Прочность на растяжение нержавеющей стали

Прочность на растяжение нержавеющей стали thumbnail

По всему миру для производства нержавеющего крепежа и такелажных элементов массово используют аустенитные стали А2 и А4. Их высокая коррозионная стойкость обусловлена хромом и никелем. Что делает их наиболее подходящими для метизов, эксплуатация которых предусматривает агрессивные условия эксплуатации и перепады температур. Кроме того, сплавы А4 содержат молибденом (Mo до 3%), что предотвращает коррозионные процессы в морском климате и даже в средах, насыщенных кислотными и щелочными соединениям.

Легирующие элементы нержавеющих сталей А2 и А4 не только увеличивают долговечность крепежа, но и значительно влияют на физико-механические свойства крепёжных изделий из них. Класс прочности на них обозначается не так, как это принято для метизов из углеродистых сталей. Механические свойства и маркировка нержавеющих резьбовых элементов, таких как: шпильки, болты и винты, регламентированы международным стандартом ISO 3506-1:2009 и национальным стандартом ГОСТ Р ИСО 3506-1-2009, действующим на территории РФ:

В п.3.1. ГОСТ Р ИСО 3506-1-2009 указано:

«.Обозначение материала состоит из двух частей, разделенных дефисом. Первая часть обозначает марку стали, вторая часть — класс прочности <..>

Примеры обозначения:

1 — аустенитной нержавеющей стали, холоднодеформированной, с пределом прочности на разрыв не менее 700 Н/мм2 (700 МПа) — A2-70.»

В п.3.2. того же стандарта приводятся примеры обозначения:

Прочность на растяжение нержавеющей стали

где:

1. Знак изготовителя.

2. Марка стали.

3. Класс прочности.

Механические свойства болтов, винтов и шпилек из аустенитных сталей указаны в Таблице 2 ГОСТ-а.:

Класс стали

Марка

Класс прочности

Ряд диаметров резьбы

Предел прочности на разрыв Rm1,

Н/мм2, не менее

Условный предел текучести Rp0,21 , Н/мм2, не менее

Удлинение после разрыва A2, мм, не менее

Аустенитные

A1, A2, A3, A4, A5

50

<= M39

500

210

0,6 d

70

<= M243

700

450

0,4 d

80

<= M393

800

600

0,3 d

1) Напряжения растяжения рассчитывают по площади расчетного сечения болта (см. Приложение A)

2) Определяют в соответствии с 6.2.4 сравнением фактической длины винта до испытания и составленных после испытания частей. d – номинальный диаметр резьбы.

3) Для крепежных изделий с номинальным диаметром резьбы d более 24 мм механические свойства согласовываются   между   потребителем и изготовителем, а обозначения марки и класса прочности — в соответствии с данной таблицей.

В связи с нормированным значениями, принято считать, что механическая прочность изделий из аустенитных сплавов несколько меньше, чем у аналогичных элементов из углеродистых сталей. И в исключительных случаях этого может быть недостаточно для обеспечения надёжного долговечного крепления. Хотя в общем это не так.

Для соединений, испытывающих высокие нагрузки, используют специальные марки стали, прочность которых выходит за пределы указанных стандартов. К ним можно отнести крепёжные метизы BUMAX® и другие им аналогичные, которые предназначены для использования в экстремальных условиях эксплуатации. Они сделаны на основе стали марки А4, но при этом обладают высокой прочностью – класс: 8.8, 10.9 и выше вплоть до 16.9. Благодаря чему они востребованы для соединений элементов под большим давлением в агрессивной среде эксплуатации. Высокопрочный нержавеющий крепёж применяют в нефтегазовой и химической промышленности, где фланцевые и другие соединения испытывают высокие нагрузки от давления в путепроводах, а также при возведении металлических конструкций для эксплуатации в морской воде и атмосфере.

Компания BEST-Крепёж специализируется на поставках крепёжных и анкерных элементов из коррозионностойких аустенитных сталей марок по с 2003 года. Нашими специалистами накоплен солидный опыт в метизах промышленного и строительного направлений.  Мы поможем Вам подобрать и рассчитать крепёжные изделия, даже для самых экстремальных условий эксплуатации, с учётом всех требований Вашего проекта.

Источник

Марка 304 AISI является наиболее универсальной и наиболее широко используемой из всех марок нержавеющих сталей. Её химический состав, механические свойства, свариваемость и сопротивление коррозии/окислению обеспечивает лучший выбор в большинстве Приложений за относительно низкую цену. Эта сталь также имеет превосходные низко-температурные свойства. Если межкристаллическая коррозия происходит в зоне высоких температур, так же рекомендуется ее применение.

Читайте также:  Какие бывают растяжения ноги

Российский аналог 304 AISI по ГОСТ – 08Х18Н10, 304 L AISI – 03Х18Н11.

Область применения

304 AISI используется во всех индустриальных, коммерческих и внутренних областях из-за ее хорошей антикоррозийной и температурной устойчивости. Вот некоторые ее применения:

  • Резервуары и контейнеры для большого разнообразия жидкостей и сухих веществ;
  • Промышленное оборудование в горнодобывающей, химической, криогенной, пищевой, молочной и фармацевтических отраслях промышленности.

Дифференциация марки 304 AISI

При производстве стали могут быть заданы следующие особые свойства, что предопределяет ее применение или дальнейшую обработку:

  • Улучшенная свариваемость;
  • Глубокая вытяжка, Ротационная вытяжка;
  • Формовка растяжением;
  • Повышенная прочность, Нагартовка;
  • Жаростойкость C, Ti (углерод, титан);
  • Механическая обработка.

Химический Состав (ASTM A240)

C

Mn

P

S

Si

Cr

Ni

304 AISI

0.08 max

2.0

0.045

0.030

1.0

18.0 до 20.0

8.0 до 10.50

304L AISI

0.03 max

max

max

max

max

18.0 до 20.0

8.0 — 12.0

Типичные свойства в отожженном состоянии

Свойства, указанные в этой публикации типичны для производства одного из заводов и не должны быть расценены как гарантируемые минимальные значения для целой спецификации.

Механические свойства при комнатной температуре

304 AISI

304L AISI

Типичн

Min

Типичн

Min

Rp m
Предел прочности (при растяжении), N/mm2

600

515

590

485

Rp0,2
Предел Упругости, (0.2 %), (текучесть), N/mm2

310

205

310

170

A5
относительное удлинение, %

60

40

60

40

Твердость по Бринеллю — НВ

170

170

Усталостная прочность, N/mm2

240

240

При необходимости, прочность аустенитной стали можно повысить следующим образом:

  • добавлением в сталь азота (напр., 304LN AISI);
  • формоупрочнением стали на заводе (неоднократной дрессировочной прокаткой; нагартовкой; растяжением; давлением).

Азотированная нержавеющая сталь используется, в частности, в таких обьектах как крупные резервуары, колонны и транспортные контейнеры, в которых более высокая расчетная прочность (Rp0,2) стали позволяет уменьшить толщину стенки и добиться экономии в расходах на материалы.

Другими областями применения аустенитной стали, подвергнутой формоупрочнению, служат, например, различные формовочные плиты для производства транспортных средств, сварные трубы, обручи для кегов, цепи, планки и опорные элементы.

Свойства при высоких температурах

Все эти значения относятся к 304 AISI только. Для 304L AISI значения не приводятся, потому что её прочность заметно уменьшается выше 425°C.

Предел прочности при повышенных температурах

Температура, °C

600

700

800

900

1000

Rp m
Предел прочности (при растяжении), N/mm2

380

270

170

90

50

Минимальные величины предела упругости при высокой температуре (деформация в 1% за 10 000 часов)

Температура, °C

550

600

650

700

800

Rp1,0
1.0% пластичная деформация (текучесть), N/mm2

120

80

50

30

10

Максимум, рекомендованных температур обслуживания (температура образования окалины)

Непрерывное воздействие 925°C
прерывистые воздействия 850°C

Свойства в низких температурах (304 AISI, 304L AISI)

Температура, °C

-78

-161

-196

Rp m
Предел прочности (при растяжении), N/mm2

1100/950

1450/1200

1600/1350

Rp0,2
Предел Упругости, (0.2 %), (условный предел текучести), N/mm2

300/180

380/220

400/220

Ударная вязкость, J

180/175

160/160

155/150

Сопротивление коррозии

Кислотные среды

Примеры приводятся для некоторых кислот и их растворов (наиболее общие значения):

Температура, °C

20

80

Концентрация, % к массе

10

20

40

60

80

100

10

20

40

60

80

100

Серная кислота

2

2

2

2

1

2

2

2

2

2

2

Азотная кислота

2

1

2

Фосфорная кислота

2

1

2

Муравьиная кислота

1

2

2

1

Код:
0 = высокая степень защиты — Скорость коррозии менее чем 100 mm/год;
1 = частичная защита — Скорость коррозии от 100m до 1000 mm/год;
2 = non resistant — Скорость коррозии более чем 1000 mm/год.

Атмосферные воздействия

Сравнение 304-й марки с другими металлами в различных окружающих средах (Скорость коррозии расчитана при 10-летнем подвергании).

Окружающая среда

Скорость коррозии (mm/год)

AISI 304

Aлюминий-3S

углеродистая сталь

Сельская

0.0025

0.025

5.8

Морская

0.0076

0.432

34.0

Индустриальная Морская

0.0076

0.686

46.2

Тепловая Обработка

Отжиг

Высокая температура от 1010°C до 1120°C и быстрый отпуск (охлаждение) в воздухе или воде. Лучшее сопротивление коррозии получено, когда отжиг при 1070°C, и быстром охлаждении.

Читайте также:  Мазь при растяжении связок руки

Отпуск (снятие напряжения)

Для 304L AISI — 450-600°C в течение одного часа с небольшим риском сенситизации. Должна использоваться более низкая температура отпуска — 400°C максимум.

Горячая обработка (интервал ковки)

Начальная температура: 1150 — 1260°C.
Конечная температура: 900 — 925°C.

Любая горячая обработка должна сопровождаться отжигом.

Обратите внимание: Время для достижения однородности прогрева дольше для нержавеющих сталей чем для углеродистых сталей — приблизительно в 12 раз.

Холодная Обработка

304 AISI , 304L AISI, являясь чрезвычайно прочной, упругой и пластичной, с легкостью находит множество применений. Типичные действия включают изгиб, формовку растяжением, глубокую и ротационную вытяжку.

В процессе формовки можно использовать те же машины и чаще всего даже те же инструменты как и для углеродистой стали, но здесь требуется на 50-100% больше силы.

Это связано с высокой степенью упрочнения при формовке аустенитной стали, что в некоторых случаях является отрицательным фактором.

О гибке

Приближенные пределы изгиба получают, когда s=толщина листа и r=радиус изгиба:

  • s < 3мм, мин. r = 0;
  • 3мм < s < 6мм, мин. r = 0,5·s, угол гибки 180°;
  • 6мм < s < 12мм, мин. r = 0.5·s, угол гибки 90°.

Обратное распрямление больше, чем у углеродистой стали, ввиду чего «перегибать следует соответственно больше». При загибе обычного прямого угла на 90° получаем следующие показатели по выправлению:

r = s обратное распрямление ок. 2°;
r = 6·s обратное распрямление ок. 4°;
r = 20·s обратное распрямление ок. 15°.

Для аустенитной нержавеющей стали минимальный рекомендуемый радиус гибки составляет r = 2·s.

Следует заметить, что для ферритной нержавеющей стали рекомендуют следующие минимумы:
s < 6 мм, — мин r = s, 180°;
6 < s < 12мм, — мин r = s, 90°.

Глубокая вытяжка и ротационная вытяжка

При чистой глубокой вытяжке на прессе заготовку не подвергают «торможению», а материалу дают свободно течь в инструментах. На практике такое имеет место очень редко. Например, при вытяжке хозяйственной посуды всегда присутствует также элемент формовки с растяжением.

Материал, подвергаемый глубокой вытяжке, должен быть максимально стабильным, т.е. он должен обладать низкой степенью упрочнения при формовке, а показатель Md 30(N) должен явно быть «на минусе». В отношении нержавеющих столовых приборов применяются обычно те же самые т.н. суб-анализы нержавеющего проката, как и при изготовлений кастрюль методом глубокой вытяжки.

Ротационная вытяжка на токарно-давильном станке, как говорит уже само название, представляет собой процесс формовки с точением. Типичными объектами применения являются ведра и аналогичные конусные изделия симметричного вращения, которые обычно не подвергают полировке.

О формовке с растяжением

В процессе формовки с растяжением заготовку подвергают «торможению» во время вытяжки. Стенки становятся более тонкими и во избежание разрывов для стали желательно предусмотреть свойства повышенного упрочнения при формовке. При выполнении более сложных операций ( например, из заготовки посудомоечного стола вытягивают одновременно по две чаши), показатель Md 30(N) стали должен явно быть «на плюсе».

Сварка

Свариваемость – очень хорошая, легко свариваемая.

Сварочный
процесс

Толщина
без сварного шва

С учетом сварного шва

Защитная среда

Толщина

Покрытие

Пруток

Проволока

Resistance -spot
(точечная) -seam (шов)

<2mm

TIG

<1,5mm

>0.5mm

ER 308 l(Si) W.Nr 1.4370
ER 347 (Si)

ER 308 l(Si) W.Nr 1.4370
ER 347 (Si)

Аргон
Аргон + 5% Водород
Аргон + Гелий

PLASMA

<1.5mm

>0.5mm

ER 310

ER 308 l(Si) W.Nr 1.4370
ER 347 (Si)

Аргон
Аргон + 5% Водород
Аргон + Гелий

MIG

>0.8mm

ER 308 l(Si) W.Nr 1.4370
ER 347 (Si)

Аргон + 2% CO2
Аргон + 2 % O2
Аргон + 3% CO2 + 1% H2
Аргон + Гелий

S.A.W.

>2mm

ER 308 L
ER 347

Electrode

Repairs

E 308
E 308L
E 347

Laser

<5mm

Гелий.
Иногда Аргон, Азот.

Обычно тепловая обработка после сварки не требуется. Однако, где существует риск межкристаллитной коррози, производят дополнительное отожжение при 1050-1150°С. Для марок 304L AISI (низкий углерод) или 321 AISI (стабилизация Ti) это условие – предподчительно (нагрев шва до 1150°С с последующим быстрым охлаждением). Сварочный шов механическим и химическим способом должен быть очищен от окалины и затем пассивирован травильной пастой.

Читайте также:  Растяжение голеностоп отек две недели

Источник

Особые свойства нержавеющей стали обуславливают ее активное использование в самых разнообразных отраслях промышленности и в быту. К достоинствам нержавейки относят повышенную прочность, небольшой удельный вес и теплопроводность, отличное сопротивление коррозии и качественную свариваемость.

1 Категории нержавейки – сталь бывает разной

Нержавеющие сплавы принято подразделять на пять типов в зависимости от микроструктуры сплавов. С этой точки зрения они могут быть:

  • ферритными;
  • аустенитными;
  • дуплексными;
  • жаропрочными;
  • мартенситными.

Самыми распространенными являются аустенитные виды нержавейки. Они практически не окисляются в процессе эксплуатации, имеют высокие технические и эксплуатационные характеристики (хорошая вязкость, пластичность, устойчивость к химическим воздействиям, небольшой удельный вес и коэффициент текучести). Подобные свойства обеспечиваются введением в состав аустенитной нержавейки 10–20 % никеля и примерно 23 % хрома.

Стали с ферритной микроструктурой демонстрируют уникальные характеристики при эксплуатации в агрессивных средах.

Категории нержавейки – сталь бывает разной

Стали с ферритной микроструктурой

Они имеют высокую стойкость к коррозии при повышенных температурах, малый предел текучести и особые магнитные свойства (магнитную проницаемость). В таких сплавах хрома содержится не более 17 %. Магнитные разновидности нержавейки редко используются для производства бытовых изделий. Чаще они применяются в промышленности для изготовления разнообразных конструкций.

Реже применяются мартенситные стали. Их проницаемость (магнитная) ниже, а ключевые технические достоинства следующие:

  • небольшой коэффициент пластичности;
  • хорошее удельное сопротивление на разрыв и свариваемость;
  • высокая прочность и твердость;
  • малый вес.

Жаропрочные и дуплексные сплавы используются для особых целей. Их магнитные характеристики (проницаемость) минимальные, зато они демонстрируют уникальную прочность и сопротивление коррозии при эксплуатации в высокотемпературных и хлорсодержащих средах. Поэтому подобные стали активно применяются для выпуска изделий химической и пищевой промышленности.

2 Технические показатели – самые главные цифры

Удельный вес аустенитных и жаропрочных сплавов равняется 7,95 гр/см, ферритных и других – 7,7, коэффициент электросопротивления – 0,72–0,9 для всех сталей, кроме ферритных. Электрическое сопротивление последних составляет 0,6. Коэффициент твердости нержавеющих сплавов следующий:

  • По шкале Роквелла – 70–88 единиц для жаростойких и аустенитных сталей, 75–88 для ферритных.
  • По шкале Бринелля – 120–190 (аустенитные), 135–180 (магнитные) и 145–210 (жаропрочные).

Предел прочности нержавеющих сплавов с аустенитной микроструктурой варьируется от 500 до 690 Н/мм2. Все зависит от конкретной марки стали. А вот прочностной предел ферритных сплавов обычно выше – до 900 Н/мм2. Другие характеристики рассматриваемых сталей:

  • предел упругости – 195–400 Н/мм2;
  • вязкость (ударная) – 120–160Дж/см2 (для ферритных композиций – не более 50);
  • температура появления окалины – 840–1120 °С;
  • магнитная проницаемость ферритных сплавов – 1,008 единиц (при комнатной температуре).

Технические показатели – самые главные цифры

Нержавеющий сплав

Предел текучести большинства марок нержавеющих сталей за минуту равняется около 205 МПа. Эта величина справедлива для всех категорий сплавов за исключением ферритных. Показатель текучести последних обычно ниже на 10–20 МПа.

Еще одна важная характеристика рассматриваемых коррозионностойких сплавов – их теплопроводность. Под ней понимают возможность материала пропускать через себя тепловую энергию (передавать ее). Теплопроводность нержавейки равняется 16–20 Вт/м*К. Это очень малый показатель. Для сравнения скажем, что теплопроводность алюминия находится на уровне 200, а меди – 400 Вт/м*К.

3 Свариваемость нержавейки – прочные соединения

Сварка рассматриваемых сплавов производится по таким методикам:

  • аргонодуговая с помощью TIG-электродов (содержат вольфрам);
  • ручная дуговая;
  • полуавтоматическая.

Свариваемость нержавейки – прочные соединения

Сварка нержавеющего сплава

Лучше всего свариваются аустенитные марки нержавеющей стали. А вот сварные соединения ферритных сталей получаются более хрупкими. Это стоит учитывать при обработке таких сплавов. Важный момент! Сварка всех видов нержавейки должна осуществляться после предварительного подогрева стальных изделий. Обычно достаточно нагреть их до 150–160°.

Ручная дуговая сварка нержавеющих сплавов выполняется двумя типами электродов: с рутиловым покрытием; с основным (карбонаты магния и кальция) покрытием. Во втором случае операция ведется исключительно на обратной полярности и постоянном токе. Полуавтоматический процесс рекомендован для сварки больших по толщине листов нержавейки. А вот аргонодуговая сварка обычно применяется для соединения тонких коррозионностойких изделий.

Рейтинг:

Загрузка…

0 Комментариев

Источник