Предел прочности растяжение изгиб сжатие

Предел прочности растяжение изгиб сжатие thumbnail

Определение механических свойств выполняется при различных условиях. В зависимости от скорости приложения нагрузки различают статические и динамические испытания. При статических испытаниях нагрузка прилагается медленно и плавно возрастает; при динамических – с высокой скоростью. Испытания могут выполняться при нормальной (комнатной), пониженной или повышенной температуре.

Наиболее распространенными механическими характеристиками являются: твердость, пределы прочности и упругости, ударная вязкость. Определяют также предел выносливости и предел ползучести.

Статические испытания

Определение прочноети при испытаниях на растяжение, сжатие, изгиб и кручение

Значение предела прочности материала зависит от схемы приложения нагрузки. Применяют различные методы определения прочности – при растяжении, сжатии, изгибе, кручении. Эти испытания отличаются соотношением между максимальными касательными и нормальными напряжениями, возникающими при приложении нагрузки, т.е. разной «жесткостью», которую характеризуют коэффициентом жесткости Предел прочности растяжение изгиб сжатие; чем больше доля нормальных напряжений, т.е. меньше значениеПредел прочности растяжение изгиб сжатие, тем жестче испытания.

Наиболее жесткими являются испытания на одноосное растяжение (Предел прочности растяжение изгиб сжатие, т.е. нормальные напряжения в два раза превышают касательные); наиболее мягкие – испытания на одноосное сжатие (α = 2, т.е. величина касательных напряжений вдвое превосходит нормальные). Между ними располагаются испытания на кручение (α = 0,8) и более жесткое (чем кручение) испытание на изгиб, при котором возникает неоднородное напряженное состояние – от растяжения (α = 0,5 – часть образца ниже нейтральной линии) до сжатия (α = 2 – часть образца выше нейтральной линии).

Выбор метода испытаний определяется свойствами материалов – пластичностью, твердостью. Для определения предела прочности следует выбирать наиболее информативный метод испытаний. Чем пластичнее материал, тем более «жесткими» должны быть испытания, и наоборот.

Для некоторых материалов определенные методы испытаний просто не применимы. Так, например, пластичные материалы (медь, алюминий и их сплавы, мягкие стали) нс разрушаются при испытаниях на изгиб, они изгибаются до соприкосновения концов образца. Для них прочность определяется испытаниями на растяжение.

Для твердых хрупких материалов жесткие испытания на растяжения неинформативны. Чем жестче испытания, тем меньше значения предела прочности; это снижает точность определений и не позволяет достаточно надежно выявить различие в свойствах разных материалов. Так, например, предел прочности быстрорежущей стали Р18 с высокой твердостью (63 IIRC) составляет при испытаниях на растяжение 1900…2000 МПа, а при испытаниях па изгиб – 2700…3000 МПа.

Испытания на растяжение выполняют на разрывных машинах. На этих же установках с помощью специальных приспособлений проводятся испытания на изгиб и сжатие. Для испытаний на кручение требуются специальные установки.

Испытания на растяжение (α = 0,5) – наиболее распространенный метод определения прочности конструкционных материалов. Наряду с пределом прочности при этих испытаниях определяют предел текучести и характеристики пластичности материала – относительное удлинение и сужение.

Испытания выполняются на разрывных машинах с использованием специальных образцов (рис. 2.1). Головки образцов помещаются в зажимы разрывной машины, и образцы растягивают до разрушения.

В процессе приложения нагрузки в образце возникает напряжение (σ), равное отношению приложенного усилия

Образец для испытаний на растяжение

Рис. 2.1. Образец для испытаний на растяжение

(P) к площади поперечного сечения образца (F): Предел прочности растяжение изгиб сжатие [МПа или кгс/мм2]. Под действием приложенной нагрузки возникает деформация – изменение размеров образца. Деформация может быть упругой или пластической.

Упругая деформация полностью снимается (исчезает) после снятия нагрузки и не приводит к изменениям в структуре и в свойствах материала. Различают абсолютную и относительную деформацию. Абсолютная (Предел прочности растяжение изгиб сжатие) – изменение размера (длины образца при испытаниях на растяжение), относительная (Предел прочности растяжение изгиб сжатие) – отношение абсолютной деформации к первоначальной длине (/), т.е. Предел прочности растяжение изгиб сжатие.

Между напряжением и величиной относительной упругой деформации существует линейная зависимость – закон Гука: Предел прочности растяжение изгиб сжатие, где Е – модуль упругости, характеризующий жесткость материала, т.е. способность сопротивляться упругим деформациям.

Пластическая деформация не исчезает после снятия нагрузки (согните алюминиевую проволоку; после того как нагрузка снята, проволока не разгибается – она пластически деформирована).

При испытаниях на растяжение строится диаграмма в координатах «относительное удлинение Предел прочности растяжение изгиб сжатие – напряжение Предел прочности растяжение изгиб сжатие» (рис. 2.2). Определяются: предел прочности Предел прочности растяжение изгиб сжатие (временное сопротивление разрыву); предел пропорциональности (Предел прочности растяжение изгиб сжатие) – максимальное напряжение, при котором отсутствует

Диаграмма растяжения

Рис. 2.2. Диаграмма растяжения:

Предел прочности растяжение изгиб сжатие – предел пропорциональности; Предел прочности растяжение изгиб сжатие – предел тякучести; Предел прочности растяжение изгиб сжатие – предел прочности; Предел прочности растяжение изгиб сжатие – упругая деформация; Предел прочности растяжение изгиб сжатие – пластическая деформация

пластическая деформация. Поскольку точное определение предела пропорциональности затруднено, в практике измеряют предел текучести (Предел прочности растяжение изгиб сжатие) – напряжение, вызывающее остаточную деформацию определенной величины, например (Предел прочности растяжение изгиб сжатие) – напряжение, при котором остаточная деформация равна 0,2% от первоначальной длины образца. Для более точного определения предела пропорциональности определяют Предел прочности растяжение изгиб сжатие, или Предел прочности растяжение изгиб сжатие.

Перед разрушением образец претерпевает пластическую деформацию, он удлиняется, при этом происходит образование шейки (рис. 2.3)– уменьшение диаметра. Относительное удлинениеПредел прочности растяжение изгиб сжатиеи относительное сужение Предел прочности растяжение изгиб сжатие Предел прочности растяжение изгиб сжатие (здесь Предел прочности растяжение изгиб сжатие и Предел прочности растяжение изгиб сжатие – начальная до испытаний и конечная минимальная площадь образца, т.е. площадь шейки после разрушения) характеризуют пластичность материала. Чем больше эти характеристики, тем материал пластичнее.

Разрушенный образец после испытаний на растяжение

Рис. 2.3. Разрушенный образец после испытаний на растяжение

Испытания на изгиб (α от 0,5 до 2) проводят для материалов с высокой твердостью – свыше 52…53 HRC. Это закаленные инструментальные и быстрорежущие стали, твердые сплавы и др. Преимущества этого метода при определении прочности твердых инструментальных материалов заключаются в том, что напряженное состояние материала при испытаниях и возникающее при работе инструмента близки. При испытаниях на изгиб твердых материалов достигается бо́льшая точность, чем при испытаниях на растяжение. Во-первых, устраняется существенный недостаток испытаний на растяжение – перекосы (от неточности установки образа) при приложении нагрузки, а во-вторых, за счет больших значений предела прочности вследствие более мягких условий испытаний на изгиб.

Испытания проводят в основном на сосредоточенный изгиб (рис. 2.4). Предел прочности (Предел прочности растяжение изгиб сжатие) определяют по известной формуле сопротивления материалов: Предел прочности растяжение изгиб сжатие, где М – разрушающий изгибающий момент, Предел прочности растяжение изгиб сжатие(Р – измеренная при испытании разрушающая сила; l – расстояние между опорами); W – момент сопротивления сечению.

Для образцов прямоугольного сечения Предел прочности растяжение изгиб сжатие, для круглого Предел прочности растяжение изгиб сжатие. Эти значения момента сопротивления справедливы для случаев, когда разрушение происходит без пластического деформирования, т.е. для материалов с весьма высокой твердостью – свыше 65…66 HRC (это твердые сплавы, режущая керамика). Для материалов с меньшей твердостью, разрушению которых предшествует пластическая деформация (большинство случаев), следует использовать исправленное увеличенное значение момента сопротивления. Для образцов прямоугольного сечения Предел прочности растяжение изгиб сжатие; для образцов круглого сечения Предел прочности растяжение изгиб сжатие.

Испытания на кручение (α = 0,8) выполняют как для хрупких, так и для пластичных материалов. Они целесообразны для определения пределов прочности, текучести материалов, из которых изготавливают детали, работающие на кручение (например, торсионные валы). Стандартные испытания проводят на цилиндрических образцах с головками. Один конец образца закреплен неподвижно, второй зажат во вращающейся части испытательной машины (рис. 2.5).

При кручении цилиндрического образца возникает напряженное состояние чистого сдвига. В испытаниях определяют пределы текучести и прочности при сдвиге Предел прочности растяжение изгиб сжатие Эти характеристики определяют из следующих уравнений:

Предел прочности растяжение изгиб сжатие

где Предел прочности растяжение изгиб сжатие – разрушающий крутящий момент; Предел прочности растяжение изгиб сжатие – крутящий момент, вызываю-

Схема испытаний на сосредоточенный изгиб

Рис. 2.4. Схема испытаний на сосредоточенный изгиб

Схема испытаний на кручение

Рис. 2.5. Схема испытаний на кручение

щий остаточную деформацию определенной величины, например 0,2% (тогда получим предел текучести при сдвиге Предел прочности растяжение изгиб сжатие); Предел прочности растяжение изгиб сжатие – момент сопротивления кручению (полярный момент;. Для круглого сечения Предел прочности растяжение изгиб сжатие.

Испытания на кручения могут выполняться как натурные – на готовых деталях или инструментах. Так определяют, в частности, прочность сверл, косвенно оценивая прочность по величине разрушающего крутящего момента.

Испытания на сжатие (α = 2) являются мягким видом испытаний. Его используют для определения прочности хрупких материалов – чугун, бетон. Пластичные материалы при сжатии могут не разрушиться, а сплющиться.

Образцы из металлических материалов – цилиндрические с отношением высоты к диаметру 1…2. Так, для стандартных испытаний чугуна рекомендуются образцы диаметром 10…25 мм и высотой, равной диаметру.

Предел прочности при сжатии определяется как отношение разрушающей силы к площади первоначального сечения: Предел прочности растяжение изгиб сжатие (МПа или кгс/мм2].

На сжатие испытывают весьма хрупкие материалы, в частности алмаз, при этом достигается бо́льшая точность, чем при испытаниях па изгиб, из-за больших абсолютных значений предела прочности при сжатии. Так, пределы прочности алмаза при сжатии и изгибе соответственно равны 2000 и 500 МПа. Эти испытания выполняют на специальных установках для малых образцов.

Источник

Растяжение

Испытание на растяжение позволяет получить достаточно полную информацию о механических свойствах материала. Для этого применяют специальные образцы, имеющие в поперечном сечении форму круга (цилиндрические образцы) или прямоугольника (плоские образцы). На рис. 3.1 представлена схема цилиндрического образца на различных стадиях растяжения. Согласно ГОСТ 1497—84 геометрические параметры образцов на растяжение должны отвечать следующим соотношениям: /() = 2,82У7ф или /0 = = 5,65V^b, или /0 = 1 l,3VTb (гДе — начальная расчетная длина образца, Fq — начальная площадь поперечного сечения расчетной части образца). Для цилиндрических образцов отношение расчетной начальной длины /0 к начальному диаметру г/0, т.е. /0/б/0, называют кратностью образца, от которой зависит его конечное относительное удлинение. На практике применяют образцы с кратностью 2,5,5 и 10. Самым распространенным является образец с кратностью 5.

Схемы цилиндрического образца на различных стадиях растяжения

Рис. 3.1. Схемы цилиндрического образца на различных стадиях растяжения:

а — образец до испытания (/о и d$ — начальные расчетные длина и диаметр); б — образец, растянутый до максимальной нагрузки (/р и d? — расчетные длина и диаметр образца в области равномерной деформации); в — образец после разрыва (/к — конечная расчетная длина; dK — минимальный диаметр в месте разрыва)

Перед испытанием образец закрепляют в вертикальном положении в захватах испытательной машины. На рис. 3.2 представлена принципиальная схема типичной испытательной машины, основными элементами которой являются приводной нагружающий механизм, обеспечивающий плавное нагружение образца вплоть до его разрыва; силоизмерительное устройство для измерения силы сопротивления образца растяжению; механизм для автоматической записи диаграммы растяжения.

В процессе испытания диаграммный механизм непрерывно регистрирует так называемую первичную (машинную) диаграмму растяжения в координатах «нагрузка (Р) — абсолютное удлинение образца (А/)» (рис. 3.3). На диаграмме растяжения пластичных металлических материалов можно выделить три характерных участка: участок ОА — прямолинейный, соответствующий упругой деформации; участок ЛВ — криволинейный, соответствующий упругопластической деформации при возрастании нагрузки; участок ВС — также криволинейный, соответствующий упругопластической деформации при снижении нагрузки. В точке С происходит окончательное разрушение образца с разделением его на две части.

В области упругой деформации (участок О А) зависимость между нагрузкой Р и абсолютным упругим удлинением образца А/ пропорциональна и известна под названием закона Гука:

Предел прочности растяжение изгиб сжатие

где к = EF{)/1() — коэффициент, зависящий от геометрии образца (площади поперечного сечения Е0 и длины /0) и свойств материала (параметр Е).

Схема испытательной машины

Рис. 3.2. Схема испытательной машины:

1 собственно машина; 2 винт грузовой; 3 — нижний захват (активный); 4 — образец; 5 — верхний захват (пассивный); 6 силоизмерительный датчик; 7 — пульт управления с электроприводной аппаратурой; 8 индикатор нагрузок; 9 — рукоятки управления; 10 — диаграммный механизм; 11 — кабель

Схемы машинных (первичных) диаграмм растяжения пластичных материалов

Рис. 3.3. Схемы машинных (первичных) диаграмм растяжения пластичных материалов:

а — с площадкой текучести; 6 — без площадки текучести

Параметр Е (МПа) называют модулем нормальной упругости, характеризующим жесткость материала, которая связана с силами межатомного взаимодействия. Чем выше Еу тем материал жестче и тем меньшую упругую деформацию вызывает одна и та же нагрузка. Закон Гука чаще представляют в следующем виде:

Предел прочности растяжение изгиб сжатие

где а = P/F$ — нормальное напряжение; 8 = Д///0 — относительная упругая деформация.

Наряду с модулем нормальной упругости Е существует модуль сдвига (модуль касательной упругости) G, который связывает пропорциональной зависимостью касательное напряжение т с углом сдвига (относительным сдвигом) у:

Предел прочности растяжение изгиб сжатие

Еще одним важным параметром упругих свойств материалов является коэффициент Пуассона р, равный отношению относительной поперечной деформации (Ad/d^) к относительной продольной деформации (А///0). Этот коэффициент характеризует стремление материала сохранять в процессе упругой деформации свой первоначальный объем.

От коэффициента Пуассона р зависит соотношение между Е и G:

Предел прочности растяжение изгиб сжатие

Как следует из уравнения (3.1), Е больше G, так как для смещения атомов отрывом требуется большее усилие, чем для смещения сдвигом.

Значения модуля нормальной упругости Е, модуля сдвига G и коэффициента Пуассона р для некоторых материалов приведены в табл. 3.1.

При переходе от упругой деформации к упругопластической для некоторых металлических материалов на машинной диаграмме

Таблица 3.1

Значения модуля нормальной упругости Еу модуля сдвига G и коэффициента Пуассона р для некоторых материалов

Материал

Е, МПа

G, МПа

ц

Сталь

210 000

82 031

0,28

Медь листовая

113 000

42 164

0,34

Латунь

97 000

34 155

0,42

Цинк

82 000

32 283

0,27

Алюминий

68 000

25 564

0,33

Свинец

17 000

5862

0,45

растяжения может проявляться небольшой горизонтальный участок, который называют площадкой текучести (АЛ‘ на рис. 3.3, а). На этой стадии деформации в действие включаются новые источники дислокаций, происходят их спонтанное размножение и лавинообразное распространение по плоскостям скольжения. Макроскопическим проявлением этих процессов является образование на рабочей поверхности образца узких полос скольжения, получивших название линий Чернова — Людерса. Эти линии располагаются под углом приблизительно 45° к продольной оси образца по направлению действия максимальных касательных напряжений и отчетливо видны на его полированной поверхности. Однако многие металлы и сплавы деформируются при растяжении без площадки текучести.

С увеличением упругопластической деформации усилие, с которым сопротивляется образец, растет и достигает в точке В своего максимального значения. Для пластичных материалов в этот момент в наиболее слабом сечении образца образуется локальное сужение (шейка), где при дальнейшем деформировании происходит разрыв образца. На участке ОЛВ деформация распределена равномерно по всей длине образца, а на участке ВС деформация практически вся сосредоточена в зоне шейки.

При растяжении определяют следующие показатели прочности и пластичности материалов.

Показатели прочности материалов характеризуются удельной величиной — напряжением, равным отношением нагрузки в характерных точках диаграммы растяжения к площади поперечного сечения образца. Дадим определение наиболее часто используемым показателям прочности материалов.

Предел текучести (физический) (ат, МПа) — это наименьшее напряжение, при котором материал деформируется (течет) без заметного изменения нагрузки:

Предел прочности растяжение изгиб сжатие

где Р1 — нагрузка, соответствующая площадке текучести на диаграмме растяжения (см. рис. 3.3, а).

Если па машинной диаграмме растяжения нет площадки текучести (см. рис. 3.3, б)у то задаются допуском на остаточную деформацию образца и определяют условный предел текучести.

Условный предел текучести (a0i2, МПа) — это напряжение, при котором остаточное удлинение достигает 0,2% от начальной расчетной длины образца[1]:

Предел прочности растяжение изгиб сжатие

где Р0 2 — нагрузка, соответствующая остаточному удлинению A/q 2 = 0,002/0.

Временное сопротивление (предел прочности) (ав, МПа) — это напряжение, соответствующее наибольшей нагрузке Ршах, предшествующей разрыву образца:

Предел прочности растяжение изгиб сжатие

Истинное сопротивление разрыву (5К, МПа) — это напряжение, определяемое отношением нагрузки Рк в момент разрыва к площади поперечного сечения образца в месте разрыва Рк:

Предел прочности растяжение изгиб сжатие

где
Предел прочности растяжение изгиб сжатие

Показатели пластичности. Пластичность — одно из важных механических свойств металла, которое в сочетании с высокой прочностью делает его основным конструкционным материалом. Дадим определение наиболее часто используемым показателям пластич11ости матерналов.

Относительное предельное равномерное удлинение (8р, %) — это наибольшее удлинение, до которого образец деформируется равномерно по всей его расчетной длине, или, другими словами, это отношение абсолютного приращения расчетной длины образца AL до нагрузки Ртах к ее первоначальной длине /о (см. рис. 3.3, а):

Предел прочности растяжение изгиб сжатие

Аналогично предельному равномерному удлинению существует относительное предельное равномерное сужение (|/р, %):

Предел прочности растяжение изгиб сжатие

где Рр= ndp/4 — площадь поперечного сечения образца, соответствующая Ртах.

Из условия постоянства объема образца при растяжении можно получить связь между ц/р и 5р в относительных значениях (безразмерном виде):
Предел прочности растяжение изгиб сжатие

При разрушении образца на две части определяют конечные показатели пластичности: относительное удлинение и относительное сужение образца после разрыва.

Относительное удлинение после разрыва (8, %) — это отношение приращения расчетной длины образца после разрыва А/к к ее первоначальной длине:

Предел прочности растяжение изгиб сжатие

Относительное удлинение после разрыва зависит от соотношения /0 и (/0, г.е. от кратности образцов. Чем меньше отношение Iq/Fq и кратность образца, тем больше 8. Это объясняется влиянием шейки образца, где имеет место сосредоточенное удлинение. Поэтому индекс у 8 указывает на кратность образца1, например 85, 810.

Относительное сужение после разрыва (|/, %) — это отношение уменьшения площади поперечного сечения образца в месте разрыва AFK к начальной площади поперечного сечения:

Предел прочности растяжение изгиб сжатие

В отличие от конечного относительного удлинения конечное относительное сужение не зависит от соотношения Iq и Fq (кратности образца), так как в последнем случае деформацию оценивают в одном, наиболее узком, сечении образца.

Диаграммы условных и истинных напряжений и деформаций. Протяженность первичных диаграмм растяжения вдоль осей координат Р и А/ зависит от абсолютных размеров образцов. При постоянной кратности образца чем больше его длина и площадь поперечного сечения, тем выше и протяженнее первичная диаграмма растяжения. Однако если эту диаграмму представить в относительных координатах, то диаграммы для образцов одной кратности, но разных размеров будут одинаковы. Так, если по оси ординат откладывать условные напряжения а, равные отношению нагрузки Р к начальной площади поперечного сечения Fq, а по оси абсцисс — условные удлинения 8, равные отношению абсолютного приращения длины образца А/ к его начальной длине /0, то диаграмму называют диаграммой условных напряжений и деформаций (или просто условной диаграммой). На рис. 3.4, а схематически представлена условная диаграмма «а — 8». На этой диаграмме отмечены условный предел текучести сто,2> временное сопротивление ств, конечное условное напряжение ак, условное предельное равномерное удлинение 8р и условное относительное удлинение после разрыва 8К.

Однако более объективную информацию можно получить, если диаграмму растяжения представить в других координатах: «S — г». Истинное напряжение S определяется как отношение текущей на- [2]

Схемы условной (а) и истинной (6) диаграмм растяжения пластичных материалов

Рис. 3.4. Схемы условной (а) и истинной (6) диаграмм растяжения пластичных материалов

грузки Р к текущей площади поперечного сечения F, которое непрерывно уменьшается в процессе растяжения:

Предел прочности растяжение изгиб сжатие

Истинное удлинение г учитывает непрерывно изменяющуюся длину образца в процессе его растяжения, и поэтому его можно определить как сумму бесконечно малых относительных деформаций (II/I при переменном /:

Предел прочности растяжение изгиб сжатие

Диаграмму в координатах «S — е» называют диаграммой истинных напряжений и деформаций (или просто истинной диаграммой). На истинной диаграмме, как и на условной, можно найти характерные точки, соответствующие истинному пределу текучести[3]5о,2> истинному временному сопротивлению 5В, истинному сопротивлению разрыву 5К, а также истинному предельному равномерному удлинению ?р и истинному конечному удлинению гк (рис. 3.4, б).

Значения предела текучести ат (а02), временного сопротивления а„, предельного равномерного удлинения 8р, истинного сопротивления разрыву 5К, относительных удлинения 85 и сужения у после разрыва для некоторых марок стали представлены в табл. 3.2.

Источник