Построение эпюры нормальной силы при растяжении сжатии
Построение эпюр продольных сил – это решение статически определимой задачи. Производится для выявления картины нагрузки упругого тела. Вернее, уточнения ее схематизации.
Необходимо для определения наиболее напряженного, так называемого «опасного» сечения. Затем методами сопромата (сопротивления материалов) проводится анализ с прогнозированием перемещений элементов конструкции.
Но всему свое время. Сначала немного о терминах.
Основные понятия
Брусом (балкой) называют тело, вытянутое вдоль оси. То есть длина преобладает над шириной и высотой.
Если имеются только осевые (продольные) силы, то объект подвергается растяжению/сжатию. В этом случае в материале возникают только нормальные поперечному сечению силы противодействия и тело считают стержнем.
Статическая определимость подразумевает достаточность схемы для установления внутренних усилий противодействия. Участок – часть балки с неизменным сечением и характерной нагрузкой.
Правила построения учитывают знаки усилий. Растягивающие принимают положительными, сжимающие – отрицательными.
В системе СИ силы измеряются в ньютонах (Н). Длины в метрах (м).
Что такое эпюра продольных сил
Показывает, какой силой (в нашем предположении нормальной) загружен каждый участок. По всей длине стержня. Иначе говоря, эпюра – наглядное графическое изображение изменения нагрузки по всей длине конструкции.
Как построить эпюру продольных сил
Используется метод сечений. Балка виртуально рассекается на каждом участке и ищется противодействующая N. Ведь задача статическая.
Сопротивление рассчитывается по формуле:
где:
Fl – действующие на участке l силы (Н);
ql – распределенные нагрузки (Н/м).
Порядок построения:
1. Рисуется схема балки и механизмов закрепления;
2. Производится разделение на участки;
3. Для каждого рассчитывается N с учетом знаков. Если у балки есть незакрепленный конец, то начинать удобнее именно с него. В противном случае считается реакция опор. И оптимальнее выбирать сечение с меньшим количеством действующих факторов:
Нетрудно заметить, что последнее уравнение дает еще и реакцию опоры;
4. Параллельно оси стержня намечается база эпюры. Положительные значения масштабировано проставляются выше, отрицательные – ниже. Эпюру наглядно совмещать с расчетной схемой. Итоговый результат и промежуточные сечения показаны на рис. 1.
Рис. 1. Эпюра продольных сил
Рассмотрим случай:
F1 = 5 (кН);
F2 = 3 (кН);
F3 = 6 (кН).
Вычислим:
Проверить эпюру можно по скачкам: изменения происходят в точках приложения сил на их величину.
Пример построения эпюр и решения задач
Построить эпюру сил для следующего случая (рис. 2):
Рис. 2
Дано:
Решение.
Разбиение на участке вполне очевидно. Найдем сопротивление на выделенных:
Распределенная нагрузка зависит от длины, на которой приложена. Поскольку нарастает линейно, значение N2 будет постепенно увеличиваться/уменьшаться в зависимости от знака q.
Эпюра такого вида усилия представляет собой прямоугольный треугольник с катетами l3 и ql3 (в масштабе). Поскольку распределение линейно.
По полученным данным строим эпюру (рис. 3).
Рис. 3
Заключение
Приведенный алгоритм является предварительным этапом в расчете модели на прочность. «Слабое» место находится уже с учетом площади поперечного сечения.
В сети имеются онлайн сервисы для помощи в расчетах при вычерчивании. Но стоит ли ими пользоваться, если процедура настолько проста? Если не запутаться в знаках, конечно. Это самая распространенная ошибка.
Источник
1. На рисунке проводиться ось ОХ, совпадающая с продольной осью стержня.
2. Под рисунком стержня проводятся две базовые нулевые линии, параллельно продольной оси стержня. Одна для эпюры продольной силы Nz
Вторая базовая нулевая линия для эпюры нормальных напряжений (Мпа).
3. Стержень разбивается на участки. Для границ участков проводятся вертикальные линии в точках приложения нагрузки и изменения площади поперечного сечения вниз до пересечения с базовыми нулевыми линиями. Нумерация участков начинается со свободной стороны стержня для задачи статически определимой. Если задача статически неопределимая, то нумерация выполняется слева направо.
4. Для определения значения продольной силы используется метод сечений. В середине участка проводится сечение. Указывается направление продольной силы. Положительным считается направление продольной силы, направленной от сечения (растягивает). Значение продольной силы Nz определяется из условия равновесия отсечённой части (сумма проекций на ось ох всех действующих сил равна нулю 0).
5. Вычисляем значение нормальных напряжений.
6. Положительные значения продольной силы и нормального напряжения откладываем вверх от базовой нулевой линии, отрицательные вниз.
7. Проверяем правильность решения задачи по эпюре продольной силы. В точках, где приложена сосредоточенная сила, на эпюре должен быть скачок равный значению продольной силы.
8. Условие прочности проверяем по эпюре нормальных напряжений. Максимальные напряжения, возникающие в конструкции, не должны превышать допускаемых.
Пример №1: Построить эпюры продольной силы N и нормального напряжения σ, проверить на прочность стальной стержень, закрепленный с одной стороны (статически определимая задача). Р1 = 10кН Р2 = 15кН
Р3 =15кН
=100 Мпа; А1 = F; А2 = 2F; F = 100 мм2
Решение:
Параллельно продольной оси стержня проводим две базовые нулевые линии для продольной силы и нормального напряжения.
Разбиваем стержень на участки, начиная со свободной стороны. Проводим вниз вертикальные линии в точках приложения сил и изменения площади поперечного сечения до пересечения с нулевыми линиями. Нумерация участков начинается со свободной стороны стержня.
1 участок:
— на первом участке проводим сечение, перпендикулярное продольной оси, мысленно отбрасываем большую часть и рассматриваем меньшую часть стержня. Заменяем действие отброшенной части на оставленную продольной силой N1. Положительным считается действие от сечения (растягивает).
Рассматриваем равновесие оставленной части, проецируя действующие силы на ось ОХ:
Определяем продольную силу на первом участке:
-N1+ Р1=0 следовательно N1 = Р1=10 кН
Определяем нормальное напряжение на первом участке
2 участок:
-N2+ Р1 — Р2=0 следовательно N2 = Р1-Р2 =10-15= -5 кН
3 участок:
-N3+ Р1 — Р2=0 следовательно N3 = Р1-Р2 =10-15= -5 кН
4 участок:
-N4+ Р1 — Р2+Р3=0 следовательно N4 = Р1-Р2+Р3=10-15+15= 10 кН
Рис. 10.
Метод сечений для определения продольной силы.
Для построения эпюр продольной силы и нормального напряжения задаёмся произвольным масштабом (например: одна клеточка -5 кН и -25 мегапаскалей). Строим эпюры продольной силы и нормального напряжения, откладывая положительные значения вверх от базовой нулевой линии, отрицательные вниз.
Проверяем правильность решения задачи по эпюре продольной силы, в точке приложения сосредоточенной силы на эпюре должен быть скачок, равный действующей силе.
По эпюре нормального напряжения проверяем условие прочности максимальные напряжения должны быть меньше или равны допустимым, значит прочность обеспечена.
Рис.11.
Эпюры продольной силы N и нормального напряжения σ.
СПИСОК ЛИТЕРАТУРЫ
1. Рубашкин А.Г. Лабораторные работы по сопротивлению материалов.- М.: Высшая школа, 1961.-159с.
2. Афанасьев A.M., Марьин В.А. Лабораторный практикум по сопротивлению материалов.- М.: Наука, 1975.-284с.
3. Феодосьев В.И. Сопротивление материалов.- М.: Наука, 1979.-559с.
4. Писаренко Г.С. Сопротивление материалов.- Киев.: Высшая школа, 1973.-667с.
Источник
Определение перемещений
Задание
Для заданного статически определимого стального бруса требуется:
1) построить эпюры продольных сил N и нормальных напряжений σ, записав в общем виде для каждого участка выражения N и σ и указав на эпюрах их значения в характерных сечениях;
2) определить общее перемещение бруса и построить эпюру перемещений δ поперечных сечений, приняв модуль упругости Е = 2·10 МПа.
Цель работы– научиться строить эпюры продольных сил и нормальных напряжений, и определять перемещения.
Теоретическое обоснование
Виды нагружения бруса, при котором в его поперечном сечении возникает только один внутренний силовой фактор – , называемый растяжением или сжатием. Равнодействующая внешних сил прикладывается в центре тяжести поперечного сечения и действует вдоль продольной оси. Внутренние силы определяются с помощью метода сечений. Нормальная сила в сечении бруса является равнодействующей нормальных напряжений, действующих в плоскости поперечного сечения
N = ∑F (5.1).
Величина продольных сил в разных сечениях бруса неодинакова. График, показывающий изменение величины продольных сил в сечении бруса по его длине, называется эпюрой продольных сил.
Закон распределения напряжений может быть определен из эксперимента. Установлено, что если на стержень нанести прямоугольную сетку, то после приложения продольной нагрузки вид сетки не изменится, она по-прежнему останется прямоугольной, а все линии прямыми. Поэтому можно сделать вывод о равномерном по сечению распределении продольных деформаций, а на основании закона Гука (σ = Eε) и нормальных напряжений S = const. Тогда N = S· F , откуда получим формулу для определения нормальных напряжений в поперечном сечении при растяжении
σ = МПа (5.2)
A – площадь около рассматриваемого участка бруса;
N– равнодействующая внутренних сил в пределах этой площадки (согласно метода сечений).
Для обеспечения прочности стержня должно выполняться условие прочности — конструкция будет прочной, если максимальное напряжение ни в одной точке нагруженной конструкции не превышает допускаемой величины, определяемой свойствами данного материала и условиями работы конструкции, то есть
σ ≤ [σ ], τ ≤ [τ] (5.3)
При деформации бруса меняется его длина на и поперечный размер – на . Эти величины зависят и от начальных размеров бруса.
Поэтому рассматривают
– продольная деформация; (5.4)
– поперечная деформация. (5.5)
Экспериментально показано, что , где μ = 0, …, 0,5 – коэффициент Пуассона. Примеры: μ=0 – пробка, μ=0,5 – резина, – сталь.
В пределах упругой деформации выполняется закон Гука: , где E – модуль упругости, или модуль Юнга.
Порядок выполнения работы
1. Разбиваем брус на участки, ограниченные точками приложения сил (нумерацию участков ведем от незакрепленного конца);
2. Используя метод сечений, определяем величину продольных сил в сечении каждого участка: N = ∑F ;
3. Выбираем масштаб и строим эпюру продольных сил, т.е. под изображением бруса (или рядом) проводим прямую, параллельную его оси, и от этой прямой проводим перпендикулярные отрезки, соответствующие в выбранном масштабе продольным силам (положительное значение откладываем вверх (или вправо), отрицательное – вниз (или влево).
4. Определяем общее перемещение бруса и строим эпюру перемещений δ поперечных сечений.
5. Ответить на контрольные вопросы.
Контрольные вопросы
1. Что называется стержнем?
2. Какой вид нагружения стержня называются осевым растяжением (сжатием)?
3. Как вычисляется значение продольной силы в произвольном поперечном сечении стержня?
4. Что такое эпюра продольных сил и как она строится?
5. Как распределены нормальные напряжения в поперечных сечениях центрально-растянутого или центрально-сжатого стержня, и по какой формуле они определяются?
6. Что называется удлинением стержня (абсолютной продольной деформацией)? Что такое относительная продольная деформация? Каковы размерности абсолютной и относительной продольных деформаций?
7. Что называется модулем упругости Е? Как влияет величина Е на деформации стержня?
8. Сформулируйте закон Гука. Напишите формулы для абсолютной и относительной продольных деформаций стержня.
9. Что происходит с поперечными размерами стержня при его растяжении (сжатии)?
10. Что такое коэффициент Пуассона? В каких пределах он изменяется?
11. С какой целью проводятся механические испытания материалов? Какие напряжения являются опасными для пластичных и хрупких материалов?
Пример выполнения
Построить эпюры продольных сил и нормальных напряжений для нагруженного стального бруса (рис. 5.1). Определить удлинение (укорочение) бруса, если E
Рис.5.1
Дано: F = 2 kH, F = 5 kH, F = 2 kH, A = 2 см , А , l = 100 мм, l = 50 мм, l = 200 мм,
l = 150 мм.
Решение. Определяем продольные силы и строим их эпюру:
N = — F = — 2kH;
N = — F + F = -2 + 5 = 3 kH;
N = — F + F = 3 kH;
N = — F + F + F = -2 +5 + 2 = 5 kH
Определяем величину нормальных напряжений и строим их эпюру:
Используя видоизмененный закон Гука, определяем удлинение бруса:
Практическая работа № 6
Источник
Растяжением или сжатием называется такой вид деформаций, при котором в любом поперечном сечений бруса возникают только продольная сила . Брусья с примолинейной осью называют стержнями (рис.1).
Рис. 35.
Примой брус постоянного поперечного сечения , длиной , жестко защемленный одним концом и нагруженный на другом конце растягивающей силой F (рис.35). Под действием этой силы, брус удлинится на некоторою величину которую назовем абсолютным удлинением. Отношение абсолютного удлинения к первоначальной длине назовем относительным удлинением и обозначим .
При расчете, мы будем считать, что растяжение и сжатие бруса связано только с приложенными внешними силами, то есть учитываем только напряжения, действующие на стержень, температуру и время действий сил не будем учитывать.
При растяжении и сжатии продольные силы определяется методом сечении. Правило знаков будем определять следующим образом: растягивающие, то есть, направленные от сечения, продольные силы будем считать положительными, сжимающие, то есть направленные к сечению, будем считать отрицательными.
Для наглядного изображения распределения вдоль оси бруса продольных сил и нормальных напряжений строят графики, называемые эпюрами, причем для нормальных напряжений применяется то же правило знаков, что и для продольных сил.
При растяжении и сжатии в поперечных сечениях бруса возникают только нормальные напряжения, равномерно распределенные по сечению и вычисляемые по формуле:
площать поперечного сечения бруса,
Очевидно, что при растяжении и сжатии форма сечения на напряжения не влияет.
Условие прочности бруса при растяжении и сжатии определяется следующим образом:
Здесь называют допускаемым напряжением, максимальная продольная сила.
Напряжения и деформаций при растяжении и сжатии связаны между собой зависимостью, которая называется законом Гука, по имени установившего этот закон английского физика Гоберта Гука. Закон Гука при растяжении и сжатии справедлив лишь в определенных пределах нагружения и формируется так: нормальное напряжение прямо пропорционально относительному удлинению или укорочению бруса.
Математически закон Гука можно вписать в виде равенства:
Коэффициент пропорциональности Е характеризует жесткость материала и называется модулем продольной упругости. Модуль упругости и напряжения выражаются в одинаковых единицах.
Если в формулу закона Гука поставим выражения и то получим:
Контрольные вопросы
1. Что такое растяжение-сжатие?
____
2. По какому методу определяется нормальные силы?
__
3. По какой формуле определяется относительное удлинение или укорочение?
____
4. Какое напряжение появляется при растяжении-сжатии, и по какой формуле определяется?
____
5. Как пишется условие прочности при растяжении-сжатии?
____
6. Что такое модуль упругости, и в чем измеряется?
____
7. От чего зависит модуль упругости?
__
8. По какой формуле определяется абсолютное удлинение или укорочение бруса при растяжении-сжатии?
____
Пример 4.1.
Для данного ступенчатого бруса (рис.36.) построить эпюру продольных сил, эпюру нормальных напряжений и определить перемещение свободного конца, если .
Рис.36.
1. Разбиваем брус на участки как показоно на рис. 37а.
Рис.37.
2. По методу сечения определяем ординаты эпюр и каждого сечения.
4. Строим эпюру (рис. 37б.)
5. Определяем перемещение свободного конца бруса.
Пример 4.2.
Для данного ступенчатого бруса (рис.38.) построить эпюру продольных сил, эпюру нормальных напряжений и определить перемещение свободного конца, если .
Рис. 38.
1. Разбиваем брус на участки как показоно на рис. 39а.
2. По методу сечения определяем ординаты эпюр и каждого сечения.
Рис. 39.
3. Строим эпюру (рис. 37б.)
4. Определяем перемещение свободного конца бруса.
Для решения первой задачи контрольной работы 2 следует выполнить следующие действия:
1) Изучить темы 7,8,9.
2) Ответить на контрольные вопросы по темам 7,8,9.
2) Выполнить самостоятельно пример 2.2.
Данные для своего варианта первой задачи контрольной работы 2 посмотрите в таблице 4. Расчетную схему надо посмотреть в рис.40.
Таблица 4 (для первой задачи контрольной работы 2)
Номер варианта | Номер схемы на рис. 40. | ||
кН | |||
I | 3,6 | 1,4 | |
II | 2,4 | 1,1 | |
III | 3,5 | 2,5 | |
IV | 2,9 | 1,4 | |
V | 1,9 | 1,1 | |
VI | 3,7 | 2,3 | |
VII | 4,4 | 2,6 | |
VIII | 4,6 | 3,1 | |
IX | 4,2 | 3,2 | |
X | 3,1 | 1,5 | |
I | 3,6 | 2,4 | |
III | 3,5 | 2,5 | |
V | 2,8 | 1,2 | |
VII | 3,0 | 2,2 | |
II | 2,8 | 1,4 | |
IV | 2,4 | 1,2 | |
VI | 3,6 | 2,6 | |
IX | 2,1 | 1,0 | |
VIII | 2,6 | 1,3 | |
X | 3,8 | 1,6 | |
V | 1,4 | 3,2 | 1,8 |
III | 3,4 | 1,5 | |
VII | 2,3 | 2,9 | 1,9 |
VIII | 3,6 | 1,7 | |
II | 2,9 | 1,6 | |
I | 3,4 | 2,1 | |
III | 3,5 | 2,4 | |
V | 3,6 | 2,3 | |
VII | 3,2 | 2,2 | |
II | 3,6 | 2,6 |
Рис. 40.
Источник
Внутренние усилия при растяжении-сжатии.
Осевое (центральное) растяжение или сжатие прямого бруса вызывается внешними силами, вектор равнодействующей которых совпадает с осью бруса. При растяжении или сжатии в поперечных сечениях бруса возникают только продольные силы N. Продольная сила N в некотором сечении равна алгебраической сумме проекции на ось стержня всех внешних сил, действующих по одну сторону от рассматриваемого сечения. По правилу знаков продольной силы N принято считать, что от растягивающих внешних нагрузок возникают положительные продольные силы N, а от сжимающих — продольные силы N отрицательны (рис. 5).
Чтобы выявить участки стержня или его сечения, где продольная сила имеет наибольшее значение, строят эпюру продольных сил, применяя метод сечений, подробно рассмотренный в статье:
Анализ внутренних силовых факторов в статистически определимых системах
Ещё настоятельно рекомендую взглянуть на статью:
Расчёт статистически определимого бруса
Если разберёте теорию в данной статье и задачи по ссылкам, то станете гуру в теме «Растяжение-сжатие» =)
Напряжения при растяжении-сжатии.
Определенная методом сечений продольная сила N, является равнодействующей внутренних усилий распределенных по поперечному сечению стержня (рис. 2, б). Исходя из определения напряжений, согласно выражению (1), можно записать для продольной силы:
где σ — нормальное напряжение в произвольной точке поперечного сечения стержня.
Чтобы определить нормальные напряжения в любой точке бруса необходимо знать закон их распределения по поперечному сечению бруса. Экспериментальные исследования показывают: если нанести на поверхность стержня ряд взаимно перпендикулярных линий, то после приложения внешней растягивающей нагрузки поперечные линии не искривляются и остаются параллельными друг другу (рис.6, а). Об этом явлении говорит гипотеза плоских сечений (гипотеза Бернулли): сечения, плоские до деформации, остаются плоскими и после деформации.
Так как все продольные волокна стержня деформируются одинаково, то и напряжения в поперечном сечении одинаковы, а эпюра напряжений σ по высоте поперечного сечения стержня выглядит, как показано на рис.6, б. Видно, что напряжения равномерно распределены по поперечному сечению стержня, т.е. во всех точках сечения σ = const. Выражение для определения величины напряжения имеет вид:
Таким образом, нормальные напряжения, возникающие в поперечных сечениях растянутого или сжатого бруса, равны отношению продольной силы к площади его поперечного сечения. Нормальные напряжения принято считать положительными при растяжении и отрицательными при сжатии.
Деформации при растяжении-сжатии.
Рассмотрим деформации, возникающие при растяжении (сжатии) стержня (рис.6, а). Под действием силы F брус удлиняется на некоторую величину Δl называемую абсолютным удлинением, или абсолютной продольной деформацией, которая численно равна разности длины бруса после деформации l1 и его длины до деформации l
Отношение абсолютной продольной деформации бруса Δl к его первоначальной длине l называют относительным удлинением, или относительной продольной деформацией:
При растяжении продольная деформация положительна, а при сжатии – отрицательна. Для большинства конструкционных материалов на стадии упругой деформации выполняется закон Гука (4), устанавливающий линейную зависимость между напряжениями и деформациями:
где модуль продольной упругости Е, называемый еще модулем упругости первого рода является коэффициентом пропорциональности, между напряжениями и деформациями. Он характеризует жесткость материала при растяжении или сжатии (табл. 1).
Таблица 1
Модуль продольной упругости для различных материалов
Абсолютная поперечная деформация бруса равна разности размеров поперечного сечения после и до деформации:
Соответственно, относительную поперечную деформацию определяют по формуле:
При растяжении размеры поперечного сечения бруса уменьшаются, и ε’ имеет отрицательное значение. Опытом установлено, что в пределах действия закона Гука при растяжении бруса поперечная деформация прямо пропорциональна продольной. Отношение поперечной деформации ε’ к продольной деформации ε называется коэффициентом поперечной деформации, или коэффициентом Пуассона μ:
Экспериментально установлено, что на упругой стадии нагружения любого материала значение μ = const и для различных материалов значения коэффициента Пуассона находятся в пределах от 0 до 0,5 (табл. 2).
Таблица 2
Коэффициент Пуассона.
Абсолютное удлинение стержня Δl прямо пропорционально продольной силе N:
Данной формулой можно пользоваться для вычисления абсолютного удлинения участка стержня длиной l при условии, что в пределах этого участка значение продольной силы постоянно. В случае, когда продольная сила N изменяется в пределах участка стержня, Δl определяют интегрированием в пределах этого участка:
Произведение (Е·А) называют жесткостью сечения стержня при растяжении (сжатии).
Механические свойства материалов.
Основными механическими свойствами материалов при их деформации являются прочность, пластичность, хрупкость, упругость и твердость.
Прочность — способность материала сопротивляться воздействию внешних сил, не разрушаясь и без появления остаточных деформаций.
Пластичность – свойство материала выдерживать без разрушения большие остаточные деформации. Неисчезающие после снятия внешних нагрузок деформации называются пластическими.
Хрупкость – свойство материала разрушаться при очень малых остаточных деформациях (например, чугун, бетон, стекло).
Идеальная упругость – свойство материала (тела) полностью восстанавливать свою форму и размеры после устранения причин, вызвавших деформацию.
Твердость – свойство материала сопротивляться проникновению в него других тел.
Рассмотрим диаграмму растяжения стержня из малоуглеродистой стали. Пусть круглый стержень длинной l0 и начальным постоянным поперечным сечением площади A0 статически растягивается с обоих торцов силой F.
Диаграмма сжатия стержня имеет вид (рис. 10, а)
где Δl = l — l0 абсолютное удлинение стержня; ε = Δl / l0 — относительное продольное удлинение стержня; σ = F / A0 — нормальное напряжение; E — модуль Юнга; σп — предел пропорциональности; σуп — предел упругости; σт — предел текучести; σв — предел прочности (временное сопротивление); εост — остаточная деформация после снятия внешних нагрузок. Для материалов, не имеющих ярко выраженную площадку текучести, вводят условный предел текучести σ0,2 — напряжение, при котором достигается 0,2% остаточной деформации. При достижении предела прочности в центре стержня возникает локальное утончение его диаметра («шейка»). Дальнейшее абсолютное удлинение стержня идет в зоне шейки ( зона местной текучести). При достижении напряжением предела текучести σт глянцевая поверхность стержня становится немного матовой – на его поверхности появляются микротрещины (линии Людерса-Чернова), направленные под углом 45° к оси стержня.
Расчеты на прочность и жесткость при растяжении и сжатии.
Опасным сечением при растяжении и сжатии называется поперечное сечение бруса, в котором возникает максимальное нормальное напряжение. Допускаемые напряжения вычисляются по формуле:
где σпред — предельное напряжение (σпред = σт — для пластических материалов и σпред = σв — для хрупких материалов); [n] — коэффициент запаса прочности. Для пластических материалов [n] = [nт] = 1,2 … 2,5; для хрупких материалов [n] = [nв] = 2 … 5, а для древесины [n] = 8 ÷ 12.
Расчеты на прочность при растяжении и сжатии.
Целью расчета любой конструкции является использование полученных результатов для оценки пригодности этой конструкции к эксплуатации при минимальном расходе материала, что находит отражение в методах расчета на прочность и жесткость.
Условие прочности стержня при его растяжении (сжатии):
При проектном расчете определяется площадь опасного сечения стержня:
При определении допускаемой нагрузки рассчитывается допускаемая нормальная сила:
Расчет на жесткость при растяжении и сжатии.
Работоспособность стержня определяется его предельной деформацией [ l ]. Абсолютное удлинение стержня должно удовлетворять условию:
Часто дополнительно делают расчет на жесткость отдельных участков стержня.
Следующая важная статья теории:
Изгиб балки
Источник