Прочность стекла на сжатие изгиб растяжение
Свойства стекла
Силикатные стекла отличаются необычным сочетанием свойств, прозрачностью, абсолютной водонепроницаемостью и универсальной химической стойкостью. Все это объясняется спецификой состава и строения стекла.
Плотность стекла зависит от химического состава и для обычных строительных стекол составляет 2400…2600 кг/м3. Плотность оконного стекла — 2550 кг/м’. Высокой плотностью отличаются стекла, содержащие оксид свинца («богемский хрусталь») — более 3000 кг/м3. Пористость и водопоглощение стекла практически равны 0 %.
Механические свойства. Стекло в строительных конструкциях чаще подвергается изгибу, растяжению и удару и реже сжатию, поэтому главными показателями, определяющими его механические свойства, следует считать прочность при растяжении и хрупкость.
Теоретическая прочность стекла при растяжении — (10…12)•103 МПа. Практически же эта величина ниже в 200…300 раз и составляет от 30 до 60 МПа. Это объясняется тем, что в стекле имеются ослабленные участки (микронеоднородности, дефекты поверхности, внутренние напряжения). Чем больше размер стеклоизделий, тем вероятнее наличие таких участков. Примером зависимости прочности стекла от размера испытуемого изделия служит стеклянное волокно. У стекловолокна диаметром 1…10 мкм прочность при растяжении 300…500 МПа, т. е. почти в 10 раз выше, чем у листового стекла. Сильно снижают прочность стекла на растяжение царапины; на этом основана резка стекла алмазом.
Прочность стекла при сжатии высока — 900… 1000 МПа, т. е. почти как у стали и чугуна. В диапазоне температур от — 50 до + 70° С прочность стекла практически не изменяется.
Стекло при нормальных температурах отличается тем, что у него отсутствуют пластические деформации. При нагружении оно подчиняется закону Гука вплоть до хрупкого разрушения. Модуль упругости стекла Е= (7…7,5) • 104 МПа.
Хрупкость — главный недостаток стекла. Основной показатель хрупкости — отношение модуля упругости к прочности при растяжении E/Rp. У стекла оно составляет 1300…1500 (у стали 400…460, каучука 0,4…0,6). Кроме того, однородность строения (гомогенность) стекла способствует беспрепятственному развитию трещин, что является необходимым условием для проявления хрупкости.
Твердость стекла, представляющего собой по химическому составу вещество, близкое к полевым шпатам, такая же, как у этих минералов, и в зависимости от химического состава находится в пределах 5…7 по шкале Мооса.
Оптические свойства стекла характеризуются светопропусканием прозрачностью), светопреломлением, отражением, рассеиванием и др. Обычные силикатные стекла, кроме специальных (см. ниже), пропускают всю видимую часть спектра (до 88…92 %) и практически не пропускает ультрафиолетовые и инфракрасные лучи. Показатель преломления строительного стекла (п = 1,50…1,52) определяет силу отраженного света и светопропускание стекла при разных углах падения света. При изменении угла падения света с 0 до 75° светопропускание стекла уменьшается с 90 до 50 %.
Теплопроводность различных видов стекла мало зависит от их состава и составляет 0,6…0,8 Вт/(м•К), что почти в 10 раз ниже, чем у аналогичных кристаллических минералов. Например, теплопроводность кристалла кварца — 7,2 Вт/(м•К).
Коэффициент линейного температурного расширения (КЛТР) стекла относительно невелик (для обычного стекла 9•10-6 К-1). Но из-за низкой теплопроводности и высокого модуля упругости напряжения, развивающиеся в стекле при резком одностороннем нагреве (или охлаждении), могут достигать значений, приводящих к разрушению стекла. Это объясняет относительно малую термостойкость (способность выдерживать резкие перепады температур) обычного стекла. Она составляет 70…90° С.
Звукоизолирующая способность стекла довольно высока. Стекло толщиной 1 см по звукоизоляции приблизительно соответствует кирпичной стене в полкирпича — 12 см.
Химическая стойкость силикатного стекла — одно из самых уникальных его свойств. Стекло хорошо противостоит действию воды, щелочей и кислот (за исключением плавиковой и фосфорной). Объясняется это тем, что при действии воды и водных растворов из наружного слоя стекла вымываются ионы Na+ и Са++ и образуется химически стойкая пленка, обогащенная SiO2. Эта пленка защищает стекло от дальнейшего разрушения.
Источник
Область применения стекол определяется их свойствами. Так, для листовых строительных стекол важны прочность на сжатие и растяжение, термические свойства, химическая устойчивость, светопрозрачность. Ниже рассмотрены важнейшие свойства стекла, характеризующие его в твердом состоянии.
Плотность. Плотностью называется отношение массы тела к его объему. Определяется она по формуле p = m/V, где р — плотность; г/см3; m — масса, г; V — объем, см3.
Стекло имеет плотность от 2,2 до 7,5 г/см3. Она определяется химическим составом. В состав тяжелых стекол (флинтов) входит много свинца, в состав легких — окислы элементов с малой атомной массой — лития, бериллия, бора. Большинство промышленных строительных стекол (оконное, полированное, профильное) имеет плотность 2,5—2,7 г/см3 в частности оконное — стекло 2,55 г/см3. Плотность стекол в некоторой степени зависит и от температуры. Так, с повышением температуры плотность стекол уменьшается.
Прочность. Прочностью называется способность материала сопротивляться внутренним напряжениям, возникающим в результате действия внешних нагрузок. Прочность характеризуется пределом прочности. В зависимости от направления действия нагрузки определяют предел прочности при сжатии, растяжении, изгибе и т. д.
Предел прочности стекол при сжатии R (кгс/мм2, Па) измеряют величиной разрушающей силы F (кгс), действующей на поперечное сечение S (мм2) образца перпендикулярно действующей силе: R = F/S.
Предел прочности на сжатие для различных видов стекла колеблется от 50 до 200 кгс/мм2, например прочность оконного стекла 90—100 кгс/мм2. Для сравнения можно указать, что прочность на сжатие чугуна 60—120, стали 200 кгс/мм2.
На прочность стекла оказывает влияние его химический состав. Так, окислы СаО и B2O3 значительно повышают прочность, РbО и Al2O3 в меньшей степени, MgO, ZnO и Fe2O3 почти не изменяют ее.
Предел прочности при растяжении определяют по формуле R = P/S, где R — предел прочности при растяжении, кгс/мм2 (Па); Р — средняя величина разрушающего усилия, кгс; S —площадь шейки образца в момент разрыва, мм2.
Из механических свойств стекол прочность на растяжение является одним из важнейших. Объясняется это тем, что стекло работает на растяжение хуже, чем на сжатие. Обычно прочность стекла на растяжение составляет 3,5—10 кгс/мм2, т. е. в 15—20 раз меньше, чем на сжатие.
Прочность стекла на растяжение зависит от состояния поверхности стекла. Наличие на ней каких-либо повреждений (трещин, царапин) снижает прочность стекла в 4—5 раз. Поэтому для сохранения заданной прочности стекла необходимо оберегать его поверхность от повреждений, например покрывать кремний органическими пленками. Химический состав влияет на прочность стекла при растяжении примерно так же, как и на прочность при сжатии.
Твердость. Твердость — это способность материала оказывать сопротивление проникновению в него более твердого материала. От твердости зависит продолжительность всех видов механической обработки (в производстве полированного автомобильного и технического стекла).
К твердым сортам относят боросиликатные малощелочные стекла с содержанием B2O3 до 10—12%, твердость которых по шкале Мооса равна 7. Стекла с большим содержанием щелочных окислов имеют меньшую твердость. Наиболее мягкие — многосвинцовые силикатные стекла, твердость которых по шкале Мооса равна 5—6.
Хрупкость. Хрупкость стекол определяется способностью противостоять удару. Большая хрупкость стекол ограничивает их применение. В лабораторных условиях вместо хрупкости определяют микрохрупкость стекла, которая измеряется числом микротрещин, образовавшихся на поверхности стекла при вдавливании в него алмазной пирамидки.
На хрупкость, стекол влияют однородность, конфигурация и толщина изделий: чем меньше посторонних включений в стекле, чем более оно однородно, тем выше его хрупкость. Хрупкость стекол практически не зависит от состава. При увеличении в составе стекол B2O3,
SiO2, Al2O3, ZrO2, MgO хрупкость незначительно понижается.
Источник
ФИЗИЧЕСКИЕ СВОЙСТВА
Плотность — масса вещества в единице объема, кг/м3: d = М/V. Плотность стекла зависит от его химического состава. Среди силикатных стекол минимальную плотность имеет кварцевое стекло — 2200 кг/м3. Плотность боросиликатных стекол меньше плотности кварцевого стекла; плотность стекол, содержащих оксиды Рb, Вi, Та и др., достигает 7500 кг/м3. Плотность обычных натрий-кальций-силикатных стекол, в том числе оконных, колеблется в пределах 2500…2600 кг/м3. При повышении температуры от 20 до 1300°С плотность большинства стекол уменьшается на 6… 12%, т.е. в среднем на каждые 100°С плотность уменьшается на 15 кг/м3.
Упругость — свойство материалов восстанавливать форму и объем после прекращения действия деформирующих сил. Коэффициент пропорциональности между напряжениями и деформациями называется модулем упругости. Упругость стекол в зависимости от их химического состава изменяется в пределах 48·103…12·104 МПа. Упругость кварцевого стекла — 71,4 ГПа. Модуль упругости, как и некоторые другие свойства стекол, можно определить, пользуясь принципом аддитивности — суммированием значений свойств образующих компонентов (оксидов) пропорционально их содержанию:
р = a1X1 + a1X2 + a3X3…anXn ,
где р — искомое свойство;
а1…аn — содержание оксидов в стекле, %; Х1…Хn — удельный (парциальный) фактор некоторого свойства для соответствующего оксида в стекле.
Увеличивают упругость стекол СаО, В2О3, Аl2O3, МgO при введении вместо SiO2 (частично). Щелочные оксиды снижают модуль упругости, так как прочность связей Ме-O значительно ниже прочности связи Si-О.
Механическая прочность характеризует свойство материалов сопротивляться разрушению при воздействии внешних нагрузок. Мерой прочности является предел прочности — максимальное напряжение, вызывающее разрушение материала под действием статической нагрузки или удара. Различают пределы прочности при сжатии, растяжении, изгибе, кручении и т.д.
Предел прочности обычных отожженных стекол при сжатии составляет 500…2000 МПа (оконного стекла 900…1000 МПа).
Предел прочности при растяжении и изгибе. При поперечном изгибе в стекле со стороны действия силы возникают напряжения сжатия, а с противоположной — напряжения растяжения. Поэтому предел прочности стекла при изгибе измеряют пределом прочности при растяжении. Стекло работает на растяжение значительно хуже, чем на сжатие. Теоретическая прочность стекла, т.е. прочность связей в его структурной сетке, является высокой и составляет примерно 10 000 МПа. Однако фактическая прочность стекла при растяжении гораздо ниже и колеблется в пределах 35… 100 МПа. Таким образом, предел прочности при растяжении в 15…20 раз меньше, чем при сжатии.
Прочность закаленного стекла при прочих равных условиях в 3…4 раза больше прочности отожженного. Значительно повышает прочность стекол обработка их поверхности химическими реагентами с целью удаления дефектов поверхности (мельчайших трещин, царапин и т.д.).
Твердость стекла зависит от химического состава. Стекла имеют различную твердость в пределах 4000…10000 МПа или по шкале Мооса она составляет 6…7, что находится между твердостью апатита и кварца. Наиболее твердыми являются кварцевое и малощелочное боросиликатное стекло (до 10…12% В2O3). С увеличением содержания щелочных оксидов твердость стекол снижается. Наиболее мягкие многосвинцовые стекла.
Хрупкость. В области низких температур (ниже tg — температуры стеклования) стекло наряду с алмазом и кварцем относится к идеально хрупким материалом, т.е. способно разрушаться под действием механических напряжений без заметной пластической деформации. Поскольку хрупкость четче всего проявляется при ударе, ее характеризуют прочностью на удар, которую определяют работой удара, отнесенной к единице объема разрушаемого образца, называемой удельной ударной вязкостью. Прочность стекла на удар зависит от многих факторов. Введение В203 (до 12%) повышает прочность на удар почти вдвое, введение МgO, Fе2О3, увеличение содержания SiO2 — на 5…20%. Для силикатных стекол ударная вязкость составляет 1,5…2 кН/м, что на 2 порядка ниже, чем у металлов.
Поделитесь ссылкой в социальных сетях
Источник
Виды стекла
Кварцевое стекло
Кварцевое стекло получают плавлением кремнезёмистого сырья высокой чистоты. Кварцевое стекло состоит из диоксида кремния SiO2 и является самым термостойким стеклом: коэффициент его линейного расширения в пределах 0 — 1000 °С составляет всего 6х10-7. Поэтому раскаленное кварцевое стекло, опущенное в холодную воду, не растрескивается.
Температура размягчения кварцевого стекла, при которой достигается динамическая вязкость 107 Пуаз (10 Пахс) равна 1250 °С. При отсутствии значительных перепадов давления кварцевые изделия можно применять до этой температуры. Полное же плавление кварцевого стекла, когда из него можно изготавливать изделия, наступает при 1500-1600 °С.
Известно два сорта кварцевого стекла: прозрачный кварц и молочно-матовый. Мутность последнего вызвана обилием мельчайших пузырьков воздуха, которые при плавке стекла не могут быть удалены из-за высокой вязкости расплава. Изделия из мутного кварцевого стекла обладают почти такими же свойствами, как и изделия из прозрачного кварца, за исключением оптических свойств и большей газовой проницаемости.
Поверхность кварцевого стекла обладает незначительной адсорбционной способностью к различным газам и влаге, но имеет наибольшую газопроницаемость среди всех стекол при повышенной температуре. Например, через кварцевую трубку со стенками толщиной в 1 мм и поверхностью 100 см2 при 750 °С за один час проникает 0,1 см3 Н2, если перепад давлений составляет 1 атм (0,1 МПа).
Кварцевое стекло следует тщательно предохранять от всяких загрязнений, даже таких как жирные следы от рук. Перед нагреванием кварцевого стекла имеющиеся на нем непрозрачные пятна снимают при помощи разбавленной фтороводородной кислоты, а жировые — этанолом или ацетоном.
Кварцевое стекло устойчиво в среде всех кислот, кроме HF и Н3РO4. На него не действуют до 1200 °С С12 и НСl, до 250 °С сухой F2. Нейтральные водные растворы NaF и SiF4 разрушают кварцевое стекло при нагревании. Оно совершенно непригодно для работ с водными растворами и расплавами гидроксидов щелочных металлов.
Кварцевое стекло при высокой температуре сохраняет свои электроизоляционные свойства. Его удельное электрическое сопротивление при 1000 °С равно 106 Омхсм.
Обычное стекло
К обычным стеклам относятся известково-натриевое, известково-калиевое, известково-натриево-калиевое.
Известково-натриевое (содовое), или натрий-кальций-магний-силикатное, стекло применяют для выработки оконных стекол, стеклотары, столовой посуды.
Известково-калиевое (поташное), или калий-кальций-магний-силикатное, стекло обладает более высокой термостойкостью, повышенным блеском и прозрачностью; используется для выработки высококачественной посуды.
Известково-натриево-калиевое (содово-поташное), или натрий-калий-кальций-магний-силикатное, стекло имеет повышенную химическую стойкость, благодаря смешению окислов натрия и калия; наиболее распространено в производстве посуды.
Боросиликатное стекло
Стекла с высоким содержанием SiO2, низким – щелочного металла и значительным – оксида бора B2O3 называются боросиликатными. Борный ангидрид действует как флюс для кремнезема, так что содержание щелочного металла в шихте может быть резко уменьшено без чрезмерного повышения температуры расплавления. В 1915 фирма Корнинг гласс уоркс начала производить первые боросиликатные стекла под торговым названием Пирекс. Стекло марки Пирекс является боросиликатным стеклом с содержанием не менее 80% SiO2, 12-13% В2O3, 3-4% Na2О и 1-2% Аl2О3. Оно известно под разными названиями: Корнинг (США), Дюран 50, Йенское стекло G20 (Германия), Гизиль, Монекс (Англия), ТС (Россия), Совирель (Франция), Симакс (Чехия).
В зависимости от конкретного состава стойкость к термоудару таких стекол в 2–5 раз выше, чем у известковых или свинцовых; они обычно намного превосходят другие стекла по химической стойкости и имеют свойства, полезные для применения в электротехнике.
Температура размягчения стекла «пирекс» до динамической вязкости в 1011 пуаз (1010 Пас) составляет 580-590 °С. Тем не менее стекло пригодно для работ при температурах до 800 °С, но без избыточного давления. При использовании вакуума температуру изделий из стекла «пирекс» не следует поднимать выше 650 °С. В отличие от кварцевого стекло «пирекс» до 600 °С практически непроницаемо для Н2, Не, O2 и N2. Фтороводородная и нагретая фосфорная кислоты, так же как и водные растворы (даже 5%-ные) КОН и NaOH, а тем более их расплавы, разрушают стекло «пирекс».
Хрустальное стекло
Хрустальные стекла (хрусталь) — высокосортные стекла, обладающие особым блеском и способностью сильно преломлять свет. Различают свинцовосодержащие и бессвинцовые хрустальные стекла.
Свинцовосодержащие хрустальные стекла — свинцово-калиевые стекла, вырабатывают с добавлением окислов свинца, бора и цинка. Характеризуются повышенным весом, красивой игрой света, мелодичным звуком при ударе; применяют для производства высококачественной посуды и декоративных изделий. Наибольшее применение имеет хрусталь с содержанием от 18 до 24% окислов свинца и 14—16,5% окиси калия (легкий).
К бессвинцовым хрустальным стеклам относятся баритовое, лантановое и др.
Баритовое стекло содержит повышенное количество окиси бария. Обладает лучшим блеском, более высокой светопреломляемостью и удельным весом по сравнению с обычными стеклами, применяют как оптическое и специальное стекло.
Лантановое стекло содержит окись лантана La2О3 и лантаниды (соединения лантана с алюминием, медью и др.). La2О3 повышает светопреломление. Отличается высоким качеством; применяется как оптическое.
Свойства стекла
Плотность стекла зависит от его химического состава. Плотность — отношение массы стекла при данной температуре к его объему, зависит от состава стекла (чем больше содержание тяжелых металлов, тем стекло плотнее), от характера термической обработки и колеблется в пределах от 2 до 6 (г/см3). Плотность — постоянная величина, зная ее, можно судить о составе стекла. Наименьшей плотностью обладает кварцевое стекло — от 2 до 2,1 (г/см3), боросиликатное стекло имеет плотность 2,23 г/см3, наибольшей — оптические стекла с высоким содержанием окислов свинца — до 6 (г/см3). Плотность известково-натриевого стекла составляет около 2,5 г/см3, хрустального — 3 (г/см3) и выше. Табличным значением плотности стекла является диапазон от 2,4 до 2,8 г/см3.
Прочность. Прочностью называется способность материала сопротивляться внутренним напряжениям, возникающим в результате действия внешних нагрузок. Прочность характеризуется пределом прочности. Предел прочности на сжатие для различных видов стекла колеблется от 50 до 200 кгс/мм2. На прочность стекла оказывает влияние его химический состав. Так, окислы СаО и B2O3 значительно повышают прочность, РbО и Al2O3 в меньшей степени, MgO, ZnO и Fe2O3 почти не изменяют ее. Из механических свойств стекол прочность на растяжение является одним из важнейших. Объясняется это тем, что стекло работает на растяжение хуже, чем на сжатие. Обычно прочность стекла на растяжение составляет 3,5—10 кгс/мм2, т. е. в 15—20 раз меньше, чем на сжатие. Химический состав влияет на прочность стекла при растяжении примерно так же, как и на прочность при сжатии.
Твердость стекла, как и многие другие свойства, зависит от примесей. По шкале Мооса она составляет 6-7 ед, что находится между твёрдостью апатита и кварца. Твердость различных видов стекла зависит от его химического состава. Наибольшую твердость имеет стекло с повышенным содержанием кремнезема — кварцевое и боросиликатное. Увеличение содержания щелочных окислов и окислов свинца снижает твердость; наименьшей твердостью обладает свинцовый хрусталь.
Хрупкость — свойство стекла разрушаться под действием ударной нагрузки без пластической деформации. Сопротивление стекла удару зависит не только от его толщины, но и от формы изделия, наименее устойчивы к удару изделия плоской формы. Для повышения прочности к удару в состав стекла вводят окислы магния, алюминия и борный ангидрид. Неоднородность стекломассы, наличие дефектов (камней, кристаллизации и других) резко повышают хрупкость. Сопротивление стекла удару увеличивается при его отжиге. В области относительно низких температур (ниже температуры плавления) стекло разрушается от механического воздействия без заметной пластической деформации и, таким образом, относится к идеально хрупким материалам (наряду с алмазом и кварцем). Данное свойство может быть отражено удельной ударной вязкостью. Как и в предыдущих случаях, изменение химического состава позволяет регулировать и это свойство: например, введение брома повышает прочность на удар почти вдвое. Для силикатных стекол ударная вязкость составляет от 1,5 до 2 кН/м, что в 100 раз уступает железу. На хрупкость, стекол влияют однородность, конфигурация и толщина изделий: чем меньше посторонних включений в стекле, чем более оно однородно, тем выше его хрупкость. Хрупкость стекол практически не зависит от состава. При увеличении в составе стекол B2O3, SiO2, Al2O3, ZrO2, MgO хрупкость незначительно понижается.
Прозрачность – одно из важнейших оптических свойств стекла. Определяется отношением количества прошедших через стекло лучей ко всему световому потоку. Зависит от состава стекла, обработки его поверхности, толщины и других показателей. При наличии примесей окиси железа прозрачность уменьшается.
Термостойкость стекла характеризуется его способностью выдерживать, не разрушаясь, резкие изменения температуры и является важным показателем качества стекла. Зависит от теплопроводности, коэффициента термического расширения и толщины стекла, формы и размеров изделия, обработки поверхности, состава стекла, дефектов. Термостойкость тем выше, чем выше теплопроводность и ниже коэффициент термического расширения и теплоемкость стекла. Толстостенное стекло менее термостойко, чем тонкое. Наиболее термостойко стекло с повышенным содержанием кремнезема, титана и бора. Низкую термостойкость имеет стекло с высоким содержанием окислов натрия, кальция и свинца. Хрусталь менее термостоек, чем обычное стекло. Термостойкость обыкновенного стекла колеблется в пределах 90—250 °С, а кварцевого: 800—1000°С. Отжиг в специальных печах повышает термостойкость в 2,5—3 раза.
Теплопроводность — это способность материала, в данном случае стекла, проводить тепло без перемещения вещества этого материала. У стекла коэффициент теплопроводности равен 1-1,15 Вт/мК.
Тепловое расширение — это увеличение линейных размеров тела при его нагревании. Коэффициент линейного теплового расширения стекол колеблется от 5·10-7 до 200·10-7. Самый низкий коэффициент линейного расширения имеет кварцевое стекло — 5,8·10-7. Величина коэффициента термического расширения стекла в значительной степени зависит от его химического состава. Наиболее сильно на термическое расширение стекол влияют щелочные окислы: чем больше содержание их в стекле, тем больше коэффициент термического расширения. Тугоплавкие окислы типа SiO2, Al2O3, MgO, а также B2O3, как правило, понижают коэффициент термического расширения.
Упругость — способность тела возвращаться к своей первоначальной форме после устранения усилий, вызвавших деформацию тела.
Упругость характеризуется модулем упругости. Модуль упругости — величина, равная отношению напряжения к вызванной им упругой относительной деформации. Различают модуль упругости при осевом растяжении — сжатии (модуль Юнга, или модуль нормальной упругости) и модуль сдвига, характеризующий сопротивление тела сдвигу или сколу и равный отношению касательного напряжения к углу сдвига.
В зависимости от химического состава модуль нормальной упругости стекол колеблется в пределах 4,8х104…8,3х104, модуль сдвига —2х104—4,5х104 МПа. У кварцевого стекла модуль упругости составляет 71,4х103 Мпа. Модули упругости и сдвига несколько повышаются при замене SiO2 на СаО, B2O3, Al2O3, MgO, ВаО, ZnO, PbO.
Свойства стекла производства Corning
Код стекла | 0080 | 7740 | 7800 | 7913 | 0211 | |
---|---|---|---|---|---|---|
Тип | Силикатное | Боро-силикатное | Боро-силикатное | 96% Силиката | Цинково-титановое | |
Цвет | Прозрачное | Прозрачное | Прозрачное | Прозрачное | Прозрачное | |
Термическое расширение (умножать на 10-7 см/см/°С) | 0-300 °С | 93,5 | 32,5 | 55 | 7,5 | 73,8 |
25 °С, до темп. застывания | 105 | 35 | 53 | 5,52 | — | |
Верхний предел рабочей темп. для отожженого стекла (для механических свойств) | Норм. эксплуатация, °С | 110 | 230 | 200 | 900 | — |
Экстрем. эксплуатация, °С | 460 | 490 | 460 | 1200 | — | |
Верхний предел рабочей темп. для закаленного стекла (для механических свойств) | Норм. Эксплуатация, °С | 220 | 260 | — | — | — |
Экстрем. эксплуатация, °С | 250 | 290 | — | — | — | |
6,4 мм толщиной, °С | 50 | 130 | — | — | — | |
12,7 мм толщиной, °С | 35 | 90 | — | — | — | |
Термостойкость, °С | 16 | 54 | 33 | 220 | — | |
Плотность, г/см3 | 2,47 | 2,23 | 2,34 | 2,18 | 2,57 | |
Коэффициент оптической чувствительности по напряжениям, (нм/см)/(кг/мм2) | 277 | 394 | 319 | — | 361 |
Источник