Предельные деформации бетона при растяжении

       Это предельная сжимаемость и предельная растяжимость . Зависят от:

  • прочности бетона;
  • класса бетона;
  • состава бетона;
  • длительности приложения нагрузки.

       При сжатии в среднем .

       При растяжении в среднем .

       При изгибе в крайнем сжатом волокне в среднем .

Модуль деформации

       Начальный модуль упругости бетона (рис. 12) при сжатии Еb соответствует лишь упругим деформациям, возникающим при мгновенном загружении:

.

       Модуль полных деформаций бетона (рис.12) при сжатии  соответствует полным деформациям; является величиной переменной:

,

где α – угол наклона касательной к кривой σb – εbв точке с заданным напряжением.

       Для расчета железобетонных конструкций пользуются средним модулем или модулем упругопластичности бетона, представляющим собой  тангенс  угла  наклона  секущей  в  точке    на кривой σb – εb с заданным напряжением (рис. 12):

.

       Зависимость между начальным модулем упругости бетона и модулем упругопластичности:

,

где  — коэффициент упругопластичных деформаций бетона; ν изменяется от 1 до 0,15.

       С увеличением уровня напряжений в бетоне и длительности действия нагрузки коэффициент ν уменьшается.

Лекция №4. Арматура

Виды  арматуры

1. По материалу:

а) стальная;

б) стеклопластиковая;

в) углепластиковая.

2. По назначению:

а) рабочая – это арматура, которая определяется расчетом и обеспечивает прочность конструкции;

б) конструктивная – это арматура, которая также обеспечивает прочность конструктивных элементов и узлов, но расчетом не определяется, а устанавливается из практики проектирования и эксплуатации конструкций;

в) арматура косвенного армирования – это арматура, устанавливаемая в сжатых элементах в основном в местах больших локальных напряжений, для сдерживания поперечных деформаций;

г) монтажная – арматура, служащая для обеспечения проектного положения рабочей и равномерного распределения усилий между отдельными стержнями рабочей арматуры.

3. По способу изготовления:

а) стержневая, горячекатаная (d = 6…40 мм);

б) проволочная, холоднотянутая (d = 3…6 мм).

4. По виду поверхности:

а) гладкая;

б) периодического профиля (рифленая).

5. По способу применения:

а) напрягаемая, подвергнутая предварительному натяжению до эксплуатации;

б) ненапрягаемая.

6. По изгибной жесткости:

а) гибкая (стержневая и проволочная);

б) жесткая (из прокатных профилей).

7. По способу упрочнения:

а) термически упрочненная, т.е. подвергнутая термической обработке;

б) упрочненная в холодном состоянии – вытяжкой или  волочением.

Физико-механические свойства сталей

       Характеристики прочности и деформативности сталей устанавливают по диаграмме σs – εs, получаемой из испытаний образцов на растяжение. Горячекатаная арматурная сталь, имеющая на диаграмме площадку текучести, обладает значительным удлинением до разрыва (мягкая сталь) (рис. 13, а). Напряжение, при котором деформации развиваются без заметного увеличения нагрузки, называется физическим пределом текучести арматурной стали .

а)                                                                                          б)

Рис. 13. Диаграммы σs – εsпри растяжении арматурной стали:

а – мягкая малоуглеродистая сталь с площадкой текучести;

б – высокопрочная, легированная сталь с условным пределом текучести.

Повышение прочности сталей достигают следующими методами:

  • путем введения углерода и легирующих добавок (марганец, хром, кремний, титан и др.);
  • термическим упрочнением — закаливание стали (нагрев до 800…900оС и быстрое охлаждение), затем частичный отпуск (нагрев до 300…400оС и постепенное охлаждение);

· холодным деформированием – при вытяжке в холодном состоянии до напряжения  сталь упрочняется; при повторной вытяжке пластические деформации уже выбраны, напряжение  становится новым искусственно поднятым пределом текучести ;

· холодным волочением — волочение через несколько последовательно уменьшающихся в диаметре отверстий в холодном состоянии для получения высокопрочной проволоки.

Высоколегированные и термически упрочненные арматурные стали переходят в пластическую стадию постепенно без ярко выраженной площадки текучести (рис. 13, б). Для таких сталей устанавливают условный предел текучести , при котором относительные остаточные деформации составляют 0,2%.

       К физическим свойствам сталей относятся:

  • пластические свойства – характеризуются относительным удлинением при испытании на разрыв. Снижение пластических свойств приводит к хрупкому (внезапному) разрыву арматуры;
  • свариваемость – характеризуется надежностью соединения, отсутствием трещин и других пороков металла в швах. Хорошо свариваются малоуглеродистые и низколегированные стали. Нельзя сваривать термически упрочненные и упрочненные вытяжкой стали, т.к. теряется эффект упрочнения;
  • хладноломкость  — склонность к хрупкому разрушению при отрицательных температурах (ниже -30оС);
  • реологические свойства – характеризуются ползучестью и релаксацией;
  • усталостное разрушение – наблюдается при действии многократно повторяющейся знакопеременной нагрузке и имеет характер хрупкого разрушения;
  • динамическая прочность – наблюдается при кратковременных нагрузках большой интенсивности.

Классификация арматуры

Наименование и класс арматуры
 
d, мм
 
Предел текучести, МПа
 
Относительное удлинение, %
 
Модуль упругости, МПа
 
Стержневая горячекатаная:
 
гладкая  класса A-I
 
периодического профиля классов:
 
A-II
 
A-III
 
A-IV
 
A-V
 
A-VI
 
 
6…40
 
 
10…40
 
6…40
 
10…22
 
10…32
 
10…22
 
230
 
 
300
 
400
 
600
 
800
 
1000
 
25
 
 
19
 
14
 
8
 
7
 
6
 
21 · 104
 
 
21 · 104
 
20 · 104
 
19 · 104
 
19 · 104
 
19· 104
Стержневая термически упрочненная классов:
 
Ат – IIIс
 
Aт – IVс
 
Ат – V
 
Aт — VI
10…38
 
10…28
 
10…28
 
10…28
 
 
400
 
600
 
800
 
1000
 
 
 

 
8
 
7
 
6
20 · 104
 
19 · 104
 
19 · 104
 
19· 104
Обыкновенная арматурная проволока периодического профиля класса Вр-I
 
 
3…5
 
500
 
 
17· 104
Высокопрочная арматурная проволока:
 
гладкая класса В-II
 
периодического профиля класса Вр-II
 
 
 
3…8
 
 
3…8
 
1530
 
 
1530
 
4…6
 
 
4…6
20 · 104
20 · 104
Читайте также:  От к голеностопа после растяжения

П р и м е ч а н и е: дополнительной буквой «С» указывается на возможность стыкования сваркой, буквой «Т» — на термическое упрочнение арматуры.

Источник

5.1 Характер развития деформации зависит от величины повторно- прикладываемых напряжений и количества циклов.

При напряжениях ниже предела выносливости c увеличением циклов нагружения происходит накопление остаточных пластических деформаций с постепенным переходом зависимости от криволинейной формы к линейной.

С увеличением напряжения до , но так, чтобы оно не превышало предела выносливости Rt, может происходить дальнейшее накопление остаточной пластической деформации. Однако, бетон при действии этого напряжения может работать неограниченное время как упругий материал. При напряжении превышающем предел выносливости после некоторого числа циклов интенсивность в бетоне начинает возрастать, главным образом, пластические деформации. В образце развиваются микротрещины, обе ветви диаграммы обращены вогнутостью к оси . При дальнейшем увеличении напряжения, то есть достижение предельных деформаций, происходит его разрушение.

5.2 Предельные деформации бетона- это деформации, которые зависят от состава и структуры бетона, класса бетона, длительности продолжения нагрузки, условия работы бетона.

Предельные деформации наблюдают перед разрушением образцов, значения этих деформаций для расчетов принимают в следующих пределах:

— осевое сжатие- -кратковременное загружение;

— при длительном загружении;

— при изгибе и внецентренном сжатии;

— при центральном растяжении.

Предельные деформации при центральном растяжении в 10-20 раз меньше предельных деформаций сжимаемости. У бетонов на пористых заполнителях предельная сжимаемость примерно в 2 раза выше, чем у тяжелых бетонов таких же марок.

6 Арматура для железобетонных конструкций, ее назначение.Классификация арматурной стали.

В ЖБК арматуру обычно устанавливают для восприятия растягивающих усилий и усиления бетона сжатых зон сечения. Необходимое количество арм-ры определяют расчётом конструкций на действие нагрузок от внешних сил и собственного веса конструкции.

По назначению различают арм-ру:

— рабочую; — монтажную; — распределительную.

Рабочую арм-ру устанавливают по расчёту; монтажную – по конструктивным и технологическим соображениям.

БАЛКА ПЛИТА

1-1

1–рабочая арматура;

2– распределительная арматура;

3 – монтажная арматура;

4 – поперечная арматура (хомуты)

Рис. – Армирование ЖБ элементов

Степень насыщения бетонного сечения арм-рой регламентируется СНиП в зависимости от вида конструкции и условий её работы. Степень насыщения арм-рой характеризуется коэфф-м армирования:

μ = As/Ab

Арм-ру классифицируют:

1)в зависимости от технологии изготовления:

— горячекатаная стержневая (d = 6 – 40 мм);

— холоднотянутая проволока (d = 3 – 8 мм);

2) в зависимости от способа последующего упрочнения:

— термически упрочнённая;

— упрочнённая вытяжкой или волочением; — термомеханическое упрочнение; 3) по форме поверхност — периодического профиля;- гладкая; 4) по способу применения: — напрягаемая; ненапрягаемая; жёсткая (прокатная сталь

7 Классы арматуры. Прочностные и деформативные характеристики арматурной стали.

Вся арматурная сталь делится на классы. Классы стержневой горячекатаной арматуры обозначается А и в зависимости от её основных механических характеристик делится на 6 классов: АI — AVI. Если арматура термически упрочнена, её подразделяют на 4 класса и обозначают: ATIII — AT IV. Дополнительной буквой с (ATIIIс) указывается возможность соединения этой арматуры сваркой. Буква к (ATIIIк) характеризует повышенную коррозионную стойкость. Буква в

(ATIIIв) — упрочнение вытяжкой. Специальная сталь обозначается AсIII. АI — гладкая (d=6-40мм); AII — периодического профиля (d=10-80мм); AIII — горячекатаная периодического профиля (ёлочка d=6-40мм). Арматурную проволоку подразделяют на 2 класса: ВI и ВII — проволока гладкая (ВрI и ВрII — рифлёная).

ВрI — обыкновенная холоднотянутая низкоуглеродистая проволока. ВII и ВрII -проволока высокопрочная, углеродистая и изготовлена многократным волочением. Из поволок d=1.5 — 5 мм изготавливают 7-ми проволочные канаты класса К-7, К-19. Каждому классу арматуры соответствует определённая марка стали с одинаковыми механическими характеристиками, но различным химическим составом. В обозначении марки стали отражается содержание углерода и легирующих добавок. Например: 25Г2С (0,25% — содержание углерода; Г — сталь легирована марганцем; 2С — содержание кремния).

Основными физико-механическими характеристиками стали являются прочностные и деформативные характеристика, эти свойства характеризуют диаграммой напряжений-деформаций получаемой путём испытания на растяжения стандартных образцов.

1 — малоуглеродистые; 2 — высокоуглеродистые стали.

Все стали по характеру диаграммы делятся на: с явно выраженной площадкой текучести (мягкие) и не явно выраженной площадкой текучести (термоупрочнённые).

Для сталей имеющих физический предел текучести sу — (для мягких сталей) принимается в расчётах за нормативное сопротивление, эти стали также имеют характеристику предела прочности sus и предельное удлинение при разрыве. Высокие пластические свойства стали создают благоприятные условия для работы ЖБК.

Стали имеющие условный предел текучести, характеризуемые напряжением, при котором остаточные деформации составляют 0,2% от максимальных значений. В расчётах этих сталей используют условный предел текучести в качестве нормативной характеристики, используя, так же как и в бетоне, статические методы обработки. В зависимости от типа конструкции и условий эксплуатации учитываются часто следующие свойства арматурной стали: свариваемость, реологические свойства (ползучесть и релаксация), динамическое упрочнение (имеет место при действии кратковременных динамических нагрузок).

Читайте также:  Что делать если растяжение на ноге и болит

Не нашли то, что искали? Воспользуйтесь поиском гугл на сайте:

Источник

Виды деформаций. Под деформативностью бетона понимается изме­нение его формы и размеров под влиянием различных воздействий (в том числе в результате взаимодействия бетона с внешней средой).

Бетон является упруго-пластическим материалом, в котором, на­чиная с малых напряжений, помимо упругих деформаций (ee), появля­ются и неупругие остаточные или пластические (epl), т.е. полная дефор­мация (eb) без учёта усадки равна:

(1.12)

В бетоне различают деформации двух основных видов: объём­ные, развивающиеся во всех направлениях под влиянием усадки или изменения температуры, и силовые, развивающиеся главным образом в направлении действия сил. Силовым продольным деформациям также соответствуют некоторые поперечные деформации бетона; начальный коэффициент поперечной деформации бетона v равен 0,2 (коэффициент Пуассона). Причём v остаётся практически по­стоянным вплоть до напряжений . При этом относительная продольная деформация будет , апоперечная деформация .

Силовые деформации в зависимости от характера приложения нагрузки и длительности её действия подразделяются на следующие три вида:

— при однократном первичном загружении кратковременной на­грузкой;

— при длительном действии нагрузки;

— при многократном повторяющемся действии нагрузки.

Наибольший практический интерес представляют продольные деформации бетона при осевом сжатии. Для изучения деформативности бетона при сжатии используют бетонные призмы с h/a = 4, чтобы исключить влияние на получаемые результаты сил трения, возникающих между опорными гранями образца и плитами пресса. На боковые грани призм в средней их части по высоте устанавли­вают приборы для замера деформаций (рис. 12, а) или наклеивают электротензодатчики.

Нагрузка к призме прикладывается постепенно по этапам или ступеням (ступень обычно составляет 1/10…1/20 от ожидаемой раз­рушающей нагрузки). Если деформации на каждой ступени прило­жения нагрузки замерять дважды: первый раз сразу после приложе­ния нагрузки и второй раз через некоторое время после выдержки под нагрузкой (обычно около 5 минут), то на диаграмме полу­чим ступенчатую линию, изображенную на рис. 12, б. Деформации, измеренные сразу после приложения нагрузки, упругие и связаны с напряжениями линейным законом, а деформации, развивающие­ся за время выдержки под нагрузкой, неупругие и на диаграмме имеют вид горизонтальных площадок. При достаточно боль­шом числе ступеней загружения зависимость между напряжениями и деформациями может изображаться плавной кривой (рис. 12, б).

Деформации бетона при однократном первичном загружении кратковременной нагрузкой. Длительность загружения обычно не превышает 60 минут. Диаграмма для этого случая показана на рис. 13.

Степень её криволинейности зависит от продолжительности действия нагрузки, уровня напряжений и класса бетона, т. е. .

В связи с этим целесообразно выделить исходные (эталонные) диаграммы, полученные на стандартных призмах, испытываемых скоростью роста деформаций 2%, а затем уже переходить к кор­ректировке (трансформированию) диаграмм. Такая скорость изме­нения деформаций позволяет достигать вершины диаграммы при­мерно за 1 час.

Если по мере падения сопротивления бетона удаётся в той же мере снижать нагрузку, то может быть получен нисходящий участок диаграммы. Знать как работает бетон на этом участке важно для ряда конструкций и видов нагружения.

Полная относительная деформация при однократном загружении бетонной призмы кратковременно приложенной нагрузкой без учёта усадки бетона равна , т.е. она состоит из упругой части, равной и неупру­гой , которая после снятия нагрузки практически не исчезает. Точнее небольшая доля неупругих деформаций (около 10%) в течение некоторого времени после разгрузки исчезает. Эта часть пластической деформации называется деформацией упруго­го последействия εер. Кроме того, исчезает упругая составляющая пластической деформации εе1,характеризующая обратимое сплю­щивание пустот цементного камня. Таким образом, после разгрузки бетона окончательно остается остаточная деформация, возникаю­щая из-за необратимого сплющивания пустот цементного камня и излома их стенок εрl1(рис. 13). R2 – напряжение в момент, пред­шествующий началу интенсивного разрушения бетона (условная ве­личина).

Рис. 12. К определению продольных деформаций бетона при сжа­тии:

а – опытный образец (призма) с наклеенными на боковых по­верхностях электротензодатчиками; б – диаграмма при при­ложении нагрузки ступенями; 1 – прямая упругих деформаций, 2 – кривая полных деформаций

При невысоких напряжениях ( ) превалируют упругие деформации ( ), а при бетон можно рассмат­ривать как упругий материал. При осевом растяжении диаграмма имеет тот же характер что и при сжатии.

Необходимо обратить внимание на предельные деформации, при которых бетон разрушается (точнее начинает разрушаться). Неза­висимо от режима нагружения за предельное значение деформации бетона принимают величину, соответствующую максимальному на­пряжению. Считают приближенно, что средние значения предель­ных деформаций тяжёлого бетона любого класса составляют при кратковременном действии нагрузки:

— при сжатии еиЬ = 0, 002 (2 мм на 1 м);

— при растяжении еиbt = 0,00015 (0,15 мм на 1 м).

Знание предельных деформаций бетона необходимо, так как от их величин зависит диапазон совместной работы арматуры с бето­ном и эффективность её использования.

Деформации бетона при длительном действии нагрузки. При длительном действии нагрузки (t > 60 минут), даже постоянной, неупругие деформации с течением времени значительно увеличива­ются. В реальных же условиях в процессе строительства зданий и сооружений идёт постепенное ступенчатое нагружение железобетонных элементов.

Нарастание неупругих деформаций при длительном действии на­грузки называется ползучестью бетона. Впервые ползучесть бетона была обнаружена И. Самовичем в 1885 г. Деформации ползуче­сти состоят из двух частей: пластической, протекающей почти од­новременно с упругой, и вязкой, для развития которой требуется определённое время. При длительном загружении бетона постоян­ной нагрузкой, которая меньше разрушающей, диаграмма сжатия выглядит так, как показано на рис. 14, а. Участок 0 — 1 этой диа­граммы соответствует деформации, возникающей при загружении; кривизна этого участка зависит, главным образом, от скорости загружения. Участок 1 — 2 характеризует нарастание неупругих де­формаций при постоянном значении напряжений. Наибольшая ин­тенсивность нарастания деформаций ползучести наблюдается в пер­вые 3…4 месяца после загружения бетона (рис. 14, б). Они достига­ют к концу этого периода 40…45% от eupl,через год они составляют приблизительно 65…75% от eupl,и через два года 80…90%. Затем на­растание этих деформаций по мере приближения к предельной для данных условий величине euplпостепенно затухает. Замечено, что нарастание деформаций ползучести прекращается одновременно с окончанием нарастания прочности бетона. Опыты показывают, что независимо от того, с какой скоростью достигнуто напряжение σь, конечные неупругие деформации, соответствующие этому напряже­нию, всегда будут одинаковы (рис. 14, в).

Читайте также:  Растяжения капсулы при периартрите

Рис. 14. Неупругие деформации бетона в зависимости:

а, б – от длительности действия нагрузки; в – от скорости начального загружения

.

Деформации ползучести развиваются главным образом в на­правлении действия усилий и могут превышать упругие в 3…4 раза, т. е. εирl /εе — 3…4. Это обстоятельство заставляет с ними считаться при проектировании железобетонных конструкций.

Одновременно с ползучестью развиваются и деформации усадки, т. е.:

(1.13)

Природа ползучести бетона объясняется его структурой, дли­тельным процессом кристаллизации и постепенным уменьшением количества геля при твердении цементного камня. Под нагрузкой происходит постепенное перераспределение напряжений с испыты­вающей вязкое течение гелевой структурной составляющей на кри­сталлический сросток и зёрна заполнителей. Развитию деформаций ползучести способствуют также капиллярные явления, связанные с перемещением в микропорах и капиллярах избыточной воды под нагрузкой. С течением времени процесс перераспределения напря­жений затухает и деформирование прекращается.

Ползучесть бетона условно разделяют на линейную и нелиней­ную. Считают, что линейная ползучесть имеет место при (напряжение, соответствующее нижней границе микрораз­рушений). В этом случае деформацию ползучести определяют по формуле:

(1.14)

где с – мера ползучести бетона при сжатии .

В практических расчётах используют обычно предельную меру ползучести бетона спр, отнесенную ко времени t → ∞ (практически t = 3…4 годам). Её значения при для различных сроков загружения бетона приведены в СНиП 2.05.03-84 «Мосты и трубы» в табл. 3.

Обозначим через v= εе/εь коэффициент упругопластичности бетона, а через λ = εpl /εь – коэффициент пластичности бетона, тогда отношение

(1.15)

будет называться характеристикой ползучести бетона φ, которая из­меняется от 0 до 4.

Зависимость между с и φ можно получить из (1.14) и (1.15), учитывая, что , тогда φ = сЕb; φ и с вводятся в расчёт для количественной оценки деформаций линейной ползучести при сжатии.

Величина деформации ползучести зависит от многих факторов.

Загруженный в раннем возрасте бетон (при прочих равных усло­виях) обладает большей ползучестью, чем старый бетон. Ползучесть бетона в сухой среде значительно больше, чем во влажной. Техно­логические факторы также влияют на ползучесть бетона: с увели­чением W/C и расхода цемента на единицу объёма бетонной смеси ползучесть возрастает; с повышением прочности зёрен заполнителя ползучесть уменьшается; с повышением класса бетона ползучесть уменьшается. Бетоны на пористых заполнителях обладают несколь­ко большей ползучестью, чем тяжёлые бетоны. Ползучесть зависит от вида цемента: наибольшей ползучестью обладают бетоны, при­готовленные на шлакопортландцементе или портландцементе. Пол­зучесть тем меньше (при прочих равных условиях), чем больше размеры поперечного сечения бетонного элемента. Максимальные деформации ползу­чести (при прочих равных условиях) достигаются при водонасыщении бетона в пределах 20…35%. Пропаривание бетона снижает его ползучесть на 10…20%, а автоклавная обработка – на 50…80%. Ползучесть бетона оказывает существенное влияние на ра­боту железобетонных конструкций под нагрузкой, что учитывают, например, при расчете внецентренно сжатых элементов, при оценке деформативности конструкций и при определении внутренних уси­лий в статически неопределимых конструкциях.

Деформации бетона при многократно повторяющемся действии нагрузки. Многократное повторение циклов нагрузки и разгрузки бетонного образца приводит к постепенному накоплению неупругих деформаций. Линии нагрузки и разгрузки образуют петлю гистере­зиса, площадь которой характеризует энергию, затраченную за один цикл на преодоление внутреннего трения.

При напряжениях, не превышающих предел выносливости , после достаточно большого числа циклов неупругие дефор­мации бетона, соответствующие данному уровню напряжений, по­степенно выбираются и бетон начинает работать упруго (рис. 15).

Рис. 15. Диаграмма при многократно повторном нагружении бетонного образца

При высоких напряжениях после некоторого числа циклов кривая достигает прямолинейного вида, а затем на­чинает искривляться снова, но уже в обратном направлении, т.е. вогнутостью в сторону оси напряжений. Искривление начинается с верхней части прямой (т.е. вблизи наивысшего напряжения) и появ­ляется точка перегиба. При продолжающемся повторении приложении нагрузки точка перегиба опускается всё ниже по кривой, пока не исчезнет. Тогда вся кривая оказывается вогнутой в сторону оси напряжений. При этом остаточные деформации после каждой разгрузки неогра­ниченно растут, а кривая всё больше наклоняется к оси абс­цисс. Петля гистерезиса всё больше увеличивается и, наконец, обра­зец хрупко разрушается.

Физические явления, происходящие в бетоне при повторных нагружениях, близки к явлениям, происходящим при действии очень длительных нагрузок, т.е. длительное нагружение можно рассмат­ривать как многократно повторное с .

При вибрационных нагрузках с большим числом повторений в минуту (200…600) наблюдается ускоренное развитие ползучести бе­тона, называемое виброползучестью или динамической ползучестью бетона.

Источник