции сторону. Значения коэффициентов надежности по нагрузке устанавливаются нормами проектирования с учетом различных факторов в пределах от 1,05 до 1,4.

В качестве основного параметра, характеризующего сопротивление материала конструкции различным воздействиям, принимается нормативное сопротивление RH, соответствующее значению предела текучести для пластичных материалов или временного сопротивления для хрупких материалов. Последние определяются с помощью механических испытаний.

При оценке прочности элементов конструкций величина нормативного сопротивления материала должна быть уменьшена за счет различных неблагоприятных факторов (например, ухудшения качества материала). Для этого вводится расчетное сопротивление, которое определяется по формуле

где ут — коэффициент надежности по материалу, изменяющийся в различных пределах в зависимости от физико-механических свойств материала. Например, для стали он изменяется в пределах от 1,025 до 1,15.

Кроме того, в условие прочности вводится коэффициент условий работы ус, с помощью которого учитываются конструктивные особенности и виды нагружения сооружений. Коэффициент ус может быть больше или меньше единицы.

Величины нормативных и расчетных сопротивлений и значения коэффициентов ур ут и ус приведены в соответствующих разделах строительных норм и правил (СНиП).

Условие прочности стержня при растяжении и сжатии, согласно методу предельных состояний, имеет следующий вид:

где N — продольная сила в стержне, вычисленная от действия расчетных нагрузок; F — площадь поперечного сечения стержня.

Условие (3.27) обычно ставится для сечения стержня, в котором действуют наибольшие нормальные напряжения.

С помощью условия прочности (3.27) можно выполнить подбор сечения стержня, т.е. определить размеры поперечного сечения или установить номер прокатного профиля по сортаменту, а также определить грузоподъемность стержня или стержневой системы. Подбор сечения стержня выполняется по формуле

При расчете на прочность элементов машиностроительных конструкций используется метод расчета по допускаемым напряжениям. В этом методе внутренние усилия и напряжения в элементах конструкции вычисляются от действия нормативных нагрузок, допускаемых при нормальной эксплуатации данной конструкции. Сопротивление материала различным воздействиям характеризуется допускаемым напряжением [а], которое определяется по формулам: для хрупких материалов

Читайте также:  Растяжение пальца руки безымянного пальца

для пластичных материалов

где пви пт — коэффициенты запаса прочности по отношению к временному сопротивлению ов и пределу текучести от.

Коэффициенты запаса принимаются с учетом целого ряда факторов, таких как физико-механические свойства материала, условия работы конструкции, характер действия нагрузок и т.п.

Величины допускаемых напряжений [о] для различных материалов приведены в соответствующих нормативных документах.

Условие прочности стержня при растяжении и сжатии по методу допускаемых напряжений имеет следующий вид:

С помощью условия (3.31) можно также решать задачи подбора сечения стержня и определения грузоподъемности.

Пример 3.9. Жесткая балка АВ нагружена сосредоточенной силой и поддерживается с помощью стержня CD (рис. 3.24). Подберем сечение стержня в виде двух стальных прокатных равнобоких уголков и в виде двух стальных тяг круглого сечения. В расчетах примем нормативное значение силы Рн = 100 кН, yf= 1,4, ус = 1,0, R = 210 МПа = 21 кН/см2.

Определим расчетное значение силы:

Определим с помощью уравнения равновесия расчетное значение продольной силы в стержне CD:

Вычислим значение требуемой по условию прочности площади поперечного сечения стержня:

В первом варианте принимаем по сортаменту сечение стержня в виде двух равнобоких уголков (рис. 3.25, а) _|1_56х56х5. Площадь поперечного сечения стержня равна F= 2 • 5,41 = 10,82 см2.

Во втором варианте определяем требуемый диаметр сечения каждого стержня (рис. 3.25, б):

Рис. 3.24

Рис. 3.25

Округлив в большую сторону, примем D = 2,6 см.

Определим для первого варианта сечения значения напряжений в поперечном сечении стержня:

Прочность стержня обеспечена с небольшим запасом.

Пример 3.10. Стержневая система состоит из жесткой балки АВ, имеющей шарнирно-неподвижную опору С, и двух стержней BD и АЕ, поддерживающих балку (рис. 3.26). К балке приложена сила Р, нормативное значение которой равно 300 кН. Определим усилия в стержнях и подберем их сечения в виде двух стальных прокатных равнобоких уголков. В расчетах примем соотношение между площадями поперечных сечений стержней F2/F] = 1,3, yf = 1,2, ус = 1,0, R = 210 МПа = 21 кН/см2.

Расчетное значение силы Р равно Рр = 300 • 1,2 = 360 кН.

Данная стержневая система является статически неопределимой, поскольку для определения четырех неизвестных величин /V,, N2, Rcи Нсможно составить только три независимых уравнения статики. Используем уравнение равновесия относительно усилий в стержнях /V, и N2. Учитывая, что г, = 3 sin 30° = 1,5 м, получим

Для получения дополнительного уравнения относительно N{ и N2 рассмотрим схему деформации системы. При повороте жесткой балки АВ на малый угол у (рис. 3.27) удлинения стержней составят:

Рис. 3.26

Рис. 3.27

Определим из подобия треугольников АА’С и В В’ С соотношение между величинами А/, и Д/2:

Выражаем величины удлинений стержней через действующие в них усилия и составляем дополнительное уравнение относительно N, и N2:

где /j = 3/cos 30° = 3,46 ми /2 = 1,5 м — длины стержней.

Подставляем соотношение между усилиями в уравнение равновесия и определяем величины усилий в стержнях:

Определяем требуемые по условию прочности площади поперечных сечений стержней:

Проверим выполнение принятого в начале расчета соотношения между площадями F{ и F2:

Поскольку принятое соотношение не выполняется, при подборе сечений стержней надо увеличить требуемую площадь поперечного сечения первого стержня и принять ее равной

Принимаем по сортаменту сечения стержней в виде двух стальных прокатных равнобоких уголков, определяем действующие в стержнях напряжения и проверяем их прочность. Стержень BD (2|_75х75х8)

Стержень (2L 110x110x7)

Прочность стержней обеспечена.

Пример 3.11. Для данной системы (рис. 3.28) определим величину допустимой силы Р из условий прочности стержней Л В и ВС. Определим усилия и напряжения в стержнях. В расчетах примем R = 220 МПа = 22 кН/см2 иус = 0,9.

Рис. 3.28

Составим уравнения равновесия:

Определим площади поперечных сечений стержней и выразим действующие в них напряжения через силу Р:

Напряжения в стержне АВ являются большими по величине. Определим из условия прочности этого стержня величину силы Р:

Примем Р = 245 кН и вычислим значения усилий и напряжений в стержнях:

Прочность стержней обеспечена.

Пример 3.12. Для латунного стержня ступенчато-постоянного сечения (рис. 3.29, а) определим величину силы .Риз условия прочности стержня. Определим напряжения в пределах каждого участка стержня. В расчетах используем метод допускаемых напряжений, приняв [о] = 80 МПа = 8 кН/см2.

Площади поперечных сечений стержня равны:

Строим эпюру продольных сил (рис. 3.29, б). Определяем нормальные напряжения в пределах участков стержня и выражаем их через силу Р.

Первый участок

Второй участок

Рис. 3.29

Эпюра о приведена на рис. 3.29, в. Ставим условие прочности по напряжениям на первом участке и определяем величину Р:

Примем Р = 40 кН и определим усилия и напряжения в стержне:

Источник