Предел прочности при растяжении вольфрам

Предел прочности при растяжении вольфрам thumbnail
  • Главная
  • Справочник
  • Свойства вольфрама

Вольфрам (W) – удивительный металл с прекрасными физическими и химическими характеристиками. Его активно применяют практически во всех отраслях промышленности.

вольфрам руда

Физические свойства вольфрама:

  • твердый тугоплавкий и тяжелый металл (вес вольфрама почти в 2 раза больше, чем у свинца);
  • масса вольфрама составляет 184 г/моль;
  • сплавы W отличаются прочностью, твердостью и высоким сопротивлением к высоким температурам;
  • цвет зависит от способа получения (порошок имеет серый, темно-серый или черный цвет, сплавленный W – серый оттенок, напоминающий цвет платины);
  • плотность вольфрама при нормальних условиях равна 19, 25 г/м3.

Температура плавления вольфрама составляет 3410 °C — соизмерима с температурой на поверхности Солнца – 6690 °C. Высокая твердость вольфрама позволяет применять его в химической промышленности и металлургии. При этом сопротивление вольфрама зависит только от температуры.

Химические свойства вольфрама:

  • в природе состоит из стабильных изотопов (5 штук), массовые числа которых находятся в пределах 180-186;
  • отделение 74 электронов атома W происходит легко;
  • обладает 6 валентностью, в соединениях может иметь 0, 2, 3, 4 и 5-валентным;
  • орбита элемента включает 2 яруса, что позволяет образовать крепкую химическую связь.

вольфрам руда

Наука относит вольфрам к химически активным элементам. Он может вступать в различные реакции и образовывать как простые, так и сложные соединения. В сплавах W чаще всего остается химически связанным. При этом с окислителями (например, с кислородом) он реагирует быстрее, чем другие металлы рода «тяжеловесов».

В случае нагревания элемента он еще быстрее вступает в реакцию с кислородом. Если в реакции участвуют водные пары, реакция протекает гораздо быстрее. Ученые выяснили: при нагреве элемента до 500 °C получается WO2 — низкий окислитель с высокой устойчивочтью. Он затягивает поверхность металла коричневой пленкой. Если повышать температуру — можно получить еще один окислитель, который называют промежуточным (W4O11). Он имеет синюю окраску, а если продолжить нагрев до температуры в 923°C, она изменится на лимонно-желтую. Этому будет способствовать WO3.

Если с вольфрамом смешивают сухой фтор, то даже при небольшом подогреве можно получить вещество WF6. Его именуют гексафторидом. Оно может плавиться даже при 2,5 градусах, а кипеть при 19,5. Такое же соединение можно получить и при использовании хлора. Однако для этой реакции потребуется высокая температура — около 600 °C.

Также вольфрам легко вступает в реакции с йодом и бромом. С ними он образовывает такие малоустойчивые соединения как дибромид, ментамид, а также дииодид и тетрадид. При высоких температурах вольфрам соединяется с селеном, азотом, серой, а также с кремнием и углеродом.

Одним из интересных соединений считают карбонил. В этой реакции вольфрам реагирует на окись углерода. Именно здесь и проявляется его нулевая валентность. Однако это вещество сложно назвать устойчивым. Поэтому его можно получить только при создании специальных условий. Из карбонила получают плотные и ультратонкие покрытия чистого вольфрама.

Нужно уделить внимание и вольфрамовым соединениям. Некоторые из них поддаются полимеризации, в частности окись вольфрама.

атом вольфрама

Свойства атома

  • Имя, символ, номер  —   Вольфрам/Wolframium (W), 74
  • Атомная масса (молярная масса), г/моль  —   183,84 а. е. м.
  • Электронная конфигурация  —   [Xe] 4f14 5d4 6s2
  • Радиус атома, пм  —   141

Химические свойства

  • Ковалентный радиус, пм  —  170
  • Радиус иона, пм  —  (+6e) 62 (+4e) 70
  • Электроотрицательность, шкала Полинга  —  2.3
  • Электродный потенциал, В  —  W < W3+ 0,11 
  • W < W6+ 0,68
  • Степени окисления  —  6, 5, 4, 3, 2, 0
  • Энергия ионизации, кДж/моль(1-й ионизац. потенциал, эВ)  —  769,7 (7,98)

Термодинамические свойства простого вещества

  • Плотность, кг/м3 (при н. у., г/см3)  —  19300 (19,3)
  • Температура плавления, °C, K  —  3422, 3695
  • Температура кипения, °C, K  —  5555, 5828
  • Теплота плавления, кДж/кг, кДж/моль  —  191, 35
  • Теплота испарения, кДж/кг, кДж/моль  —  4482, 824
  • Теплоемкость, кДж/(кг·°С)  —  0,134
  • Молярная теплоемкость, Дж/(K·моль)  —  24,27
  • Молярный объем, см3/моль  —  9,53

вольфрам руда

Кристаллическая решетка простого вещества

  • Структура решетки  —  кубическая объемноцентрированая
  • Параметры решетки, A  —  3,160
  • Температура Дебая, K  —  310,00

Прочие характеристики

  • Теплопроводность, K, Вт/(м·К)  —  300, 173
  • Удельное электросопротивление при 20°С, ом·мм2/м  —  5,03
  • Коэффициент теплопроводности при 20°С, кал/ (см·сек·град)  —  0,4
  • Коэффициент линейного расширения, 1/град  —  43·10-6
  • Временное сопротивление при растяжении, кг/мм2  —  35

Источник

    МЕДИ СПЛАВЫ — сплавы на ото ве меди. В виде бронзы применялись за 3000 лет до н. э. В жидком состоянии медь сплавляется со многими элементами, с большинством из них — в любом соотношении. Лишь вольфрам, молибден, осмий, рутений и тантал практически не сплавляются с нер. В твердом состоянии макс. растворимость элементов (в альфа-твердом растворе меди) изменяется в очень широких пределах от сотых и десятых долей процента (хром, ниобий, свинец, ванадий, цирконий) до процентов (серебро, алюминий, мышьяк, бериллий, кадмий, кобальт, железо, магний, кремний, титан и др.) и десятков процентов (индий, олово, цинк). Неограниченно растворяются никель, золото, марганец, палладий и платина. Однако с золотом, марганцем, палладием и платиной М. с. в твердом состоянии претерпевают превращения. С увеличением концентрации легирующего элемента в альфа-твердом растворе меди повышается мех. прочность сплавов их теплопроводность и электропроводность уменьшаются (менее всего при легировании серебром). К вредным примесям относятся висмут, сурьма, свинец и углерод (в медноникелевых сплавах), к-рые приводят к хрупкости. Стойкость против коррозии М. с. зависит от природы легирующего элемента и окружающей среды. Повышают стойкость никель, олово и алюминий. С понижением т-ры раст  [c.780]

Читайте также:  Мазь от растяжений долгит

    Основными легирующими элементами стали являются хром, никель, молибден, вольфрам, ванадий, титан, алюминий, марганец, кремний, бор. Неизбежными примесями в сталях являются марганец, кремний, фосфор, сера. Легирующие элементы, вводимые в углеродистую сталь, изменяют состав, строение, дисперсность и количество структурных составляющих и фаз. Фазами легированной стали могут быть твердые растворы — легированный феррит и аустенит, специальные карбиды и нитриды, интерметаллиды, неметаллические включения — окислы, сульфиды, нитриды. Как правило, за счет легирования повышаются прочностные характеристики стали (пределы прочности и текучести). [c.66]

    Вольфрам оказывает сравнительно слабое влияние на механические свойства сталей, но все же несколько повышает пределы прочности и текучести. [c.161]

    Металлический рений является вторым после вольфрама металлом по тугоплавкости температура плавления 3180° С. Рений единственный из тугоплавких металлов V—VII групп имеет гексагональную плотноупакованную решетку, в то время как все остальные имеют кубическую объемно-центрированную. В связи с этим рений характеризуется более высокой упругостью, прочностью и пластичностью, чем молибден и вольфрам. Так, по значению модуля упругости он уступает только осмию и иридию, а по плотности — осмию, иридию и платине. Рений имеет высокий предел длительной прочности при повышенных температурах. При 538° С предел прочности (в кГ/мм ) рения равен 77,7, при 1093° — 56,7, при 1371° — 34,3, при 1649° — 21,7, при 2205° С — 8,8, что значительно превосходит значения предела прочности таких тугоплавких металлов, как W, Мо, Та, Nb, Сг. В отличие от молибдена и вольфрама рений при 20° С обладает пластичностью, в то время как молибден и вольфрам хрупки. Высокая пластичность сохраняется и в рекристаллизованном состоянии. [c.17]

    Вольфрам и ванадий повышают предел прочности и жаропрочность легированных сталей. [c.71]

    Гафний сочетает достаточно большое сечение захвата с хорошими механическими и коррозионными свойствами Кроме того, он не выгорает под действием излучения, что делает его важным компонентом современных поглотителей нейтронов Цирконий служит хорошим модификатором при производстве стали, повышающим предел прочности и улучшающим свариваемость В быстрорежущ х сталях цирконием можно частично заменить вольфрам Некоторые марки стали содержат до 1 % 2г [c.18]

    Металлы с гранецентрированной кубической решеткой (медь, алюминий, никель, свинец, -железо, аустенитные стали) с понижением температуры сохраняют пластичность, у них увеличиваются пределы текучести и прочности, повышается твердость и уменьшается ударная вязкость. Металлы с объемноцентрированной кубической решеткой (а-железо, вольфрам, магний, цинк, феррит-ные стали, чугун и др.) при низких температурах становятся хрупкими. Металлы с гексагональной структурой (титан и некоторые его сплавы) занимают промежуточ- [c.57]

    При большой механической прочности эти весы имели высокую чувствительность вес 2,5 10- Г создавал после усиления выходной сигнал в 1 В. Высокая чувствительность явилась следствием использования очень тонкой (с1 = 10 мкм) вольфрамовой нити. При хорошей амортизации нулевое положение коромысла флюктуировало в пределах отклонения, эквивалентного 4 10 Г. Применением обратной связи колебание весов вовсе исключалось. Наконец, эти весы можно было обезгаживать до температур свыше 400° С, поскольку вся конструкция полностью изготавливалась из тугоплавких материалов, таких как плавленый кварц и вольфрам. [c.144]

    Какие качества приобретают жаропрочные сплавы от того, что участвующие в их композиции металлы (и неметаллы) чисты Прежде всего повышаются предел длительной прочности при высоких температурах и сопротивление переменным нагрузкам и термическим напряжениям. Для новой техники особое значение имеют высокопрочные сплавы на основе — чистых тугоплавких металлов с высоким уровнем межатомной связи, например титан, ниобий, тантал, молибден, вольфрам. Именно примеси внедрения несут главную ответственность за низкотемпературную хрупкость тугоплавких металлов, имеющих объемноцентрированную решетку. А хрупкость — это пока главное препятствие на пути широкого применения данных металлов в технике. [c.34]

    Не менее ценными свойствами обладает гальваноплас-тнческий сплав кобальт—вольфрам—никель. До специальной термической обработки предел прочности при растяжении тройного сплава составляет 333—359 Мн/м . Однако осадок этого сплава имеет слоистую структуру, что приводит к образованию трещин в нем. После термообработки слои исчезают. [c.134]

    Вольфрам имеет самую высокую температуру плавления и самое низкое давление пара среди металлов. Вольфрамовая проволока имеет самый высокий предел прочности при растяжении и предел текучести до 420 кПмм . [c.10]

Читайте также:  Голеностопное растяжение связок симптомы и лечение

    В процессе работы было установлено, что те же показатели прочности для композиции вольфрам — медь можно получить Б результате армирования материала очень короткими волокнами. Эго представляет значительный интерес. Вполне вероятна возможность получения материала с пределом прочности при растяжении свыше 700 кгс1мм при использовании вместо коротких и относительно толстых волокон—усов, прочность которых приближается к 140Э кгс мм . [c.191]

    Примеси — железо, мышьяк, сурьма и висмут — уменьшают тягучесть, повышая хрупкость, свинец и медь повышают предел прочности, но уменьшают ковкость вольфрам и молибден повышают точку плавления и увелн- чивают твердость. [c.634]

    В табл, 7.1 приведены некоторые свойства металлоп. Прочность металлов находится в пределах 10—300 кгс/мм , модуль упругости изменяется от 1750 кгс/мм (свинец) до 42-Ю кгс/мм (вольфрам). Известно, что металлические волокна, так же как металлы, обладают высокими электропроводностью, теплопроводностью, а некоторые из них сильными магнитными свойствами. Это дает возможность получать композиции со специфическими свойствами. Например, для создания композиционных материалов с заданным располол ением в них волокон достаточно налол сить внешнее магнитное поле при их изготовлении. [c.323]

Тугоплавкие материалы в машиностроении Справочник (1967) — [

c.0

]

Источник

Предел прочности при растяжении вольфрам

14.05.2015

Появление в начале XX в. твердых сплавов, обладающих большой теплостойкостью, позволило значительно увеличить скорость резания металлов, бурения и обработки твердых материалов.
Твердость углеродистых сталей обусловливается образованием в стали (в процессе закалки) твердой составляющей — карбида железа — твердостью около 7 по шкале Мооса. Твердые сплавы состоят главным образом из карбидов тугоплавких металлов, твердость которых составляет 9 и выше единиц, т. е. приближается к твердости алмазов.
При производстве твердых сплавов применяются в основном карбиды трех металлов — вольфрама, титана и кобальта.

Вольфрам

Вольфрам — один из наиболее тяжелых и тугоплавких металлов. Ow вполне устойчив на воздухе при комнатной температуре, однако в присутствии влаги порошкообразный вольфрам медленно окисляется и превращается в желтую трехокись вольфрама. При 400—500° вольфрам начинает окисляться на воздухе.
Вольфрам не корродирует в щелочных растворах при отсутствии кислорода; на него не действует плавиковая кислота. Горячая концентрированная азотная кислота медленно растворяет вольфрам, а горячие концентрированные серная и соляная кислоты реагируют с вольфрамом очень слабо.
Механические свойства вольфрама сильно зависят от предшествующей обработки. Предел прочности при растяжении спеченных вольфрамовых стержней (диаметром 6 мм) составляет примерно 13 кг/мм2. После ковки предел прочности увеличивается до 150 кг/мм2. При дальнейшем увеличении степени деформации после волочения предел прочности (вольфрамовая проволока диаметром 0,03 мм) достигает 400 кг/мм2 что значительно превосходит предел прочности многих известных материалов. Прочность вольфрамовой нити уменьшается при рекристаллизации.
Предел прочности при растяжении вольфрамовой проволоки диаметром 0,6 мм при различных температурах приведен ниже:

Вольфрам и твердые сплавы

Вольфрам — сравнительно твердый металл: спеченные вольфрамовые брикеты обладают твердостью около 255 по Виккерсу, а твердосгь кованых брикетов достигает 488 по Виккерсу.
Относительное удлинение холоднодеформированного вольфрама колеблется от 0 до 4% и незначительно возрастает с повышением температуры. Добавка тория повышает относительное удлинение вольфрамовой проволоки до 20%.
Вольфрамовые прутки, полученные при закрытой ковке спеченных вольфрамовых брикетов, сравнительно легко поддаются волочению и прокатке. Вольфрам поддается пайке серебряными припоями.
Для изготовления изделий (прутков, полос, листов и др.) из вольфрама применяются вольфрамовые штабики, поставляемые по техническим условиям ТУОР 6—53. Штабики должны содержать не менее 99,85% вольфрама.
Допустимое содержание примесей R2O3 (сумма окислов трехвалентных металлов) — 0,02%), никеля — 0,005%, окиси кальция — 0,015%, окиси кремния — 0,01% и молибдена — 0,04%.
Вольфрамовые штабики изготовляются из вольфрамового порошка, полученного восстановлением водородом вольфрамовой кислоты и других вольфрамовых соединений, по кондиции соответствующих требованиям ГОСТ 2197—43.

Твердые сплавы

Твердые сплавы, производимые в России, делят по химическому составу на две основные группы: однокарбидные вольфрамокобальтовые сплавы (BK) и двухкарбидные вольфрамотитанокобальтовые сплавы (TK).
Сплавы каждой группы подразделяются на марки.
Сплавы первой группы применяют в основном для обработки чугуна, цветных металлов, неметаллических материалов, а также в горнорудной промышленности. Сплавы второй группы применяют для обработки сталей.
В зависимости от содержания кобальта, величины зерна основных карбидов и соотношения их в сплаве можно в широких пределах изменять физико-механические свойства твердых сплавов.
Химический состав некоторых отечественных твердых сплавов и их физико-механические свойства приведены в табл. 40.
Износоустойчивость металлокерамических сплавов в 15—50 раз выше износоустойчивости легированных сталей лучших сортов. Износоустойчивость твердых сплавов уменьшается с повышением содержания кобальта в сплаве, что объясняется нарушением карбидного жесткого скелета (карбидные зерна разъединяются и сплав теряет свою стабильность).
Твердые сплавы обладают высокой теплостойкостью, т. е. способностью сохранять основные механические свойства при нагревании. При повышенном содержании кобальта в сплаве его теплостойкость снижается.

Вольфрам и твердые сплавы

  • Молибден
  • Олово и его сплавы
  • Цинк и его сплавы
  • Свинец и его сплавы
  • Никель и его сплавы
  • Медь и сплавы на медной основе
  • Титан и его сплавы
  • Магний и его сплавы
  • Алюминий и его сплавы
  • Цветная металлургия в 1959-1965 гг
Читайте также:  Растяжение связок на стопе ближе к пальцам

Источник

Вы здесь

 Предел прочности при растяжении

Предел прочности при растяжении (сопротивление на разрыв) или временное сопротивление разрыву σв – механическое напряжение, выше которого происходит разрушение материала. Поскольку при оценке прочности время нагружения образцов часто не превышает нескольких секунд от начала нагружения до момента разрушения, то его также называют условно-мгновенным пределом прочности, или хрупко-кратковременным пределом прочности.

Предел прочности при растяжении измеряется:

1 кгс/мм2 = 10-6 кгс/м2 = 9,8·106 Н/м2 = 9,8·107 дин/см2 = 9,81·106 Па = 9,81 МПа.

Предел прочности при растяжении

Материалσв
кгс/мм2107 Н/м2МПа
 Металлы
Алюминий8-117,8-10,878-108
Алюминий отожженный9,1-10,958,96-10,7589-108
Бериллий1413,8138
Бронза (91 % Cu + 6 % Sn + 3 % Zn)20-3819,6-37,3196-373
Ванадий18-4517,6-44,2176-442
Вольфрам120-140118,0-137,51180-1375
Вольфрам отожженный71,3-82,569,9-80,9699-809
Дюраль40-5039,2-49,1392-491
Железо кованное40-6039,2-58,9392-589
Гафний35-4534,5-44,2345-442
Золото14-1613,8-15,7138-157
Золото отожженное12,612,4124
Инвар7876,5765
Индий5,15,0550,5
Кадмий6,46,363
Кальций6,1660
Кобальт отожженный49,848,9489
Константан (60 % Cu + 40 % Ni)3231,4314
Латунь (66 % Cu + 34 % Zn)10-209,8-19,698-196
Магний18-2517,6-24,5176-245
Магний литой3029,4294
Медь22-2421,6-23,5216-235
Медь деформированная20,4-25,520-25200-250
Молибден40-7039,3-68,6393-686
Молибден литой31,430,8308
Никель40-5039,3-49,1393-491
Ниобий35-5034,5-49,1345-491
Ниобий отожженный32,8-41,432,2-40,6320-406
Олово1,7-2,51,7-2,517-25
Олово литое1,5-2,51,5-2,415-24
Палладий18-2017,6-19,6176-196
Палладий литой18,618,2182
Платина24-3423,5-34,0235-34
Родий отожженный5655550
Свинец1,1-1,31,1-1,310,8-12,7
Серебро10-159,8-14,798-147
Серебро отожженное13,813,5135
Сталь инструментальная45-6044,1-58,9441-589
Сталь кремнехромомарганцовистая1551521520
Сталь специальная50-16049-157491-1570
Сталь рельсовая70-8068-78687-785
Сталь углеродистая32-8031,4-78,5314-785
Тантал20-4519,6-44,2196-442
Титан25-3524,5-34,5245-345
Титан отожженный3029,6296
Хром30-7029-69294-686
Цинк11-1510,8-14,7108-147
Цирконий25-4024,5-39,3245-393
Чугун10-129,8-11,898-118
Чугун ковкий2019,6196
Чугун серый мелкозернистый21-2520,6-24,5206-245
Чугун серый обыкновенный14-1813,7-17,7137-177
 Пластмассы
Аминопласт слоистый87,878
Асботекстолит6,5-11,96,4-11,764-117
Винипласт4-63,9-5,939-59
Гетинакс15-1714,7-16,7147-167
Гранулированный сополимер43,939
Древесно-слоистый пластик ДСП-Б (длинный лист)2221,6216
Древесный коротковолнистый волокнит К-ФВ2532,9429,4
Капрон стеклонаполненный15-1814,7-17,6147-176
Пенопласт плиточный0,060,060,59
Пенопласт ФК-200,170,171,7
Полиакрилат (оргстекло)54,949
Полиамид наполненный П-685-64,9-5,949-59
Полиамид стеклонаполненный СП-687,4-8,57,3-8,373-83
Поливинилхлорид неориентированный3-52,9-4,929-49
Поликапроамид6,0-6,55,9-6,459-64
Поликапроамид стеклонаполненный12,9-15,012,7-14,7127-147
Поликарбонат (дифион)6,0-8,95,9-8,759-87
Поликарбонат стеклонаполненный12,5-15,012,3-14,8123-148
Полипропилен ПП-12,52,525
Полипропилен стеклонаполненный5,65,555
Полистирол стеклонаполненный7,4-10,57,3-10,373-103
Полистирол суспензионный ПС-С4,03,939
Полистирол эмульсионный А3,5-4,03,4-3,934-39
Полиформальдегид стабилизированный6-75,9-6,959-69
Полиэтилен высокого давления кабельный П-2003-51,20-1,391,18-1,3711,8-13,7
Полиэтилен высокого давления П-2006-Т1,391,3713,7
Полиэтилен низкого давления П-4007-Э2,202,1621,6
Полиэтилен среднего давления2,70-3,292,65-3,2326,5-32,3
Стекло органическое ПА, ПБ, ПВ54,949
Стеклотекстолит3029,4294
Текстолит графитированный98,888
Текстолит поделочный ПТК109,898
Фаолит А1,731,717
Фенопласт текстолитовый8-107,8-9,878-98
Фторопласт 33-42,9-3,929-39
Фторопласт 421,9619,6
Целлон43,939
 Дерево
Бамбук2221,6216
Береза76,969
Бук87,878
Дуб87,878
Дуб (при 15 % влажности) вдоль волокон9,59,393
Ель54,949
Железное дерево2221,6216
Сосна54,949
Сосна (при 15 % влажности) вдоль волокон87,878
 Минералы
Графит0,5-1,00,5-0,94,9-9,8
 Различные материалы
Бакелит2-31,96-2,9419,6-29,4
Гранит0,30,292,9
Кетгут4241,2412
Лед (0 °С)0,10,0980,98
Нити кварцевые9088,3883
Нити шелковые2625,5255
Паутина1817,6176
Стекло органическое43,939

 Литература

  1. Краткий физико-технический справочник. Т.1 / Под общ. ред. К.П. Яковлева. М.: Физматгиз. 1960. – 446 с.
  2. Справочник по сварке цветных металлов / С.М. Гуревич. Киев.: Наукова думка. 1981. 680 с.
  3. Справочник по элементарной физике / Н.Н. Кошкин, М.Г. Ширкевич. М., Наука. 1976. 256 с.
  4. Таблицы физических величин. Справочник / Под ред. И.К. Кикоина. М., Атомиздат. 1976, 1008 с.

Источник