Прочность конструкции при растяжении

Прочность конструкции при растяжении thumbnail

Расчет на прочность при растяжении
Прочность конструкции при растяжении
Прочность конструкции при растяжении

2.4. РАСЧЕТЫ НА ПРОЧНОСТЬ ПРИ РАСТЯЖЕНИИ Основной задачей расчета конструкции на растяжение является обеспечение ее прочности в условиях эксплуатации. Условие прочности – оценка прочности элемента конструкции, сводящаяся к сравнению расчетных напряжений с допускаемыми: σ≤рσ[р ]; σ с ≤[ с],σ (2.9) где σр и σс – наибольшие расчетные растягивающие и сжимающие напряжения; [σр] и [σс] – допускаемые напряжения при растяжении и сжатии. Допускаемое напряжение – наибольшее напряжение, которое можно допустить в элементе конструкции при условии его безопасной, долговечной и надежной работы: Здесь σпред – предельное напряжение (состояние), при котором конструкция перестает удовлетворять эксплуатационным требованиям; им мо- гут быть предел текучести, предел прочности, предел выносливости, пре- дел ползучести и др. Для конструкций из пластичных материалов при определении допускаемых напряжений используют предел текучести σт (рис. 2.4, а). Это связано с тем, что в случае его превышения деформации резко возрастают при незначительном увеличении нагрузки и конструкция перестает удовлетворять условиям эксплуатации. Допускаемое напряжение в этом случае определяют как Для хрупких материалов (чугун, бетон, керамика) где σвр и σвс – пределы прочности при растяжении и сжатии (рис. 2.4, б). Здесь [n] – нормативный коэффициент запаса прочности. В зависимости от той предельной характеристики, с которой сравнивают расчетное напряжение σ, различают [nт] – нормативный коэффициент запаса прочности по отношению к пределу текучести σт и [nв] – нормативный коэффициент запаса прочности по отношению к пределу прочности σв. Запас прочности – отношение предельно допустимой теоретической нагрузки к той нагрузке, при которой возможна безопасная работа конструкции с учетом случайных перегрузок, непредвиденных дефектов и недостоверности исходных данных для теоретических расчетов. Нормативные коэффициенты запаса прочности зависят: − от класса конструкции (капитальная, временная), − намечаемого срока эксплуатации, − условий эксплуатации (радиация, коррозия, загнивание), − вида нагружения (статическое, циклическое, ударные нагрузки) − неточности задания величины внешних нагрузок, − неточности расчетных схем и приближенности методов расчета − и других факторов. Нормативный коэффициент запаса прочности не может быть единым на все случаи жизни. В каждой отрасли машиностроения сложились свои подходы, методы проектирования и приемы технологии. В изделиях общего машиностроения принимают [nт] = 1,3 – 2,2; [nв] = 3 – 5. Вероятность выхода из строя приближенно можно оценить с помощью коэффициента запаса в условии прочности: n = 1 соответствует вероятности невыхода из строя 50 %; n = 1,2 соответствует вероятности невыхода из строя 90 %; n = 1,5 соответствует вероятности невыхода из строя 99 %; n = 2 соответствует вероятности невыхода из строя 99,9 %. Для неответственных деталей n = 2 много. Для ответственных – мало. Так для каната подъемного лифта это означает на 1000 подъемов одно падение. При расчете конструкций на прочность встречаются три вида задач, которые вытекают из условия прочности а) поверочный расчет (проверка прочности). Известны усилие N и площадь A. Вычисляют σ = N/A и, сравнивая его с предельным σт или σв (для пластичного и хрупкого материалов соответственно), находят фактический коэффициент запаса прочности который затем сопоставляют с нормативным [n]; б) проектный расчет (подбор сечения). Известны внутреннее усилие N и допускаемое напряжение [σ]. Определяют требуемую площадь поперечного сечения стержня в) определение грузоподъемности (несущей способности). Известны площадь А и допускаемое напряжение [σ]. Вычисляют внутреннее усилие N≤N[ ] = ⋅[σ]A, (2.15) а затем в соответствие со схемой нагружения – величину внешней нагрузки F ≤ [F].

Источник

Сопромат

Эта статья будет посвящена расчетам на прочность, которые выполняются в сопромате и не только. Расчеты на прочность бывают двух видов: проверочные и проектировочные (проектные).

Проверочные расчеты на прочность – это такие расчеты, в ходе которых проверятся прочность элемента заданной формы и размеров, под некоторой нагрузкой.

В ходе проектировочных расчетов на прочность определяются какие-то размеры элемента из условия прочности. Причем, очевидно, что для разных видов деформаций эти условия прочности различны. Также к проектным расчетам можно отнести расчеты на грузоподъемность, когда вычисляется максимальная нагрузка, которую может выдерживать конструкция, не разрушаясь.  Рассмотрим более подробно, как проводится прочностные расчеты для разных случаев.

Расчеты на прочность при растяжении (сжатии)

Начнем, пожалуй, с самого простого вида деформации растяжения (сжатия). Напряжение при центральном растяжении (сжатии) можно получить, разделив продольную силу на площадь поперечного сечения, а условие прочности выглядит вот так:

uslovie-prochnosti-pri-rastyazhenii-szhatii

где сигма в квадратных скобках – это допустимое напряжение. Которое можно получить, разделив предельное напряжения на коэффициент запаса прочности:

dopustimoe-napryazhenie

Причем, за предельное напряжение для разных материалов принимают разное значение. Для пластичных материалов, например, для малоуглеродистой стали (Ст2, Ст3) принимают предел текучести, а для хрупких (бетон, чугун) берут в качестве предельного напряжения – предел прочности (временное сопротивление). Эти характеристики получают при испытании образцов на растяжение или сжатие на специальных машинах, которые фиксируют характеристики в виде диаграммы.

dlya-plastichnyih-i-dlya-hrupkih

Коэффициент запаса прочности выбирается конструктором исходя из своего личного опыта, назначения проектируемой детали и сферы применения. Обычно, он варьируется от 2 до 6.

В случае если необходимо подобрать размеры сечения, площадь выражают таким образом:

ploshhad

Таким образом, минимальная площадь поперечного сечения при центральном растяжении (сжатии) будет равна отношению продольно силы к допустимому напряжению.

Расчеты на прочность при кручении

При кручении расчеты на прочность в принципе схожи с теми, что проводятся при растяжении. Только здесь вместо нормальных напряжений появляются касательные напряжения.

Читайте также:  Шерсть от растяжения связок и

На кручение работают, чаще всего, детали, которые называются валами. Их назначение заключается в передаче крутящего момента от одного элемента к другому. При этом вал по всей длине имеет круглое поперечное сечение. Условие прочности для круглого поперечного сечения можно записать  так:

uslovie-prochnosti-pri-kruchnii

где Ip — полярный момент сопротивления, ρ — радиус круга. Причем по этой формуле можно определить касательное напряжение в любой точке сечения, варьируя значение ρ. Касательные напряжения распределены неравномерно по сечению, их максимальное значение находится в наиболее удаленных точках сечения:

raspredelenie-kasatelnyih-napryazheniy

Условие прочности, можно записать несколько проще, используя такую геометрическую характеристику как момент сопротивления:

uslovie-prochnosti

То бишь максимальные касательные напряжения равны отношению крутящего момента к полярному моменту сопротивления и должны быть меньше либо равны допустимому напряжению. Геометрические характеристики для круга, упомянутые выше можно найти вот так:

geometricheskie-xarakteristiki

Иногда в задачах встречаются и прямоугольные сечения, для которых момент сопротивления определяется несколько сложнее, но об этом я расскажу в другой статье.

Расчеты на прочность при изгибе

Сопромат

Источник

Внутренние усилия при растяжении-сжатии.

Осевое (центральное) растяжение или сжатие прямого бруса вызывается внешними силами, вектор равнодействующей которых совпадает с осью бруса. При растяжении или сжатии в поперечных сечениях бруса возникают только продольные силы N. Продольная сила N в некотором сечении равна алгебраической сумме проекции на ось стержня всех внешних сил, действующих по одну сторону от рассматриваемого сечения. По правилу знаков продольной силы N принято считать, что от растягивающих внешних нагрузок возникают положительные продольные силы N, а от сжимающих — продольные силы N отрицательны (рис. 5).

правило знаков для продольных сил

Чтобы выявить участки стержня или его сечения, где продольная сила имеет наибольшее значение, строят эпюру продольных сил, применяя метод сечений, подробно рассмотренный в статье:
Анализ внутренних силовых факторов в статистически определимых системах
Ещё настоятельно рекомендую взглянуть на статью:
Расчёт статистически определимого бруса
Если разберёте теорию в данной статье и задачи по ссылкам, то станете гуру в теме «Растяжение-сжатие» =)

Напряжения при растяжении-сжатии.

Определенная методом сечений продольная сила N, является равнодействующей внутренних усилий распределенных по поперечному сечению стержня (рис. 2, б). Исходя из определения напряжений, согласно выражению (1), можно записать для продольной силы:

напряжения при растяжении-сжатии

где σ — нормальное напряжение в произвольной точке поперечного сечения стержня.


Чтобы определить нормальные напряжения в любой точке бруса необходимо знать закон их распределения по поперечному сечению бруса. Экспериментальные исследования показывают: если нанести на поверхность стержня ряд взаимно перпендикулярных линий, то после приложения внешней растягивающей нагрузки поперечные линии не искривляются и остаются параллельными друг другу (рис.6, а). Об этом явлении говорит гипотеза плоских сечений (гипотеза Бернулли): сечения, плоские до деформации, остаются плоскими и после деформации.

механизм деформации растяжения

Так как все продольные волокна стержня деформируются одинаково, то и напряжения в поперечном сечении одинаковы, а эпюра напряжений σ по высоте поперечного сечения стержня выглядит, как показано на рис.6, б. Видно, что напряжения равномерно распределены по поперечному сечению стержня, т.е. во всех точках сечения σ = const. Выражение для определения величины напряжения имеет вид:

формула напряжения

Таким образом, нормальные напряжения, возникающие в поперечных сечениях растянутого или сжатого бруса, равны отношению продольной силы к площади его поперечного сечения. Нормальные напряжения принято считать положительными при растяжении и отрицательными при сжатии.

Деформации при растяжении-сжатии.

Рассмотрим деформации, возникающие при растяжении (сжатии) стержня (рис.6, а). Под действием силы F брус удлиняется на некоторую величину Δl называемую абсолютным удлинением, или абсолютной продольной деформацией, которая численно равна разности длины бруса после деформации l1 и его длины до деформации l

абсолютное удлинение

Отношение абсолютной продольной деформации бруса Δl к его первоначальной длине l называют относительным удлинением, или относительной продольной деформацией:

относительное удлинение

При растяжении продольная деформация положительна, а при сжатии – отрицательна. Для большинства конструкционных материалов на стадии упругой деформации выполняется закон Гука (4), устанавливающий линейную зависимость между напряжениями и деформациями:

закон гука

где модуль продольной упругости Е, называемый еще модулем упругости первого рода является коэффициентом пропорциональности, между напряжениями и деформациями. Он характеризует жесткость материала при растяжении или сжатии (табл. 1).

Таблица 1

Модуль продольной упругости для различных материалов

модуль продольной упругости для различных материалов

Абсолютная поперечная деформация бруса равна разности размеров поперечного сечения после и до деформации:

абсолютная поперечная деформация бруса

Соответственно, относительную поперечную деформацию определяют по формуле:

относительная поперечная деформация

При растяжении размеры поперечного сечения бруса уменьшаются, и ε’ имеет отрицательное значение. Опытом установлено, что в пределах действия закона Гука при растяжении бруса поперечная деформация прямо пропорциональна продольной. Отношение поперечной деформации ε’ к продольной деформации ε называется коэффициентом поперечной деформации, или коэффициентом Пуассона μ:

коэффициент пуассона

Экспериментально установлено, что на упругой стадии нагружения любого материала значение μ = const и для различных материалов значения коэффициента Пуассона находятся в пределах от 0 до 0,5 (табл. 2).

Таблица 2

Коэффициент Пуассона.

коэффициент пуассона для материалов

Абсолютное удлинение стержня Δl прямо пропорционально продольной силе N:

абсолютное удлинение стержня

Данной формулой можно пользоваться для вычисления абсолютного удлинения участка стержня длиной l при условии, что в пределах этого участка значение продольной силы постоянно. В случае, когда продольная сила N изменяется в пределах участка стержня, Δl определяют интегрированием в пределах этого участка:

Прочность конструкции при растяжении

Произведение (Е·А) называют жесткостью сечения стержня при растяжении (сжатии).

Механические свойства материалов.

Основными механическими свойствами материалов при их деформации являются прочность, пластичность, хрупкость, упругость и твердость.

Читайте также:  Упражнения для растяжения поясничного отдела позвоночника

Прочность — способность материала сопротивляться воздействию внешних сил, не разрушаясь и без появления остаточных деформаций.

Пластичность – свойство материала выдерживать без разрушения большие остаточные деформации. Неисчезающие после снятия внешних нагрузок деформации называются пластическими.

Хрупкость – свойство материала разрушаться при очень малых остаточных деформациях (например, чугун, бетон, стекло).

Идеальная упругость – свойство материала (тела) полностью восстанавливать свою форму и размеры после устранения причин, вызвавших деформацию.

Твердость – свойство материала сопротивляться проникновению в него других тел.

Рассмотрим диаграмму растяжения стержня из малоуглеродистой стали. Пусть круглый стержень длинной l0 и начальным постоянным поперечным сечением площади A0 статически растягивается с обоих торцов силой F.

растягивание стержня до разрушения

Диаграмма сжатия стержня имеет вид (рис. 10, а)

диаграмма растяжения стали

где Δl = l — l0 абсолютное удлинение стержня; ε = Δl / l0 — относительное продольное удлинение стержня; σ = F / A0 — нормальное напряжение; E — модуль Юнга; σп — предел пропорциональности; σуп — предел упругости; σт — предел текучести; σв — предел прочности (временное сопротивление); εост — остаточная деформация после снятия внешних нагрузок. Для материалов, не имеющих ярко выраженную площадку текучести, вводят условный предел текучести σ0,2 — напряжение, при котором достигается 0,2% остаточной деформации. При достижении предела прочности в центре стержня возникает локальное утончение его диаметра («шейка»). Дальнейшее абсолютное удлинение стержня идет в зоне шейки ( зона местной текучести). При достижении напряжением предела текучести σт глянцевая поверхность стержня становится немного матовой – на его поверхности появляются микротрещины (линии Людерса-Чернова), направленные под углом 45° к оси стержня.

примеры разрушения материалов

Расчеты на прочность и жесткость при растяжении и сжатии.

Опасным сечением при растяжении и сжатии называется поперечное сечение бруса, в котором возникает максимальное нормальное напряжение. Допускаемые напряжения вычисляются по формуле:

формула допускаемые напряжения

где σпред — предельное напряжение (σпред = σт — для пластических материалов и σпред = σв — для хрупких материалов); [n] — коэффициент запаса прочности. Для пластических материалов [n] = [nт] = 1,2 … 2,5; для хрупких материалов [n] = [nв] = 2 … 5, а для древесины [n] = 8 ÷ 12.

Расчеты на прочность при растяжении и сжатии.

Целью расчета любой конструкции является использование полученных результатов для оценки пригодности этой конструкции к эксплуатации при минимальном расходе материала, что находит отражение в методах расчета на прочность и жесткость.

Условие прочности стержня при его растяжении (сжатии):

Условие прочности стержня

При проектном расчете определяется площадь опасного сечения стержня:

площадь при проектном расчёте

При определении допускаемой нагрузки рассчитывается допускаемая нормальная сила:

допускаемая нормальная сила

Расчет на жесткость при растяжении и сжатии.

Работоспособность стержня определяется его предельной деформацией [ l ]. Абсолютное удлинение стержня должно удовлетворять условию:

ограничение абсолютного удлинения стержня

Часто дополнительно делают расчет на жесткость отдельных участков стержня.

Следующая важная статья теории:
Изгиб балки

Источник

Расчеты на прочность стержней и других элементов конструкций составляют одну из основных задач сопротивления материалов. Целью этих расчетов является обеспечение надежной и безопасной работы элементов конструкций и сооружений в течение всего периода эксплуатации при минимальном расходе материала.

Расчеты на прочность производятся на основе определенных методов, позволяющих сформулировать условия прочности элементов конструкций при различных воздействиях.

Основным методом расчета на прочность элементов строительных конструкций является метод предельных состояний. В этом методе значения всех нагрузок, действующих на конструкцию в течение всего периода ее эксплуатации, разделяются на нормативные и расчетные. Нормативные значения нагрузок характеризуют их действие на конструкцию при нормальных условиях ее эксплуатации. Это собственный вес конструкции, атмосферные воздействия снега, ветра, вес технологического оборудования, людей и т.п. Нормативные значения нагрузок приведены в строительных нормах и правилах (СНиП).

Расчетные значения нагрузок Рр определяются путем умножения нормативных значений Рн на коэффициенты надежности по нагрузке уу-:

Прочность конструкции при растяжении

С помощью коэффициентов производится учет возможного отклонения нагрузок от их нормативных значений в неблагоприятную для работы конструкции сторону. Значения коэффициентов надежности по нагрузке устанавливаются нормами проектирования с учетом различных факторов в пределах от 1,05 до 1,4.

В качестве основного параметра, характеризующего сопротивление материала конструкции различным воздействиям, принимается нормативное сопротивление RH, соответствующее значению предела текучести для пластичных материалов или временного сопротивления для хрупких материалов. Последние определяются с помощью механических испытаний.

При оценке прочности элементов конструкций величина нормативного сопротивления материала должна быть уменьшена за счет различных неблагоприятных факторов (например, ухудшения качества материала). Для этого вводится расчетное сопротивление, которое определяется по формуле

Прочность конструкции при растяжении

где ут — коэффициент надежности по материалу, изменяющийся в различных пределах в зависимости от физико-механических свойств материала. Например, для стали он изменяется в пределах от 1,025 до 1,15.

Кроме того, в условие прочности вводится коэффициент условий работы ус, с помощью которого учитываются конструктивные особенности и виды нагружения сооружений. Коэффициент ус может быть больше или меньше единицы.

Величины нормативных и расчетных сопротивлений и значения коэффициентов ур ут и ус приведены в соответствующих разделах строительных норм и правил (СНиП).

Условие прочности стержня при растяжении и сжатии, согласно методу предельных состояний, имеет следующий вид:

Прочность конструкции при растяжении

где N — продольная сила в стержне, вычисленная от действия расчетных нагрузок; F — площадь поперечного сечения стержня.

Условие (3.27) обычно ставится для сечения стержня, в котором действуют наибольшие нормальные напряжения.

С помощью условия прочности (3.27) можно выполнить подбор сечения стержня, т.е. определить размеры поперечного сечения или установить номер прокатного профиля по сортаменту, а также определить грузоподъемность стержня или стержневой системы. Подбор сечения стержня выполняется по формуле

Читайте также:  Боли при растяжении связок колена

Прочность конструкции при растяжении

При расчете на прочность элементов машиностроительных конструкций используется метод расчета по допускаемым напряжениям. В этом методе внутренние усилия и напряжения в элементах конструкции вычисляются от действия нормативных нагрузок, допускаемых при нормальной эксплуатации данной конструкции. Сопротивление материала различным воздействиям характеризуется допускаемым напряжением [а], которое определяется по формулам: для хрупких материалов

Прочность конструкции при растяжении

для пластичных материалов

Прочность конструкции при растяжении

где пви пт — коэффициенты запаса прочности по отношению к временному сопротивлению ов и пределу текучести от.

Коэффициенты запаса принимаются с учетом целого ряда факторов, таких как физико-механические свойства материала, условия работы конструкции, характер действия нагрузок и т.п.

Величины допускаемых напряжений [о] для различных материалов приведены в соответствующих нормативных документах.

Условие прочности стержня при растяжении и сжатии по методу допускаемых напряжений имеет следующий вид:

Прочность конструкции при растяжении

С помощью условия (3.31) можно также решать задачи подбора сечения стержня и определения грузоподъемности.

Пример 3.9. Жесткая балка АВ нагружена сосредоточенной силой и поддерживается с помощью стержня CD (рис. 3.24). Подберем сечение стержня в виде двух стальных прокатных равнобоких уголков и в виде двух стальных тяг круглого сечения. В расчетах примем нормативное значение силы Рн = 100 кН, yf= 1,4, ус = 1,0, R = 210 МПа = 21 кН/см2.

Определим расчетное значение силы:

Прочность конструкции при растяжении

Определим с помощью уравнения равновесия расчетное значение продольной силы в стержне CD:

Прочность конструкции при растяжении

Вычислим значение требуемой по условию прочности площади поперечного сечения стержня:

Прочность конструкции при растяжении

В первом варианте принимаем по сортаменту сечение стержня в виде двух равнобоких уголков (рис. 3.25, а) _|1_56х56х5. Площадь поперечного сечения стержня равна F= 2 • 5,41 = 10,82 см2.

Во втором варианте определяем требуемый диаметр сечения каждого стержня (рис. 3.25, б):

Прочность конструкции при растяжении

Рис. 3.24

Прочность конструкции при растяжении

Рис. 3.25

Прочность конструкции при растяжении

Округлив в большую сторону, примем D = 2,6 см.

Определим для первого варианта сечения значения напряжений в поперечном сечении стержня:

Прочность конструкции при растяжении

Прочность стержня обеспечена с небольшим запасом.

Пример 3.10. Стержневая система состоит из жесткой балки АВ, имеющей шарнирно-неподвижную опору С, и двух стержней BD и АЕ, поддерживающих балку (рис. 3.26). К балке приложена сила Р, нормативное значение которой равно 300 кН. Определим усилия в стержнях и подберем их сечения в виде двух стальных прокатных равнобоких уголков. В расчетах примем соотношение между площадями поперечных сечений стержней F2/F] = 1,3, yf = 1,2, ус = 1,0, R = 210 МПа = 21 кН/см2.

Расчетное значение силы Р равно Рр = 300 • 1,2 = 360 кН.

Данная стержневая система является статически неопределимой, поскольку для определения четырех неизвестных величин /V,, N2, Rcи Нсможно составить только три независимых уравнения статики. Используем уравнение равновесия относительно усилий в стержнях /V, и N2. Учитывая, что г, = 3 sin 30° = 1,5 м, получим

Прочность конструкции при растяжении

Для получения дополнительного уравнения относительно N{ и N2 рассмотрим схему деформации системы. При повороте жесткой балки АВ на малый угол у (рис. 3.27) удлинения стержней составят:

Прочность конструкции при растяженииПрочность конструкции при растяжении

Рис. 3.26

Прочность конструкции при растяжении

Рис. 3.27

Определим из подобия треугольников АА’С и В В’ С соотношение между величинами А/, и Д/2:

Прочность конструкции при растяжении

Выражаем величины удлинений стержней через действующие в них усилия и составляем дополнительное уравнение относительно N, и N2:

Прочность конструкции при растяжении

где /j = 3/cos 30° = 3,46 ми /2 = 1,5 м — длины стержней.

Подставляем соотношение между усилиями в уравнение равновесия и определяем величины усилий в стержнях:
Прочность конструкции при растяжении

Прочность конструкции при растяжении

Определяем требуемые по условию прочности площади поперечных сечений стержней:

Прочность конструкции при растяжении

Проверим выполнение принятого в начале расчета соотношения между площадями F{ и F2:

Прочность конструкции при растяжении

Поскольку принятое соотношение не выполняется, при подборе сечений стержней надо увеличить требуемую площадь поперечного сечения первого стержня и принять ее равной

Прочность конструкции при растяжении

Принимаем по сортаменту сечения стержней в виде двух стальных прокатных равнобоких уголков, определяем действующие в стержнях напряжения и проверяем их прочность. Стержень BD (2|_75х75х8)

Прочность конструкции при растяженииПрочность конструкции при растяжении

Стержень (2L 110x110x7)
Прочность конструкции при растяжении

Прочность конструкции при растяжении

Прочность стержней обеспечена.

Пример 3.11. Для данной системы (рис. 3.28) определим величину допустимой силы Р из условий прочности стержней Л В и ВС. Определим усилия и напряжения в стержнях. В расчетах примем R = 220 МПа = 22 кН/см2 иус = 0,9.

Прочность конструкции при растяжении

Рис. 3.28

Составим уравнения равновесия:


Прочность конструкции при растяжении

Определим площади поперечных сечений стержней и выразим действующие в них напряжения через силу Р:

Прочность конструкции при растяжении

Напряжения в стержне АВ являются большими по величине. Определим из условия прочности этого стержня величину силы Р:

Прочность конструкции при растяжении

Примем Р = 245 кН и вычислим значения усилий и напряжений в стержнях:

Прочность конструкции при растяжении

Прочность стержней обеспечена.

Пример 3.12. Для латунного стержня ступенчато-постоянного сечения (рис. 3.29, а) определим величину силы .Риз условия прочности стержня. Определим напряжения в пределах каждого участка стержня. В расчетах используем метод допускаемых напряжений, приняв [о] = 80 МПа = 8 кН/см2.

Площади поперечных сечений стержня равны:

Прочность конструкции при растяжении

Строим эпюру продольных сил (рис. 3.29, б). Определяем нормальные напряжения в пределах участков стержня и выражаем их через силу Р.

Первый участок

Прочность конструкции при растяжении

Второй участок

Прочность конструкции при растяженииПрочность конструкции при растяжении

Рис. 3.29

Эпюра о приведена на рис. 3.29, в. Ставим условие прочности по напряжениям на первом участке и определяем величину Р:

Прочность конструкции при растяжении

Примем Р = 40 кН и определим усилия и напряжения в стержне:

Прочность конструкции при растяжении

Источник