Предел прочности при растяжении латунь
ЛАТУНИ и ЛАТУННЫЙ ПРОКАТ
Классификация латуней
Латуни – это сплавы на основе меди и цинка. По химическому составу они подразделяются на простые (только медь и цинк) и специальные (наряду с медью и цинком содержат Pb, Fe, Al, Sn и другие элементы). Химический состав латуней определен в ГОСТ 15527-2004.
Простые латуни маркируются буквой Л и цифрой, обозначающей процентное содержание меди: Л96, Л90, Л85, Л80, Л75, Л68, Л63. Содержание цинка определяется по остатку от 100%.
Например, Л63 содержит 63% меди и 37% цинка. Простые латуни называют также двойными латунями (два основных компонента).
Специальные латуни кроме цинка содержат и другие легирующие элементы. Их маркировка включает в себя дополнительные буквы и цифры, указывающие легирующие элементы и их содержание в %. Содержание цинка определяется по остатку от 100%. Например ЛС59-1 содержит 59% меди, 1% свинца и 40% цинка. Многокомпонентные латуни делятся на классы, которые называются по основному (кроме цинка) легирующему элементу.
В таблице представлены основные марки латуней. Они используются как для литья (литейные), так и для производства проката (деформируемые). Некоторые латуни используются для сварки и пайки (ГОСТ 16130-90). В таблице они выделены желтой заливкой.
ПРОСТЫЕ | АЛЮМИНИЕВЫЕ | КРЕМНИСТЫЕ | ОЛОВЯННЫЕ | СВИНЦОВЫЕ |
Л96 | ЛА85-0.5 | ЛК80-3 | ЛО90-1 | ЛС74-3 |
Л90 | ЛА77-2 | ЛК62-0.5 | ЛО70-1 | ЛС64-2 |
Л85 | ЛА67-2.5 | ЛКС65-1.5-3 | ЛО62-1 | ЛС63-3 |
Л80 | ЛАЖ60-1-1 | ЛО60-1 | ЛС59-1 | |
Л75 | ЛАН59-3-2 | МАРГАНЦЕВЫЕ | ЛОК59-1-0.3 | ЛС59-2 |
Л70 | ЛЖМц59-1-1 | ЛС58-2 | ||
Л68 | ЛАНКМц75-2-2.5-0.5-0.5 | ЛМц58-2 | НИКЕЛЕВЫЕ | ЛС58-3 |
Л63 | ЛМцА57-3-1 | ЛН65-5 | ЛЖС58-1-1 |
Структура латуней.
В зависимости от химического состава латуни могут быть однофазными, двухфазными и многофазными.
Большинство простых латуней и некоторые специальные латуни являются однофазными (?-латуни) и представляют собой твердый раствор цинка в меди (?-фаза). Они обладают хорошей пластичностью во всем интервале температур, поэтому однофазные ?-латуни, например Л68, хорошо обрабатываются давлением при высоких и низких температурах.
Двухфазные латуни содержат включения твердых и хрупких фаз, например?-фазу. (?+?) латуни и другие двухфазные латуни ограниченно обрабатываются давлением (например, только при высоких температурах).
Свинцовые латуни имеют структуру (?+Pb) или (?+?+Pb). Практически не растворяясь в латуни, свинец присутствует в виде самостоятельной фазы, что обеспечивает отличную обрабатываемость резанием.
С увеличением содержания легирующих элементов могут возникать дополнительные твердые и хрупкие фазы. Поэтому легирование дополнительной компонентой обычно не превышает 0.5 – 3 % (см. таблицу марок латуней).
Фазовый состав определяет принадлежность к классу литейных или деформируемых латуней, возможность выпуска различных полуфабрикатов и их свойства. Подробнее о структуре латуней — Структура и свойства сплавов.
Общие свойства латуней
Простые латуни.
Твердость, предел текучести, предел прочности и пластичность простых латуней выше, чем у меди. В целом эти показатели растут с увеличением содержания цинка. Наилучшей пластичностью обладает Л68 (наибольшая глубина вытяжки для листов, наибольшее число перегибов для проволоки). В Л63 количество ?-фазы незначительно и оно мало отражается на пластичности Л63 и её способности к обработке давлением при низких температурах, но требует строгого соблюдения режима охлаждения.
Из простых латуней производится прокат всех видов. Все простые латуни имеют хорошие литейные свойства и могут использоваться для производства отливок. Антифрикционными свойствами простые латуни, также как и медь, не обладают.
Специальные латуни.
Специальные латуни обладают большей прочностью, лучшей коррозионной стойкостью к большему числу сред по сравнению с простыми латунями. Большинство специальных латуней имеют хорошие антифрикционные свойства.
Многие из них устойчивы к морской воде (оловянные, алюминиевые, кремнистые. марганцевые), перегретому пару (марганцевые латуни) и т.д. Некоторые из них сочетают отличные коррозионные свойства с хорошими антифрикционными свойствами (ЛК65-1.5-3, ЛО90-1, ЛЖМц59-1-1). Особая стойкость отдельных латуней к конкретным средам в специфических условиях эксплуатации определяет сферу их преимущественного применения. Например, оловянные латуни называют «морскими латунями».
Самыми распространенными являются свинцовые латуни. Их главное свойство – отличная обрабатываемость резанием. Это проявляется в возможности скоростной обработки заготовок с малым износом инструмента. При этом образуется мелкая сыпучая стружка, что определяет чистоту обрабатываемой поверхности и минимальный наклеп при резании. Это определяет применение свинцовых латуней для изготовления мелкоразмерных деталей для точной механики. Их отрицательной стороной является низкая ударная вязкость, низкая прочность на изгиб при наличии надреза. Самой распространенной из свинцовых латуней является ЛС59-1.
Наилучшую обрабатываемость имеет латунь ЛС63-3. По отношению к ней оценивают обрабатываемость цветных металлов и углеродистых сталей (в процентах).
Практически все латуни являются хорошим конструкционным материалом при низких температурах. Также как и медь они сохраняют пластичность и не становятся хрупкими при охлаждении вплоть до гелиевых температур.
За счет более высоких температур рекристаллизации (300-370оС) ползучесть латуней при высоких температурах меньше, чем у меди. В зоне средних температур (200-600оС ) в латунях наблюдается явление хрупкости. Оно связано с образованием хрупких межкристаллических прослоек из нерастворимых при низких температурах примесей (свинец, висмут). С повышением температуры ударная вязкость латуней уменьшается.
Электро- и теплопроводность латуней заметно ниже, чем у меди.
Некоторые параметры физических и механических свойств наиболее распространенных латуней (в сравнении с медью) приведены в таблице:
МАТЕРИАЛ | МЕДЬ | Л68 | Л63 | ЛС59-1 | ЛЖМц59-1-1 |
УДЕЛЬНОЕ ЭЛЕКТРОСОПРОТИВЛЕНИЕ | 0.018 | 0.064 | 0.065 | 0.065 | 0.093 |
ТЕПЛОПРОВОДНОСТЬ | 0.925 | 0.28 | 0.25 | 0.25 | 0.18 |
УДАРНАЯ ВЯЗКОСТЬ | 17 | 17 | 14 | 5 | 12 |
ПРЕДЕЛ ПРОЧНОСТИ НА СРЕЗ, МПа | 210 | 200 | 240 | 260 | 300 |
ОБРАБАТЫВАЕМОСТЬ. % | 18 | 30 | 40 | 80 | 25 |
Механические свойства латунного проката
Из латуней производятся практически все виды проката.
Прутки латунные (круглые, шестигранные и квадратные) выпускаются по ГОСТ 2060-2006. Номиналы и состояния прутков различных марок приведены в таблице.
Состояние прутка | Марка латуни и диаметры прутков в мм | |||||||
Л63 | Л63-3 | ЛС59-1 ЛС58-3 | ЛЖС 58-1-1 | ЛО62-1 | ЛМц 58-2 | ЛЖМц 59-1-1 | ЛАЖ 60-1-1 | |
Твердое | 3 — 12 | 3 — 20 | 3 — 12 | — | — | — | — | — |
Полутв. | 3 — 40 | 10 — 20 | 3 — 40 | 3 — 50 | — | |||
Мягкое | 3 — 50 | — | 3 — 50 | — | — | — | — | — |
Прессован. | 10 -180 | — | 10 — 180 |
На рисунке приведены значения основных параметров механических свойств для прутков из нескольких марок латуней и, для сравнения, из меди (правая часть рисунка).
Из рисунка хорошо видно насколько латуни тверже и прочнее меди.
Среди полутвердых прутковмаксимальную твердость и предел прочности имеют прутки из ЛЖМц59-1-1 и ЛМц58-2. Они сочетают отличные механические свойства с хорошими антифрикционными свойствами и повышенной коррозионной стойкостью в атмосферных условиях и в морской воде. Латунь ЛС63-3 в твердом состоянии имеет наибольшую прочность и твердость, но она очень хрупкая. Как и большинство латуней они имеют относительно узкое применение, основанное на сочетании специфических особенностей механических, коррозионных или технологических свойств конкретной марки латуни. Они выпускаются под заказ и в свободной продаже практически не встречаются.
Массово выпускаются прессованные, твердые и полутвердые прутки из дешевой латуни ЛС59-1 (круги и шестигранники) и круги из Л63.
Плоский латунный прокат общего назначения выпускается в виде фольги, ленты, листов и плит по ГОСТ 2208-2007 из латуней десятка различных марок в различных состояниях поставки (горячекатаные и холоднодеформированные изделия). Однако из всего возможного многообразия в свободной продаже присутствует только плоский прокат из Л63 и в меньшей степени из ЛС59-1. Прокат прочих марок производится под заказ.
Ниже приведены гистограммы, дающие общее представление о механических свойствах листов из Л63, ЛС59-1 и, для сравнения, из меди.
По пределу прочности и твердости Л63 заметно превосходит медь, при этом уступая ЛС59-1. Большая твердость нагартованных листов из ЛС59-1 при хорошей износостойкости определяют их применение для направляющих в станках.
На гистограмме не приведены значения параметров для Л68, поскольку они практически совпадают с таковыми для Л63. Тем не менее листы и ленты из Л68 обладают лучшей пластичностью. Листы и ленты этой марки применяются для изготовления деталей холодной штамповкой и глубокой высадкой, в т.ч. для изготовления гильз, поэтому её часто называют патронной латунью.
Пластичность определяется не столько величиной относительного удлинения при растяжении (этот показатель одинаков для Л68 и Л63), сколько технологическими испытаниями. По их результатам определяют число перегибов (для проволоки), минимальный радиус изгиба, глубину выдавливания пуансоном (для лент и листов), при которых образец ещё не разрушается.
По глубине выдавливания лент (без появления надрывов и трещин) Л68 превосходит и Л63 и, тем более, медь. Это различие растет с увеличением толщины ленты. Для этих латуней выдавливание возможно не только в мягком, но и в деформированных состояниях.
Латунные трубы общего назначения производят холоднодеформированными (Л63, Л68) и прессованными (Л63, ЛС59-1, ЛЖМц59-1-1) по ГОСТ 494-90. Из многих марок латуней производятся трубы специального назначения по различным ТУ. Широко используются бойлерные трубы из Л63 или из Л68, причем последние предпочтительнее из-за лучшей коррозионной стойкости Л68. Методом непрерывного литья из ЛС59-1 производят дешевые трубные заготовки.
Латунная проволока изготавливается из Л80, Л68, Л63 и ЛС59-1 (ГОСТ 1066-90). Массово производится проволока из Л63 (в мягком, твердом и полутвердом состояниях) диаметром от 0.1 до12 мм. Проволока из Л63 используется для заклепок и в качестве припоя. Проволока Л63 повышенной точности используется в качестве электродов в электроэрозионных станках.
С наличием латунного проката на складе можно ознакомиться на странице «Латунные прутки, листы. проволока»
Коррозионные свойства латуней
Латуни в целом имеют лучшую коррозионную стойкость по сравнению с медью. Однако, полуфабрикаты в холоднодеформированном состоянии (в том числе после обработки резанием) из простых и многих специальных латуней подвержены коррозионному растрескиванию. Наиболее чувствительны к коррозионному растрескиванию Л68 и Л63. Скорость коррозии резко возрастает с ростом температуры. Наиболее губительно этот вид коррозии проявляется в тонкостенных изделиях.
Основной причиной коррозионного растрескивания являются остаточные растягивающие напряжения в металле, а провоцирующие факторы — наличие влаги, следов аммиака и сернистого газа в атмосфере. Это явление называют сезонным, т.к. оно зависит от влажности и его интенсивность неодинакова в разные времена года. Для предотвращения этого явления полуфабрикаты и изделия после обработки подвергают низкотемпературному отжигу при , который снимает внутренние напряжения.
Естественно, что разные латуни имеют различную степень коррозионной стойкости в одинаковых средах. Особая стойкость отдельных латуней к конкретным средам и условиям эксплуатации (спокойное состояние или течение, аэрация, ударное воздействие среды) определяет сферу их применения.
Общая характеристика коррозионной устойчивости латуней следующая:
Латуни устойчивы в следующих средах (при нормальных температурах):
— воздух, т.ч. морской
— сухой пар при малых скоростях (кислород, углекислота и аммиак ускоряют коррозию)
— пресная вода (аммиак, сероводород, хлориды, кислоты ускоряют коррозию)
— в морской воде при небольших скоростях движения воды
— сухие газы-галогены
— антифризы, спирты, фреоны
Относительно устойчивы:
— щелочи без перемешивания
Латуни неустойчивы в следующих средах:
— влажный насыщенный пар при высоких скоростях
— рудничные воды
— окислительные растворы, хлориды
— минеральные кислоты
— сероводород
— жирные кислоты
Контактная коррозия: латунь не следует применять в контакте с железом, алюминием, цинком, т.к. она будет ускоренно разрушаться.
Сравнение свойств Л63 и ЛС59-1
Практика показывает, что многие потребители не знают в чем заключаются различия между двумя наиболее распространенными марками латуней – ЛС59-1 и Л63. Поэтому приведем ответы на самые часто задаваемые вопросы.
1. Электропроводность и теплопроводность этих латуней одинакова.
2. Эти латуни отличаются друг от друга не потому, что в них разное содержание меди, а потому, что в ЛС59-1 присутствует свинец. Благодаря свинцу ЛС59-1 отлично точится с образованием мелкой сыпучей стружки.
3. Л63 обрабатывается резанием хуже, чем ЛС59-1, но лучше чем большинство бронз, дуралю-миний и медь, т.е. она без проблем поддается токарной обработке, просто у неё другая стружка.
4. В сопоставимых состояниях прутки из ЛС59-1 ненамного тверже и прочнее чем Л63. Однако, при наличии надрезов прутки из ЛС59-1 легко подвергаются хрупкому разрушению при поперечной нагрузке. Ударная вязкость ЛС59-1 (5-6 ) намного меньше, чем для Л63 (14 ) . По этим причинам при некоторых условиях эксплуатации детали из Л63 могут оказаться надежнее, чем из ЛС59-1.
5. Л63 легко поддается обработке давлением в холодном состоянии. Различие в пластичности наглядно иллюстрируется простым опытом: проволока из Л63 легко расплющивается, а проволока из ЛС59-1 растрескивается после 2-3 ударов молотком. Это выгодно отличает Л63 от ЛС59-1 и определяет применение Л63 для изготовления деталей, требующих кроме токарно-фрезерной обработки дополнительного формообразования давлением.
6. Высокая пластичность позволяет использовать проволоку из Л63 для изготовления заклепок.
7. Прутки и проволока из Л63 используется в качестве припоя.
8. ЛС59-1 имеет неплохие антифрикционные свойства и может применяться в подшипниках скольжения, работающих при невысоких удельных давлениях и высоких скоростях.
9. Холоднодеформированные листы из ЛС59-1 имеют высокую твердость. в сочетании с высокой износостойкостью это позволяет использовать их в качестве направляющих в станках.
переход на главную
Источник
Основные характеристики механических свойств сплавов цветных металлов
- E — модуль упругости — коэффициент пропорциональности между нормальным напряжением и относительным удлинением;
- G — модуль сдвига (модуль касательной упругусти) — коэффициент пропорциональности между касательным напряжением и относительным сдвигом;
- μ — коэффициент Пуассона — абсолютное значение отношения поперечной деформации к продолной в упругой области;
- σт — предел текучести (условный) — напряжение при котором остаточная деформация после снятия нагрузки составляет 0,2%;
- σв — временное сопротивление (предел прочности) — прочность на разрыв;
- δ — относительное удлинение — отношение абсолютного остаточного удлинения образца после разрыва к начальной расчётной длине;
- твёрдость (HB, HRC, HV).
Механический свойства алюминиевых сплавов
Для обозначения состояний деформируемых сплавов приняты следующие обозначения: М — мягкий, отожжённый; П — полунагартованный; Н — нагартованный; Т — закалённый и естественно состаренный; Т1 — закалённый и искусственно состаренный на высокую прочность; Т2 — закалённый и искусственно состаренный по режиму, обеспечивающему по сравнению с режимом Т1 более высокие значения вязкости разрешения и сопротивления коррозии под напряжением; Т3 — аналогично Т2 с улучшенными свойствами. Буква «ч» в обозначении марки сплава указывает на повышенную чистоту сплава (по содержанию примесей).
Механические свойства алюминиевых деформируемых сплавов
E = 70…72 ГПа, G = 27…28 ГПа, коэффициент Пуассона μ = 0,31…0,33.
Система легирования | Сплав, состояние | Полуфабрикат | Предел прочности σв, МПа | Предел текучести σт, МПа | Твёрдость HB, МПа |
Al — Mg | АМг5М | Пруток, штамповка | 300 | 160 | HB 650 |
Al — Mg | АМг6М | Поковка | 300 | 150 | — |
Al — Mg | АМг6Н | Лист | 400 | 300 | — |
Механические свойства титановых сплавов
E = 110…120 ГПа, G = 42…45 ГПа, коэффициент Пуассона μ = 0,31…0,34.
Система легирования | Сплав | Полуфабрикат | Предел прочности σв, МПа | Предел текучести σт, МПа |
ВТ1-1 | 99,04% Ti | Сплав малой прочности после отжига. | 450-600 | 380-500 |
Ti — Al | ВТ5 | Среднепрочный сплав после отжига. | 750-950 | 650-700 |
Ti — Al — V | ВТ6 | Высокопрочный сплав после закалки и старения. | 1150 | 1050 |
Механический свойства медных сплавов
Медные сплавы разделяются на две основные группы: латуни и бронзы. Латуни — сплавы, легированные цинком. Различают простые и специальные латуни.
Простые латуни (двойные сплавы) маркируют буквой Л, за которой следует содержание меди в процентах. В обозначении специальных латуней после буквы Л следуют заглавные буквы легирующих элементов и содержание меди в процентах, затем через тире — процентное содержание каждого легирующего элемента. Бронзы — сплавы, легированные различными элементами за исключением цинка. Маркируют бронзы буквой Бр, в остальном повторяется система маркировки латуней. Сплавы, в которых основным легирующим элементом является никель, именуются медно-никелевыми и имеют специальные названия. Деформируемые медные сплавы поставляются в мягком (отожженном и закаленном), полутвердом (обжатие 10-30%), твердом (обжатие 30-50%) и особо твердом (обжатие более 60%) состояниях. Сплавы на основе олова или свинца — баббиты, маркируются буквой Б, за которой следует цифра, обозначающая содержание олова в сплаве.
Механические свойства деформируемых латуней
E = 105…115 ГПа.
Тип латуни | Марка латуни | Состояние | Предел прочности σв, МПа | Относительное удлинение δ, % | Твёрдость HB, МПа |
Простая | Л96, Л90 | Мягкое состояние | 240-260 | 50 | HB 550 |
Простая | Л96, Л90 | Твёрдое состояние | 450-470 | 2,5 | HB 1350 |
Алюминиевая | ЛАЖ60-1-1 | Мягкое состояние | 450 | 50 | HB 550 |
Алюминиевая | ЛАЖ60-1-1 | Твёрдое состояние | 700 | 8 | HB 1700 |
Оловянистая | ЛО90-1 | Мягкое состояние | 280 | 45 | HB 570 |
Оловянистая | ЛО90-1 | Твёрдое состояние | 520 | 4,5 | HB 1450 |
Свинцовая | ЛС74-3, ЛС64-2, ЛС63-3 | Мягкое состояние | 300-400 | 40-60 | HB 500-700 |
Свинцовая | ЛС74-3, ЛС64-2, ЛС63-3 | Твёрдое состояние | 550-700 | 2-6 | HB 1000-1200 |
Механические свойства деформируемых бронз
E = 92…130 ГПа.
Бронза | Состояние | Предел прочности σв, МПа | Относительное удлинение δ, % | Твёрдость HB, МПа |
БрАМц9-2 | Мягкое состояние | 450 | 30 | HB 1100 |
БрАМц9-2 | Твёрдое состояние | 800 | 4 | HB 1800 |
БрАЖ9-4 | Мягкое состояние | 450 | 40 | HB 1100 |
БрАЖ9-4 | Твёрдое состояние | 700 | 4 | HB 2000 |
Механические свойства медно-никелевых сплавов
E = 120…145 ГПа.
Название | Сплав | Состояние | Предел прочности σв, МПа | Относительное удлинение δ, % |
Мельхиор | МНЖМц30-0,8-1 | Мягкое состояние | 400 | 45 |
Мельхиор | МНЖМц30-0,8-1 | Твёрдое состояние | 600 | 4 |
Мельхиор | МН19 | Мягкое состояние | 350 | 40 |
Мельхиор | МН19 | Твёрдое состояние | 550 | 4 |
Копель | МНМц43-0,5 | Мягкое состояние | 420 | 38 |
Копель | МНМц43-0,5 | Твёрдое состояние | 650 | 3,5 |
Константант | МНМц40-1,5 | Мягкое состояние | 430 | 28 |
Константант | МНМц40-1,5 | Твёрдое состояние | 670 | 2,5 |
14.10.2020
Источник