Пример расчета стержня на растяжение
где N — продольная растягивающая сила, действующая на стержень;
F — площадь поперечного сечения стержня;
σ — нормальные напряжения, возникающие в рассматриваемом поперечном сечении стержня в ответ на действие растягивающей продольной силы;
Rр — расчетное сопротивление материала стержня растяжению (для некоторых материалов расчетные сопротивления растяжению, сжатию, изгибу и т.п. могут различаться).
Визуально это может выглядеть так:
Рисунок 525.1. Нормальные напряжения при растяжении прямолинейного стержня.
На рисунке 525.1.а) мы видим прямолинейный стержень длиной l, показанный серым цветом, к которому приложена растягивающая сила N. При этом точка приложения силы находится на нейтральной оси стержня, совпадающей с осью х, показанной пунктирной линией.
Для упрощения расчетов заменяем опору А соответствующей опорной реакцией А (рис.525.1.б). Исходя из условий статического равновесия:
∑х = А + N = 0 (149.5.2)
А = — N (525.2)
Это означает, что опорная реакция A равна по значению растягивающей силе N, но направлена в противоположную сторону.
Если взглянуть на эту ситуацию под некоторым углом, то она будет выглядеть так, как показано на рисунке 525.1.в). На этом рисунке мы видим, что нормальные напряжения — это реакция материала на действие растягивающей силы и направлены эти напряжения в сторону, противоположную действию сил. Другими словами нормальные напряжения препятствуют деформации растяжения, и направлены на то, чтобы вернуть материалу исходную форму. Иногда для упрощения восприятия нормальные напряжения, возникающие при растяжении, принято изображать направленными от сечения, как показано на рисунке 525.1.г), а сжимающие напряжения — направленными к сечению. С точки зрения физики такая замена вполне допустима, так как нормальные напряжения (внутренние силы) можно рассматривать как плоскую нагрузку, распределенную по всей площади сечения (внешнюю силу). Как правило растягивающие нормальные напряжения рассматриваются как положительные, а сжимающие — как отрицательные.
Сечение стержня, показанное на рисунке 525.1.в) розовым цветом, является перпендикулярным нейтральной оси стержня и называется поперечным сечением.
Как следует из формулы (525.1) и из приведенного рисунка, длина стержня l на значение нормальных напряжений никак не влияет. А вот параметры поперечного сечения стержня: ширина сечения b и высота сечения h, если сечение прямоугольное, очень даже влияют, так как от этих параметров зависит площадь F поперечного сечения.
Примечание: конечно же поперечное сечение стержня далеко не всегда имеет прямоугольную форму, как показано на рисунке 525.1.в). Поперечное сечение может быть и круглым, и овальным, и ромбическим, и вообще иметь любую сколь угодно сложную форму, тем не менее форма поперечного сечения никак на значение нормальных напряжений не влияет (во всяком случае такое допущение принимается в теории сопротивления материалов), а влияет только площадь сечения, определить которую тем сложнее, чем более сложной является форма поперечного сечения.
Проверить данные постулаты теории сопротивления материалов очень легко и просто. Достаточно взять нитку и попробовать ее разорвать (вариант а)). Затем разорвать нитки с с той же катушки, но б) более короткую и в) более длинную, чем в первом случае. Во всех трех случаях усилие, которое необходимо приложить для разрыва нитки, будет примерно одинаковым.
Но если одну из ниток сложить вдвое и попробовать разорвать, то усилие, необходимое для разрыва нитки, увеличится в 2 раза. Все потому, что условная площадь сечения стержня, работающего на растяжение, увеличится при складывании нитки в 2 раза.
Таким образом известная пословица: «где тонко, там и рвется» в переводе на язык теории сопротивления материалов будет звучать примерно так: «при действии растягивающих нормальных напряжений разрушение материала, обладающего постоянным сопротивлением растяжению по всей длине, будет происходить в сечении с минимальной площадью». Это особенно актуально для стержней с изменяющейся по длине площадью сечения.
С учетом различных факторов формула (525.1) может иметь другой вид:
Nγn/Fn = σ ≤ Rрγs (512.1.2)
где γn — коэффициент надежности по нагрузке (как правило больше единицы), Fn — минимальная площадь сечения (с учетом возможных ослаблений отверстиями, пазами и т.п.), γs — коэффициент условий работы (как правило меньше единицы).
Т.е. теория сопротивления материалов допускает, что нормальные напряжения в стержне могут быть равны расчетному сопротивлению материала на растяжение, умноженному на коэффициент условий работы.
Пример расчета стержня на растяжение
Дано: На стальной стержень (см. рис.525.1.а)) с расчетным сопротивлением Rp = 2250 кг/см2 действует продольная растягивающая сила N = 30 тонн. Коэффициент надежности по нагрузке γn = 1.05, коэффициент условий работы γs = 0.9. Собственным весом стержня в виду его незначительности по сравнению с действующей нагрузкой для упрощения расчетов можно пренебречь. Предполагается, что нагрузка прикладывается по всей площади поперечного сечения стержня, т.е. возникающие нормальные напряжения будут равномерно распределенными по всей площади сечения.
Требуется: Подобрать диаметр стержня.
Решение:
1. Определяем требуемую площадь сечения стержня, преобразовав формулу (525.1.2)
F = Nγn/Rpγs = 30000·1.05/(2250·0.9) = 15.56 см2.
2. Определяем диаметр стержня
d = √4F/п = √4·15.56/3.14 = 4.45 см
Как видим сам расчет занимает гораздо меньше времени, чем описание физических характеристик используемых данных и даже формулировка условия задачи.
Источник
2.4. РАСЧЕТЫ НА ПРОЧНОСТЬ ПРИ РАСТЯЖЕНИИ Основной задачей расчета конструкции на растяжение является обеспечение ее прочности в условиях эксплуатации. Условие прочности – оценка прочности элемента конструкции, сводящаяся к сравнению расчетных напряжений с допускаемыми: σ≤рσ[р ]; σ с ≤[ с],σ (2.9) где σр и σс – наибольшие расчетные растягивающие и сжимающие напряжения; [σр] и [σс] – допускаемые напряжения при растяжении и сжатии. Допускаемое напряжение – наибольшее напряжение, которое можно допустить в элементе конструкции при условии его безопасной, долговечной и надежной работы: Здесь σпред – предельное напряжение (состояние), при котором конструкция перестает удовлетворять эксплуатационным требованиям; им мо- гут быть предел текучести, предел прочности, предел выносливости, пре- дел ползучести и др. Для конструкций из пластичных материалов при определении допускаемых напряжений используют предел текучести σт (рис. 2.4, а). Это связано с тем, что в случае его превышения деформации резко возрастают при незначительном увеличении нагрузки и конструкция перестает удовлетворять условиям эксплуатации. Допускаемое напряжение в этом случае определяют как Для хрупких материалов (чугун, бетон, керамика) где σвр и σвс – пределы прочности при растяжении и сжатии (рис. 2.4, б). Здесь [n] – нормативный коэффициент запаса прочности. В зависимости от той предельной характеристики, с которой сравнивают расчетное напряжение σ, различают [nт] – нормативный коэффициент запаса прочности по отношению к пределу текучести σт и [nв] – нормативный коэффициент запаса прочности по отношению к пределу прочности σв. Запас прочности – отношение предельно допустимой теоретической нагрузки к той нагрузке, при которой возможна безопасная работа конструкции с учетом случайных перегрузок, непредвиденных дефектов и недостоверности исходных данных для теоретических расчетов. Нормативные коэффициенты запаса прочности зависят: − от класса конструкции (капитальная, временная), − намечаемого срока эксплуатации, − условий эксплуатации (радиация, коррозия, загнивание), − вида нагружения (статическое, циклическое, ударные нагрузки) − неточности задания величины внешних нагрузок, − неточности расчетных схем и приближенности методов расчета − и других факторов. Нормативный коэффициент запаса прочности не может быть единым на все случаи жизни. В каждой отрасли машиностроения сложились свои подходы, методы проектирования и приемы технологии. В изделиях общего машиностроения принимают [nт] = 1,3 – 2,2; [nв] = 3 – 5. Вероятность выхода из строя приближенно можно оценить с помощью коэффициента запаса в условии прочности: n = 1 соответствует вероятности невыхода из строя 50 %; n = 1,2 соответствует вероятности невыхода из строя 90 %; n = 1,5 соответствует вероятности невыхода из строя 99 %; n = 2 соответствует вероятности невыхода из строя 99,9 %. Для неответственных деталей n = 2 много. Для ответственных – мало. Так для каната подъемного лифта это означает на 1000 подъемов одно падение. При расчете конструкций на прочность встречаются три вида задач, которые вытекают из условия прочности а) поверочный расчет (проверка прочности). Известны усилие N и площадь A. Вычисляют σ = N/A и, сравнивая его с предельным σт или σв (для пластичного и хрупкого материалов соответственно), находят фактический коэффициент запаса прочности который затем сопоставляют с нормативным [n]; б) проектный расчет (подбор сечения). Известны внутреннее усилие N и допускаемое напряжение [σ]. Определяют требуемую площадь поперечного сечения стержня в) определение грузоподъемности (несущей способности). Известны площадь А и допускаемое напряжение [σ]. Вычисляют внутреннее усилие N≤N[ ] = ⋅[σ]A, (2.15) а затем в соответствие со схемой нагружения – величину внешней нагрузки F ≤ [F].
Источник
Задача. Определить напряжение в стальных стержнях, поддерживающих абсолютно жёсткую балку. Материал — сталь Ст3, α=60°, [σ]=160МПа.
- Схему вычерчиваем в масштабе. Нумеруем стержни.
В шарнирно-неподвижной опоре А возникают реакции RА и НА. В стержнях 1 и 2 возникают усилия N1 и N2. Применим метод сечений. Замкнутым разрезом вырежем среднюю часть системы. Жесткую балку покажем схематично — линией, усилия N1 и N2 направим от сечения.
Составляем уравнения равновесия
Количество неизвестных превышает количество уравнений статики на 1. Значит, система один раз статически неопределима, и для её решения потребуется одно дополнительное уравнение. Чтобы составить дополнительное уравнение, следует рассмотреть схему деформации системы. Шарнирно-неподвижная опора А остается на месте, а стержни деформируются под действием силы.
Схема деформаций
По схеме деформаций составим условие совместности деформаций из рассмотрения подобия треугольников АСС1и АВВ1. Из подобия треугольников АВВ1 и АСС1 запишем соотношение:
, где ВВ1=Δℓ1 (удлинение первого стержня)
Теперь выразим СС1 через деформацию второго стержня. Укрупним фрагмент схемы.
Из рисунка видно, что СС2 = СС1·cos (90º-α)= СС1·sinα.
Но СС2= Δℓ2 , тогда Δℓ2= СС1·sinα, откуда:
Превратим условие совместности деформации (4) в уравнение совместности деформации с помощью формулы Гука для деформаций. При этом обязательно учитываем характер деформаций (укорочение записываем со знаком «-», удлинение со знаком «+»).
Тогда уравнение совместности деформаций будет:
Сокращаем обе части на Е, подставляем числовые значения и выражаем N1 через N2
Подставим соотношение (6) в уравнение (3), откуда найдем:
N1 = 7,12кН (растянут),
N2 =-20,35кН (сжат).
Определим напряжения в стержнях.
Задача решена.
Расчет бруса с зазором. Для статически неопределимого стального ступенчатого бруса построить эпюры продольных сил, нормальных напряжений, перемещений. Проверить прочность бруса. До нагружения между верхним концом и опорой имел место зазор Δ=0,1 мм. Материал – сталь Ст 3, модуль продольной упругости Е=2·105 МПа, допускаемое напряжение [σ]=160МПа.
- После нагружения зазор закроется и реакции возникнут и в нижней, и в верхней опоре. Покажем их произвольно, это реакции RA и RВ. Составим уравнение статики.
∑у=0 RA — F1 + F2 — RВ=0
В уравнении 2 неизвестных, а уравнение одно, значит задача 1 раз статически неопределима, и для ее решения требуется 1 дополнительное уравнение.
Это уравнение совместности деформаций. В данном случае совместность деформаций участков бруса состоит в том, что изменение длины бруса (удлинение) не может превзойти величины зазора, т.е. Δℓ=Δ, это условие совместности деформации.
- Теперь разобьем брус на участки и проведем на них сечения – их 4 по количеству характерных участков. Каждое сечение рассматриваем отдельно, двигаясь в одном направлении – от нижней опоры вверх. В каждом сечении выражаем силу N через неизвестную реакцию. Направляем N от сечения.
Выпишем отдельно значения продольных сил в сечениях:
N1 = — RА
N2 = 120 — RА
N3 = 120 — RА
N4 = 30- RА
3. Вернемся к составлению условия совместности деформации. Имеем 4 участка, значит
Δℓ1+ Δℓ2+ Δℓ3+ Δℓ4= Δ (величина зазора).
Используя формулу Гука для определения абсолютной деформации составим уравнение совместности деформаций, — это именно то дополнительное уравнение, которое необходимо для решения задачи.
Попробуем упростить уравнение. Помним, что величина зазора Δ=0,1 мм = 0,1·10-3 м
Е – модуль упругости, Е=2·105МПа=2·108кПа.
Подставляем вместо N их значения, записанные через опорную реакцию RА.
4. Вычисляем N и строим эпюру продольных сил.
N1=- RА=-47,5кН
N2=120 — RА=72,5кН
N3=120 — RА=72,5кН
N4=30- RА=-17,5кН.
5. Определяем нормальные напряжения σ по формуле и строим их эпюры
Строим эпюру нормальных напряжений.
Проверяем прочность.
σmax= 90,63 МПа < [σ]=160МПа.
Прочность обеспечена.
- Вычисляем перемещения, используя формулу Гука для деформаций.
Идем от стены А к зазору.
Получили величину ω4, равную зазору ,это является проверкой правильности определения перемещений.
Строим эпюру перемещений.
Задача решена.
Для статически определимого стального ступенчатого бруса построить эпюры продольных сил, нормальных напряжений и перемещений. Проверить прочность бруса. Материал – сталь Ст 3, модуль продольной упругости Е=2·105 МПа, допускаемое напряжение [σ]=160МПа.
- Произвольно направляем реакцию стены RAи определяем её из уравнения равновесия.
∑у=0 — RA+F3 — F2+ F1 =0
RA= F3 — F2+ F1 =60-25+10=45кН.
- Определяем продольные силы N методом сечений. Сечение расставляем на характерных участках (между изменениями). Подсказкой может служить размерная нитка – сколько отсечено отрезков, столько будет и участков с сечениями. В нашей задаче их 6.Каждое сечение рассматриваем отдельно с любой стороны на наше усмотрение. Силу N направляем от сечения.
Строим эпюру N. Все значения откладываем перпендикулярно от нулевой линии в выбранном нами масштабе.
Положительные значения условимся откладывать вправо от нулевой линии, отрицательные — влево.
- Определяем нормальные напряжения σ в сечениях по формуле . Внимательно смотрим, по какой площади проходит сечение.
Строим эпюру σ.
Проверим прочность по условию прочности
|σmax|= 75 МПа < [σ]=160МПа.
Прочность обеспечена.
4. Определяем перемещение бруса.
Расчет ведется от стены, в которой перемещение равно нулю ωА= 0.
Формула Гука для определения абсолютной деформации участка
Определяем перемещения:
Строим эпюру перемещений ω.
Задача решена.
На стальной стержень действует продольная сила Р и собственный вес (γ = 78 кН/м3). Найти перемещение сечения 1 –1.
Дано: Е =2·105 МПа, А = 11 см2, а = 3,0 м, в = 3,0 м, с= 1,3 м, Р = 2 кН.
Учет собственного веса
Перемещение сечения 1 –1 будет складываться из перемещения от действия силы Р, от действия собственного веса выше сечения и от действия собственного веса ниже сечения. Перемещение от действия силы Р будет равно удлинению участка стержня длиной в+а ,расположенного выше сечения 1 –1. Нагрузка Р вызывает удлинение только участка а, так как только на нем имеется продольная сила от этой нагрузки. Согласно закону Гука удлинение от действия силы Р будет равно: Определим удлинение от собственного веса стержня ниже сечения 1 –1.
Обозначим его как . Оно будет вызываться собственным весом участка с и весом стержня на участке а+в
Определим удлинение от собственного веса стержня выше сечения 1 –1.
Обозначим его как Оно будет вызываться собственным весом участка а+в
Тогда полное перемещение сечения 1-1:
Т.е, сечение 1-1 опустится на 0,022 мм.
Абсолютно жесткий брус опирается на шарнирно неподвижную опору и прикреплен к двум стержням при помощи шарниров. Требуется: 1) найти усилия и напряжения в стержнях, выразив их через силу Q; 2) Найти допускаемую нагрузку Qдоп, приравняв большее из напряжений в двух стержнях к допускаемому напряжению ; 3) найти предельную грузоподъемность системы , если предел текучести 4) сравнить обе величины, полученные при расчете по допускаемым напряжениям и предельным нагрузкам. Размеры: а=2,1 м, в=3,0 м, с=1,8 м, площадь поперечного сечения А=20 см2
Данная система один раз статически неопределима. Для раскрытия статической неопределимости необходимо решить совместно уравнение равновесия и уравнение совместности деформаций стержней.
(1) -уравнение равновесия
Составим деформационную схему — см. рис. Тогда из схемы: (2)
По закону Гука имеем:
Длины стержней: Тогда получим:
Подставим полученное соотношение в уравнение (1):
Определяем напряжение в стержнях:
Допускаемая нагрузка:
В предельном состоянии: Подставим полученные соотношения в уравнение (1):
При сравнении видим увеличение нагрузки:
Колонна, состоящая из стального стержня и медной трубы, сжимается силой Р. Длина колонны ℓ. Выразить усилия и напряжения, возникающие в стальном стержне и медной трубе.Проведем сечение 1 – 1 и рассмотрим равновесие отсеченной части
Составим уравнение статики: NC+ NM — P= 0 , NC+ NM = P (1)
Задача статически неопределима. Уравнение совместности деформации запишем из условия, что удлинения стального стержня и медной трубы одинаковы: (2) или Сократим обе части на длину стержня и выразим усилие в медной трубе через усилие в стальном стержне :
(3) Подставим найденное значение в уравнение (1), получим: