Прочность бетона на сжатие и растяжение классы

Прочность бетона на сжатие и растяжение классы thumbnail

Прочность бетона – определяющий показатель бетонного раствора, который обуславливает задачи и условия его использования. Бетонная смесь используется повсеместно в проведении ремонтно-строительных работ частных и промышленных объектов. Рецептов приготовления бетона существует множество, состав и пропорции компонентов напрямую влияют на свойства и характеристики, а также сферу использования цементного раствора.

Прочность бетона – определяющая характеристика, которая отображается в маркировке. Непосредственно прочность определяет марку и класс раствора. Данные показатели указываются в различных ГОСТах, СНиПах, нормативных документах, определяют эксплуатационные качества и свойства бетонных элементов, конструкций, зданий и т.д.

Знание показателей прочности бетона очень важно при выполнении любых работ, так как позволяет точно выполнить расчеты, верно подобрать смесь подходящих марки и класса для конкретной задачи, будучи уверенным в прочности, надежности и долговечности элемента, конструкции. Застройщики в обязательном порядке проверяют прочность бетона на растяжение, сжатие, изгиб и т.д. прежде, чем начинать работы.

Какие показатели определяют прочность бетона:

  1. Марка – значение средней прочности, обозначается буквой М, находится в пределах 50-1000, зависит от объема и качества цемента в смеси. Отображает прочность на сжатие в кгс/м2 через 28 суток после заливки. Чем больше цифра рядом с индексом, тем более прочным считается бетон и тем дороже он стоит. Высокопрочный раствор обычно более сложен в работе: быстрее застывает, трудно укладывается.
  2. Класс – гарантируемая прочность на сжатие, которую бетонное изделие демонстрирует в 95% проверках, обозначается буквой В, находится в диапазоне 3.5-80, считается в МПа.

Любой класс приравнивается к определенной марке (то же правило действует и наоборот). Обычно в проектных документах указывают класс прочности, а в заказах на покупку – марку.

Что это такое и основные виды

Пытаясь разобраться, от чего зависит прочность бетона, что это такое и какие есть основные виды показателя, необходимо изучить все основные аспекты процесса приготовления смеси, состав, условия и особенности.

Факторы, влияющие на прочность бетона:

  • Качество цемента в составе – чем более высокая марка самого вяжущего, тем прочнее будет бетон.
  • Объем цемента в растворе – считается из расчета на 1 кубический метр. Качество и количество цемента взаимосвязаны – при условии большого объема и низкой марки или высокой марки и недостаточного количества результат будет не тем, который ожидается. Готовить нужно по рецепту, указанному в ГОСТе и из цемента подходящей марки.
  • Объем воды – также напрямую влияет на прочность: недостаточное количество приведет к невозможности правильно уложить смесь, превышение объема способствует более быстрому прохождению процесса гидратации, что делает бетон слабее за счет появляющихся пор и трещин.
  • Качество заполнителей – форма, фракция, чистота. Наполнители с шероховатой поверхностью неправильной формы обеспечивают лучшую адгезию материалов, входящих в бетон (прочность повышается), грязные частицы и гладкая поверхность понижают сцепляемость и прочность соответственно.
  • Качество перемешивания компонентов – продолжительность, способ также влияют: если раствор смешивали меньшее время, чем нужно, компоненты не занимают свое место в тесте и прочность понижается.
  • Порядок укладки, способ обработки стыка после перерыва в укладке – все это влияет на качество и прочность монолита.
  • Вибрация – очень важный процесс, который повышает предел прочности бетона в среднем на 10-30% в сравнении с тем, что уплотнялся вручную.
  • Условия твердения – температура, влажность, от чего во многом зависит прочность. Самые высокие показатели у смеси, которая твердеет во влажной среде со средней температурой, а вот в жаре и сухости раствор быстро теряет влагу, может покрываться трещинами. При температуре ниже нуля бетон вообще прекращает твердеть.
  • Замерзание – если твердение дошло до определенной точки, временное замерзание монолита просто приостанавливает процесс, потом он продолжается без потерь свойств. Если же бетон замерзает на ранней стадии прохождения реакции, конечная прочность существенно понижается.

Основные виды прочности бетона:

  1. Проектная – та, что указана в нормативных документах и предполагает способность монолита полностью выдерживать указанные нагрузки после того, как прошел полный срок твердения (28 суток).
  2. Нормативная – та, что указана в ТУ или ГОСТе.
  3. Фактическая – среднее значение, которое высчитывают по результатам проведенных испытаний.
  4. Требуемая – максимально допустимый показатель для эксплуатации, который устанавливает лаборатория предприятия.
  5. Распалубочная – та, при которой можно демонтировать опалубку, разбирать формы.
  6. Отпускная – показатель, при котором допускается отгружать изделие потребителю.

Виды прочности касательно марки и качества: прочность бетона при сжатии, на изгиб, осевое растяжение, а также передаточная прочность.

Прочность на сжатие

В контексте данной характеристики бетон можно сравнить с камнем – он намного лучше сопротивляется сжатию, чем с растяжением. Основной критерий прочности бетона – это предел прочности на сжатие.

Данный показатель считается самым важным среди всех технических характеристик раствора – именно он влияет на сферу использования конструкции или элемента, обеспечивает надежность и долговечность.

Для определения значения из раствора заливают образцы в виде куба, их помещают под специальный пресс. Давление постепенно увеличивается и в момент, когда образец трескается, экран прибора фиксирует значение. Расчетный показатель прочности на сжатие определяет присвоение бетону класса. Высыхает и твердеет смесь в течение 28 суток (и больше), по завершению этого срока осуществляют проверку, так как смесь уже должна достичь расчетной/проектной прочности.

Прочность на сжатие представляет собой характеристику механических свойств материала, стойкости к нагрузкам и давлению. Это показатель границы сопротивления, которое оказывает застывший раствор механическому воздействию сжатия, отображенному в кгс/см2. Наименьшей прочностью на сжатие обладает смесь М15, наибольшей – М800.

Прочность на сжатие отображается и в марке, и в классе. Класс В – это кубиковая прочность, обозначается в МПа. Марка М – предел прочности на сжатие в кгс/см2. Данные соответствия марок, классов и показателей указаны ниже в таблице.

Прочность на изгиб

Данный показатель повышается по мере увеличения цифрового обозначения марки. Обычно показатели прочности на изгиб и растяжение меньше в сравнении с нагрузочной способностью бетона. Молодой бетон демонстрирует значение 1/20, старый – 1/8. Прочность на изгиб обязательно учитывается в проектировании перед строительством.

Чтобы понять, какой уровень прочности на изгиб демонстрирует бетон, заливают заготовку в виде бруса с размерами, к примеру, 60 х 15 х 15 сантиметров (эталонный образец). Бетон заливают в формы, штыкуют, оставляют на несколько дней, потом извлекают из форм и дают полностью застыть в течение 28 суток при оптимальных условиях: температура минимум 15-20 градусов и влажность до 80-90%. Периодически образцы обкладывают сырыми опилками (их увлажняют регулярно) или поливают водой.

Когда заготовка полностью затвердевает, ее устанавливают на подпорки, которые находятся на определенном расстоянии, в центре же размещают нагрузку, постепенно ее увеличивая до тех пор, пока образец не будет разрушен.

Для этого может использоваться специальный гидравлический пресс. Размеры балки и расстояния между двумя подпорками могут отличаться.

Формула для подсчета прочности на изгиб: R изг = 0.1 PL / bh2.

Тут:

  • L – это расстояние между подпорками
  • Р – масса нагрузки + масса образца
  • b и h – ширина и высота сечения образца (бруса)

Существенно повысить значение до определенной величины можно с помощью армирования – это сравнительно недорогой и эффективный метод.

Осевое растяжение

Данный параметр при проектировании несущих конструкций, как правило, не учитывается вовсе. Он важен для определения способности бетона не покрываться трещинами в случае резких перепадов температуры/влажности. Растяжение – это некоторая составляющая прочности на изгиб.

Значение осевого растяжения определяется довольно трудно. Один из используемых способов – растяжение образцов балок на предусмотренном для этого специальном оборудования. Бетонный монолит разрушается и от воздействия двух противоположных растягивающих сил. Способность противостоять осевому растяжению играет важную роль в приготовлении бетона, который используется для дорожного покрытия и резервуаров, где трещины просто недопустимы.

Читайте также:  Как помогает нитка от растяжения

Как правило, мелкозернистые составы демонстрируют более высокий показатель прочности на растяжение в сравнении с крупнозернистыми (при условии аналогичного показателя прочности сжатия).

Данный показатель обозначается буквами Bt, находится в диапазоне 0.4-6 МПа.

Передаточная прочность

Данный вид прочности – это нормируемый показатель напряженных элементов при передаче на него напряжения от армирующих деталей. Прочность передаточная указывается в нормативных документах и ТУ для отдельного вида изделий. Обычно назначается минимум 70% проектной марки, напрямую зависит от свойств арматуры.

Рекомендуемым значением считается минимум 15-20 МПа с учетом вида армирования. Если обозначать передаточную прочность, то это показатель, который демонстрирует уровень, при котором армировочные стержни не проскальзывают с кондукторов при снятии.

Минимальная величина Rbp обеспечивает трещиностойкость и прочность изделия при обжатии, перевозке и подъеме. Чем ниже Rbp, тем большими будут потери от ползучести и выше сила обжатия. Но чем выше Rbp, тем длительнее должна быть термообработка, тем дороже обходится конструкция. По опыту многие мастера указывают, что оптимальной Rbp считается 0.7 В.

Методы определения прочности

Понимая, как определить прочность бетона, можно более точно составлять проектную документацию, выполнять расчеты для тех или иных конструкций. Как правило, прочность бетона определяют в условиях лаборатории, с использованием специальных приборов, на контрольных образцах и отобранных пробах. Испытания контролируются и регламентируются по ГОСТу, принятому для того или иного вида бетонной смеси.

Кроме того, прочность бетона определяется на строительном объекте в процессе выполнения работ, что позволяет контролировать качество смеси.

Основных методов определения прочности бетона существует два: разрушающие и неразрушающие. Обычно прочность бетона в промежуточном возрасте не определяется, чаще всего используют уже застывшие образцы или куски монолита.

Разрушающий способ

Данная группа методов требует разрушения опытного образца, который готовится из контрольной пробы бетонного раствора либо же изымается из монолита алмазным буром. Выпиленные цилиндры или залитые кубики раздавливаются под прессом. Нагрузку повышают непрерывно, равномерно в течение не очень длительного времени, пока контрольный образец не разрушится. Результаты критических нагрузок фиксируют, дальше считают показатели.

Разрушающий метод – наиболее точный из всех, используемых для определения прочности бетона. Так, обследование здания способом раздавливания бетонных проб позволяет определить прочность монолита на сжатие. По действующим СНиПам, это обязательная процедура до сдачи сооружения в эксплуатацию.

Неразрушающий способ

Эта группа методов не требует разрушения образцов и вообще может не предполагать их использования. Испытания осуществляют с применением разных инструментов и приборов.

Виды неразрушающих методов исследования по типу применяемых инструментов:

  1. Ударное воздействие
  2. Частичное разрушение
  3. Ультразвуковое обследование

Способ ударного воздействия базируется на применении силового воздействия ударного типа к бетонной поверхности.

Три основных способа исследования прочности ударом:

  • Упругий отскок – определяется величина отскока от монолита бойка ударника.
  • Метод ударного импульса – фиксируется сила удара и появляющаяся при этом энергия.
  • Пластическая деформация – силовое воздействие на бетонный монолит прибором с закрепленными на его ударной поверхности штампов в виде диска или шарика. В соответствии с глубиной отпечатков удара считают прочность.

Частичное разрушение предполагает местное воздействие на бетонный монолит и повреждает его несильно.

Методы частичного разрушения:

  • Скалыванием – предполагает механическое скользящее воздействие на ребро конструкции с фиксацией усилий, которые провоцируют откалывание участка.
  • На отрыв – заключается в прикреплении к участку монолита металлического диска на специальный клей, а потом его отрыв. Необходимое для разрушения материала усилие фиксируют, используют для вычислений показателя прочности.
  • Отрыв со скалыванием – дает больше точности: на участке монолита закрепляют анкерные устройства, потом их отрывают.

Ультразвуковое исследование предполагает использование специального прибора, который выдает ультразвуковые волны. В процессе определяется скорость ультразвука, который проходит через бетонную конструкцию. Таким образом исследуются как поверхность бетона, так и его глубинные слои. Но есть погрешность в расчетах.

Классификация и применение бетонов

Деление бетона на виды достаточно условное. Как правило, легкими считают бетоны марок М10-М200, обычными М250-М400, тяжелыми М450 и выше.

На классы бетон делится не только по прочности, но и по морозостойкости, плотности. Существуют и особые бетоны, используемые для конкретных задач и сфер.

Наиболее распространенные марки бетона и его применение:

  • М100 – обычно выбирают для подбетонки, различных подготовительных работ, когда важно просто сцепить между собой зерна гравийно-песчаной подушки.
  • М150 – состав более крепкий, из него делают отмостки, тротуары, цементные стяжки, ЖБИ малого размера.
  • М200 – популярная марка для произведения работ в частном строительстве, подходит для небольших фундаментов, ненагруженных стен в малоэтажном строительстве.
  • М250 – актуален для создания лестничных маршей, опорных/несущих конструкций.
  • М300 – самый популярный бетон в строительстве, используется в любых работах (от создания основания для тяжелых домов до заливки монолитных перекрытий, стен).
  • М350 – прочный бетон, который подходит для создания конструкций с повышенными нагрузками (балки, колонны и т.д.).
  • М400 и выше марки применяются для создания особых конструкций специальных объектов – гидротехнические сооружения, военные объекты и т.д.

Виды бетона по плотности:

  1. Легкий (облегченный) – производится с включением в состав пористых заполнителей (туф, пемза, керамзит): крупнопористый, ячеистый бетоны, газо/пенобетон и т.д. Плотность до 1200 кг/м3, используются в малоэтажном строительстве, актуальных для утепления, отличаются сравнительно невысокой прочностью.
  2. Тяжелый бетон – производится с введением в состав горных пород (диабаз, гранит, известняк), плотность равна 1800-2500 кг/м3. Применяется для железобетонных, бетонных конструкций гражданских, промышленных зданий, для создания транспортных и гидротехнических объектов в том числе.
  3. Особо тяжелый бетон – готовится с использованием железной руды, опилок, стружки. Актуальна смесь для строительства специальных объектов, способных противостоять радиоактивному излучению, плотность выше 2500 кг/м3.

Виды бетона по классу морозостойкости:

  • F15 – подходит для внутренних работ (создание перегородок, заливка пола и т.д.)
  • F25 – самое малое значение для кладки внешних стен отапливаемых зданий.
  • F50 и более – подходит для фундамента в регионах со средним морозом.

Водостойкость бетона обозначается буквой W, может варьироваться в пределах W2-W20, говорит о максимальном давлении водяного столба, которое способен выдержать бетон, единицы измерения атм•10-1.

Источник

Класс бетона на сжатие и растяжение

В зависимости от соответствующего подбора состава и последующего испытания контрольных образцов определяют класс и марку бетона. Бетон имеет высокое сопротивление сжатию, вследствие чего этот материал широко применяют в различных железобетонных конструкциях.
Класс бетона по прочности на сжатие — это временное сопротивление, полученное в результате испытания на сжатие бетонных образцов кубической формы с размером ребра 150 мм, в возрасте 28 дней и при температуре их хранения 200 С.

Согласно ГОСТу установлены следующие классы по прочности бетона на сжатие.

Для легких бетонов: В10; В12,5; В15; В30; В20; В35; В40; где цифры обозначают давление в МПа.
Для тяжелых бетонов: В10; В12,5; В15; В30; В20; В35; В40; В50; В45; В55; В60.
В том же диапазоне до В40 для бетонов мелкозернистой структуры на песке с модулями крупности 2,1 и выше.
До В30 в том же диапазоне для мелкозернистых бетонов с модулем крупности не более 1.

Оптимальные значения прочности бетона на сжатие выбирают с учетом технико-экономических соображений: типа железобетонной конструкции, способа ее изготовления, условий эксплуатации и т. д.
Классы бетона по прочность на растяжение В1,2; В1,6; В2,4; В2; В2,8; В3,2 характеризуют прочность бетона на растяжение, при этом учитывают статистическую изменчивость прочности.

Читайте также:  Растяжение в локтевом сгибе

Основы прочности бетона

По своей структуре бетон неоднородный материал и поэтому под действием внешней нагрузки он находится в сложном напряженном состоянии. Набор прочности бетоном происходит в течение нескольких недель с его изготовления. При сжатии бетонного образца, воспринимают нагрузку более жесткие частицы, обладающие большим модулем упругости. По плоскостям соединения этих частиц возникают силы, способствующие нарушить их связь. В тоже время в ослабленных пустотами и порами местах происходит концентрация напряжения. Согласно теории упругости вокруг отверстий в материале, находящемся под действием сжатия возникает концентрация уравновешивающих сжимающих и растягивающих напряжений, параллельных сжимающей силе.

Так как бетон содержит много пустот и пор, то растягивающие напряжения у одной поры передаются на соседние, в результате чего в испытываемом образце при сжатии кроме продольных сжимающих напряжений возникают и растягивающие напряжения в поперечном направлении. Именно в поперечном направлении вследствие разрыва бетона происходит разрушение сжимаемого образца. Сначала появляются микроскопические трещины по всему объему сжимаемого образца, которые с возрастанием нагрузки соединяются, образуя трещины параллельные направлению действия сжимающей силы или под небольшим наклоном. Затем трещины раскрываются, и наступает разрушение бетонного образца.

Согласно результатам испытаний опытных образцов, прочность бетона на сжатие в 10 – 15 раз больше, чем прочность бетона при растяжении. Кроме того с увеличением класса бетона уменьшается относительная прочность при растяжении. Так же опыты показывают еще больший разброс прочности при испытании на растяжение по сравнению со сжатием и коэффициенты вариации прочностей бетонов.

Такие факторы, как увеличение количества цемента в бетонной смеси, применение шероховатого щебня, уменьшение водоцементного соотношения повышают прочность бетона при растяжении, что можно увидеть на графике набора прочности бетоном.

Испытание затвердевшего раствора

Для таких методов берут уже застывшие образцы с минимальным сроком выдержки 28 дней. Если нужно узнать особые качества, срок может меняться.

Испытания на прочность

Испытания на прочность можно разделить на два вида:

· механические, с разрушением бетона;

· механические неразрушающие. Дают возможность повторить манипуляцию на одном и том же образце для того, чтобы изучить изменения свойств материала во времени.

Многие из методов являются лабораторными с применением испытательных прессов и т.д. Некоторые можно осуществить собственноручно, имея соответствующие приборы.

Расчет закладных деталей

Расчет анкеров, приваренных втавр к плоским элементам стальных закладных деталей, на действие изгибающих моментов, нормальных и сдвигающих сил от статической нагрузки, расположенных в одной плоскости симметрии закладной детали (черт.2), должен производиться по формуле

(112)

где — суммарная площадь поперечного сечения анкеров наиболее напряженного ряда;

— наибольшее растягивающее усилие в одном ряду анкеров, равное:

(113)

— сдвигающее усилие, приходящееся на один ряд анкеров, равное:

(114)

— наибольшее сжимающее усилие в одном ряду анкеров, определяемое по формуле

(115)

Черт.2. Схема усилий, действующих на закладную деталь

В формулах (112)-(115):

— соответственно момент, нормальная и сдвигающая силы, действующие на закладную деталь; момент определяется относительно оси, расположенной в плоскости наружной грани пластины и проходящей через центр тяжести всех анкеров;

— число рядов анкеров вдоль направления сдвигающей силы; если не обеспечивается равномерная передача сдвигающей силы на все ряды анкеров, то при определении сдвигающего усилия учитывается не более четырех рядов;

— расстояние между крайними рядами анкеров;

— коэффициент, определяемый при анкерных стержнях диаметром 8-25 мм для тяжелого и мелкозернистого бетонов классов В12,5-В50 и легкого бетона классов В12,5-В30 по формуле

(116)

но принимаемый не более 0,7; для тяжелого и мелкозернистого бетонов классов выше В50 коэффициент принимается как для класса В50, а для легкого бетона классов выше В30 — как для класса В30,

здесь — в МПа;

— площадь анкерного стержня наиболее напряженного ряда, см ;

— коэффициент, принимаемый равным для бетона:

тяжелого. . . . . . . . . . . . . . . . . . . . . . . . . 1,0

мелкозернистого групп:

А. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0,8

Б и В. . . . . . . . . . . . . . . . . . . . . . . . . . . . .0,7

легкого. . . . . . . . . . . . . . . . . . . . . . . . . . .

( — средняя плотность бетона, кг/м );

— коэффициент, определяемый по формуле

(117)

но принимаемый не менее 0,15;

здесь при (имеется прижатие);

при (нет прижатия); если в анкерах отсутствуют растягивающие усилия, коэффициент принимается равным единице.

Площадь сечения анкеров остальных рядов должна приниматься равной площади сечения анкеров наиболее напряженного ряда.

В формулах (113) и (115) нормальная сила считается положительной, если направлена от закладной детали (см. черт.18), и отрицательной — если направлена к ней. В случаях, когда нормальные усилия и , а также сдвигающее усилие при вычислении по формулам (113)-(115) получают отрицательные значения, в формулах (112)-(114) и (117) их принимают равными нулю. Кроме того, если получает отрицательное значение, то в формуле (114) принимается

При расположении закладной детали на верхней (при бетонировании) поверхности изделия коэффициент уменьшается на 20 %, а значение принимается равным нулю.

В закладной детали с анкерами, приваренными внахлестку под углом от 15 до 30°, наклонные анкера рассчитываются на действие сдвигающей сипы (при , где — отрывающая сила) по формуле

(118)

где — суммарная площадь поперечного сечения наклонных анкеров;

— см. п.3.44.

При этом должны устанавливаться нормальные анкера, рассчитываемые по формуле (112) при = 1,0 и при значениях , равных 0,1 сдвигающего усилия, определяемого по формуле (114).

Конструкция сварных закладных деталей с приваренными к ним элементами, передающими нагрузку на закладные детали, должна обеспечивать включение в работу анкерных стержней в соответствии с принятой расчетной схемой. Внешние элементы закладных деталей и их сварные соединения рассчитываются согласно #M12291 9056425СНиП II-23-81*#S. При расчете пластин и фасонного проката на отрывающую силу принимается, что они шарнирно соединены с нормальными анкерными стержнями. Кроме того, толщина пластины расчетной закладной детали, к которой привариваются в тавр анкера, должна проверяться из условия

(119)

где — диаметр анкерного стержня, требуемый по расчету;

— расчетное сопротивление стали на срез, принимаемое согласно #M12291 9056425СНиП II-23-81*#S.

При применении типов сварных соединений, обеспечивающих большую зону включения пластины в работу при вырывании из нее анкерного стержня, и соответствующем обосновании возможна корректировка условия (119) для этих сварных соединений.

Толщина пластины должна также удовлетворять технологическим требованиям по сварке.

К продольной оси элемента

Для изгибаемых, растянутых и внецентренно сжатых железобетонных элементов усилия, воспринимаемые нормальными к продольной оси сечениями при образовании трещин, определяются исходя из следующих положений:

сечения после деформации остаются плоскими;

наибольшее относительное удлинение крайнего растянутого волокна бетона равно

напряжения в бетоне сжатой зоны (если она имеется) определяются с учетом упругих или неупругих деформаций бетона, при этом наличие неупругих деформаций учитывается уменьшением ядрового расстояния r (см. п. 4.5);

напряжения в бетоне растянутой зоны распределены равномерно и равны по величине

напряжения в ненапрягаемой арматуре равны алгебраической сумме напряжений, отвечающих приращению деформаций окружающего бетона, и напряжений, вызванных усадкой и ползучестью бетона;

напряжения в напрягаемой арматуре равны алгебраической сумме ее предварительного напряжения (с учетом всех потерь) и напряжения, отвечающего приращению деформаций окружающего бетона.

Указания данного пункта не распространяются на элементы, рассчитываемые на воздействие многократно повторяющейся нагрузки (см. п.4.10).

При определении усилий, воспринимаемых сечениями элементов с предварительно напряженной арматурой без анкеров, на длине зоны передачи напряжения (см. п.2.29) при расчете по образованию трещин должно учитываться снижение предварительного напряжения в арматуре и путем умножения на коэффициент согласно поз. 5 табл.24*.

Расчет предварительно напряженных центрально-обжатых железобетонных элементов при центральном растяжении силой должен производиться из условия

где — усилие, воспринимаемое сечением, нормальным к продольной оси элемента, при образовании трещин и определяемое по формуле

4.5. Расчет изгибаемых, внецентренно сжатых, а также внецентренно растянутых элементов по образованию трещин производится из условия

Читайте также:  Что поможет при сильном растяжении

где — момент внешних сил, расположенных по одну сторону от рассматриваемого сечения, относительно оси, параллельной нулевой линии и проходящей через ядровую точку, наиболее удаленную от растянутой зоны, трещинообразование которой проверяется;

— момент, воспринимаемый сечением, нормальным к продольной оси элемента, при образовании трещин и определяемый по формуле

здесь — момент усилия относительно той же оси, что и для определения ; знак момента определяется направлением вращения (“плюс” — когда направления вращения моментов и противоположны; “минус” — когда направления совпадают).

Усилие рассматривают:

для предварительно напряженных элементов — как внешнюю сжимающую силу;

для элементов, выполняемых без предварительного напряжения, — как внешнюю растягивающую силу, определяемую по формуле (8), принимая напряжения и в ненапрягаемой арматуре численно равными значениям потерь от усадки бетона по поз. 8 табл.5 (как для арматуры, натягиваемой на упоры).

Значение определяется по формулам:

для изгибаемых элементов (черт.19,а)

для внецентренно сжатых элементов (черт.19, б)

для внецентренно растянутых элементов (черт.19, в)

Значения определяются:

при расчете по образованию трещин в зоне сечения, растянутой от действия внешних нагрузок, но сжатой от действия усилия предварительного обжатия (см. черт.3.), по формуле

при расчете по образованию трещин в зоне сечения, растянутой от действия усилия предварительного обжатия (черт.20), по формуле

Черт.3. Схемы усилий и эпюры напряжений в поперечном сечении элемента

при расчете его по образованию трещин, нормальных к продольной оси элемента, в зоне сечения,

растянутой от действия внешних нагрузок, но сжатой от действия усилия предварительного обжатия

— при изгибе; б — при внецентренном сжатии; в — при внецентренном растяжении;

1 — ядровая точка; 2 — центр тяжести приведенного сечения

Черт.4. Схема усилий и эпюра напряжений в поперечном сечении элемента при расчете

его по образованию трещин, нормальных к продольной оси элемента, в зоне сечения,

растянутой от действия усилия предварительного обжатия

1 — ядровая точка; 2 — центр тяжести приведенного сечения

В формулах (127)-(130)

— расстояние от центра тяжести приведенного сечения до ядровой точки, наиболее удаленной от растянутой зоны, трещнообразование которой проверяется.

Значение определяется для элементов:

внецентренно сжатых, изгибаемых предварительно напряженных, а также для внецентренно растянутых, если удовлетворяется условие

по формуле

внецентренно растянутых, если не удовлетворяется условие (131), по формуле

изгибаемых, выполняемых без предварительного напряжения арматуры, по формуле

В формулах (132) и (133):

но принимается не менее 0,7 и не более 1,0;

здесь — максимальное напряжение в сжатом бетоне от внешней нагрузки и усилия предварительного напряжения, вычисляемое как для упругого тела по приведенному сечению;

— определяется согласно указаниям п.4.7;

.

Для стыковых сечений составных и блочных конструкций, выполняемых без применения клея в швах, при расчете их по образованию трещин (началу раскрытия швов) значение в формулах (123) и (125) принимается равным нулю.

При расчете по образованию трещин элементов на участках с начальными трещинами в сжатой зоне (см. п.1.18) значение для зоны, растянутой от действия внешней нагрузки, определенное по формуле (125), необходимо снижать на .

Коэффициент определяется по формуле

причем при получении отрицательных значений он принимается равным нулю.

В формуле (136):

— определяется по формуле (168) для зоны с начальными трещинами, но принимается не менее 0,45;

но не более 1,4;

здесь — расстояние от центра тяжести приведенного сечения до крайнего волокна бетона, растянутого внешней нагрузкой.

Для конструкций, армированных проволочной арматурой и стержневой арматурой класса А-VI и Ат-VII, значение , полученное по формуле (137), снижается на 15%.

Момент сопротивления приведенного сечения для крайнего растянутого волокна (с учетом неупругих деформаций растянутого бетона) определяется в предположении отсутствия продольной силы и усилия предварительного обжатия по формуле

Положение нулевой линии определяется из условия

В конструкциях, армированных предварительно напряженными элементами (например, брусками), при определении усилий, воспринимаемых сечениями при образовании трещин в предварительно напряженных элементах, площадь сечения растянутой зоны бетона, не подвергаемая предварительному напряжению, в расчете не учитывается.

При проверке возможности исчерпания несущей способности одновременно с образованием трещин (см. п.1.19) усилие, воспринимаемое сечением при образовании трещин, определяется по формулам (123) и (125) с заменой значения на при коэффициенте (см. п.1.27).

Расчет по образованию трещин при действии многократно повторяющейся нагрузки производится из условия

где — максимальное нормальное растягивающее напряжение в бетоне, определяемое согласно указаниям п.3.47.

Расчетное сопротивление бетона растяжению в формулу (140) вводится с коэффициентом условий работы , принимаемым по табл.16.

Класс бетона на сжатие и растяжение

В зависимости от соответствующего подбора состава и последующего испытания контрольных образцов определяют класс и марку бетона. Бетон имеет высокое сопротивление сжатию, вследствие чего этот материал широко применяют в различных железобетонных конструкциях.
Класс бетона по прочности на сжатие — это временное сопротивление, полученное в результате испытания на сжатие бетонных образцов кубической формы с размером ребра 150 мм, в возрасте 28 дней и при температуре их хранения 200 С.

Согласно ГОСТу установлены следующие классы по прочности бетона на сжатие.

Для легких бетонов: В10; В12,5; В15; В30; В20; В35; В40; где цифры обозначают давление в МПа.
Для тяжелых бетонов: В10; В12,5; В15; В30; В20; В35; В40; В50; В45; В55; В60.
В том же диапазоне до В40 для бетонов мелкозернистой структуры на песке с модулями крупности 2,1 и выше.
До В30 в том же диапазоне для мелкозернистых бетонов с модулем крупности не более 1.

Оптимальные значения прочности бетона на сжатие выбирают с учетом технико-экономических соображений: типа железобетонной конструкции, способа ее изготовления, условий эксплуатации и т. д.
Классы бетона по прочность на растяжение В1,2; В1,6; В2,4; В2; В2,8; В3,2 характеризуют прочность бетона на растяжение, при этом учитывают статистическую изменчивость прочности.

Основы прочности бетона

По своей структуре бетон неоднородный материал и поэтому под действием внешней нагрузки он находится в сложном напряженном состоянии. Набор прочности бетоном происходит в течение нескольких недель с его изготовления. При сжатии бетонного образца, воспринимают нагрузку более жесткие частицы, обладающие большим модулем упругости. По плоскостям соединения этих частиц возникают силы, способствующие нарушить их связь. В тоже время в ослабленных пустотами и порами местах происходит концентрация напряжения. Согласно теории упругости вокруг отверстий в материале, находящемся под действием сжатия возникает концентрация уравновешивающих сжимающих и растягивающих напряжений, параллельных сжимающей силе.

Так как бетон содержит много пустот и пор, то растягивающие напряжения у одной поры передаются на соседние, в результате чего в испытываемом образце при сжатии кроме продольных сжимающих напряжений возникают и растягивающие напряжения в поперечном направлении. Именно в поперечном направлении вследствие разрыва бетона происходит разрушение сжимаемого образца. Сначала появляются микроскопические трещины по всему объему сжимаемого образца, которые с возрастанием нагрузки соединяются, образуя трещины параллельные направлению действия сжимающей силы или под небольшим наклоном. Затем трещины раскрываются, и наступает разрушение бетонного образца.

Согласно результатам испытаний опытных образцов, прочность бетона на сжатие в 10 – 15 раз больше, чем прочность бетона при растяжении. Кроме того с увеличением класса бетона уменьшается относительная прочность при растяжении. Так же опыты показывают еще больший разброс прочности при испытании на растяжение по сравнению со сжатием и коэффициенты вариации прочностей бетонов.

Такие факторы, как увеличение количества цемента в бетонной смеси, применение шероховатого щебня, уменьшение водоцементного соотношения повышают прочность бетона при растяжении, что можно увидеть на графике набора прочности бетоном.

Прокрутить вверх

Не нашли то, что искали? Воспользуйтесь поиском гугл на сайте:

Источник