Ожог от щелочной батарейки

Ожог от щелочной батарейки thumbnail

Отравление батарейками и их побочные эффекты

Оксид ртути удлиняет срок службы и улучшает рабочие характеристики батареек, но одновременно повышает их потенциальную токсичность. Типичный ртутно-оксидный элемент содержит 15—50 % этого вещества, а это эквивалентно от 0,09 до 21 г ртути (1—5 г в среднем). Электролит представляет собой 40—45 % раствор гидроксида натрия или калия, однако на него обычно приходится не более 13 % массы батарейки.

В состав батареек входят различные соединения тяжелых металлов (гидроксиды лития и никеля, диоксид марганца, оксиды ртути, цинка, серебра и кадмия), а также едкие щелочи.

Диаметр кнопочных (таблеточных, галетных) элементов составляет от 8 до 25 мм. Их размер — важный фактор воздействия на пищевод: большинство случаев его прободения вызвано батарейками с диаметром более 18 мм (т. е. крупнее монеты достоинством 10 копеек). Сообщалось, что батарейки диаметром 15—23 мм застревают в пищеводе, а диаметром 7,9 мм могут задерживаться там. Ни размер элемента, ни симптомы не позволяют судить о его локализации в этом отделе пищеварительного тракта.

а) Гистопатология отравления батарейками. Все известные на сегодняшний день тяжелые осложнения при проглатывании батареек связаны с некротизацией тканей. Кнопочный щелочной элемент для фотокамеры размером 22 х 5 мм, задержавшийся на 4 сут в пищеводе 16-месячного ребенка, привел к влажному некрозу и летальному прободению. Щелочная батарейка для кинокамеры размером 25 х 5 мм, пробыв в пищеводе 24 ч, несмотря на стероидную терапию, вызвала образование летального трахейно-пищеводного свища.

Votteler и соавт. сообщают о несмертельном случае такого же свищеобразования при воздействии на пищевод кнопочного элемента с появлением язвы, внешне похожей на сухой некроз и окруженной черным осадком. Батарейка для слухового аппарата размером 15 х 8 мм задержалась в меккелевом дивертикуле, вызвав через 2 сут некроз, кровотечение и прободение, потребовавшие резекции тонкой кишки.

б) Механизм отравления батарейками. Механизм эрозии слизистой оболочки, вероятно, многофакторный. Щелочной электролит с 40—45 % гидроксида калия соответствует раствору едкой щелочи с концентрацией примерно 8 N, вызывающему влажный некроз у подопытных животных. Возможно спонтанное протекание электролита из швов батарейки, особенно после коррозионного действия желудочной кислоты на оболочку элемента. Задержка на слизистой оболочке приводит к кумулятивному местному эффекту, резко отличному от влияния свободно проходящего по тракту едкого электролита, который разбавляется пищеварительными соками.

Образование гидроксида на поверхности анода может способствовать некротизации, и исследования на животных показывают, что самый сильный ожог возникает около него — вдоль пластиковой перемычки между двумя полюсами. Богатая электролитами жидкость пищеварительного тракта представляет собой подходящую среду для проведения тока между анодом и катодом. В течение 10 с в 1 N растворе NaCl рН индикаторной бумажной полоски, соединяющей положительный и отрицательный полюса кнопочной батарейки, достиг 11.

К двум названным механизмам, возможно, добавляется некротизация, вызванная сдавливанием, однако типичная картина влажного некроза при вскрытии говорит, что сдавливание по крайней мере является не единственным патофизиологическим механизмом.

в) Интоксикация тяжелыми металлами при отравлении батарейками. Опасения вызывает прежде всего ртутная интоксикация, поскольку в кнопочных батарейках присутствует определенное количество неорганической ртути. Однако, хотя по крайней мере 17 батареек, извлеченных из пищеварительного тракта пациентов, подверглось коррозии или треснуло, лишь в одном случае отмечен слегка повышенный бессимптомный уровень этого металла в биологических жидкостях.

В сыворотке концентрация ртути составляла 19 мкг/100 мл (при норме ниже 5 мкг/100 мл), а в моче — 98 мкг/л (при норме ниже 50 мкг/л). Токсичные и летальные уровни оксида ртути для человека неизвестны, однако Lewis сообщает, что для крыс пероральная летальная доза (ЛД50) равна 18 мг/кг. Скрининг на ртуть в нескольких случаях извлечения из организма расколотых кнопочных батареек дал отрицательные результаты. Оксид ртути обладает едким действием, однако плохо растворим и всасывается медленно. Желудочная кислота может еще сильнее ограничивать всасывание, восстанавливая оксид до нерастворимой металлической ртути, потенциал проникновения которой в кровь минимален.

Коррозия железа в ободочках кнопочных батареек, по-видимому, катализирует этот процесс, протекающий в пищеварительном тракте практически полностью.

Химический состав кнопочных (таблеточных) батареек

г) Клиника отравления батарейками. Наличие желудочно-кишечных симптомов должно вызывать подозрение на некроз и прободение, поскольку свободное прохождение кнопочных батареек по пищеварительному тракту протекает в большинстве случаев бессимптомно. У пациентов с пораженным пищеводом наблюдаются лихорадка, затрудненное и болезненное глотание, рвота, тахипноэ и болезненность живота при пальпации. При прободении меккелева дивертикула возникают перемежающиеся боли в животе, его болезненность при движении и нажатии, а также рвота.

Треснувшие кнопочные батарейки обусловливают бессимптомный черный немеланотический стул, незначительное желудочно-кишечное кровотечение, слабо выраженную рвоту, анорексию и вялость. Симптомы ртутного отравления после проглатывания кнопочных элементов никогда не описывались. Черный цвет кала чаще всего определяется осадком элементарной ртути, а не желудочно-кишечным кровотечением. Нестабильность жизненно важных показателей отмечалась в двух случаях прободения дуги аорты с последующим кровотечением. Время прохождения батареек по пищеварительному тракту варьирует от 14 ч до 7 сут. Их присутствие в организме может помешать снятию электрокардиограммы.

На основе изучения случаев проглатывания более 2000 кнопочных и 62 цилиндрических батареек Litovitz Schmitz делают следующие выводы:

1. Подавляющее большинство пациентов чувствуют себя удовлетворительно; лишь у 10 % появляются симптомы, и только у двоих наблюдались серьезные осложнения (стриктуры, потребовавшие расширения).

2. Особую проблему представляют элементы для слуховых аппаратов: на их долю приходится 44,6 % всех случаев проглатывания, причем в 32,8 % из них аппарат принадлежал ребенку, проглотившему из него батарейку.

3. Размер элемента и отсутствие симптомов не являются надежными критериями его свободного прохождения через пищевод; для подтверждения требуется рентгенологическое исследование.

4. Взрослые глотают батарейки, как правило, если держат их во рту, пока заняты руки.

5. Ртутно-оксидные элементы чаще всех остальных батареек разрушаются в пищеварительном тракте; самыми прочными являются цинково-воздушные батарейки.

6. Вероятно, опаснее других литиевые батарейки — из-за их более крупных размеров и относительно высокой разности потенциалов.

7. Сироп ипекакуаны бесполезен: благодаря рвоте удалось удалить лишь 1 батарейку из 37 проглоченных, а у 1 пациента батарейка переместилась из желудка в пищевод и там застряла.

8. Эндоскопия как способ извлечения батареек была успешной в 90 % случаев, если очищался пищевод, но только в 42,5 % случаев, когда речь шла о желудке. Возможно, она показана лишь при задержке батареек в пищеводе или при их неспособности преодолеть привратник спустя длительный период наблюдения. Из 16 батареек, выявленных в пищеводе при первой рентгенографии, 7 спонтанно прошло в желудок; непосредственно перед планируемой эндоскопией следует повторно сделать рентгеновский снимок, чтобы убедиться в целесообразности этой процедуры.

9. Для простого удаления батарейки хирургическое вмешательство если и стоит применять, то лишь в исключительных случаях.

10. Большинство попадающих в пищеварительный тракт батареек уже разряжено: 52,5 % проглатывается сразу после извлечения из электроприбора, 41,4 % — спустя некоторое время (забыли выбросить) и только 5,4 % — до использования. Собранные данные не позволяют судить, опаснее ли новые батарейки, чем отслужившие свой срок.

11. С точки зрения клинического исхода мелкие цилиндрические батарейки не опаснее кнопочных.

— Также рекомендуем «Лечение отравления батарейками»

Оглавление темы «Бытовые отравления»:

  1. Отравление денатония бензоатом и его побочные эффекты
  2. Отравление безоарами и его лечение
  3. Отравление бором и его лечение
  4. Отравление косметическими средствами и его лечение
  5. Отравление гамма-бутиролактоном и его лечение
  6. Отравление батарейками и их побочные эффекты
  7. Лечение отравления батарейками
  8. Ятрогенное поражение пищевода лекарствами
  9. Отравление нафталином и его побочные эффекты
  10. Отравление дихлорбензолом (шариками против моли) и его побочные эффекты

Источник

Почему отработанные, то есть использованные батарейки и аккумуляторы опасны? Вы знаете, ответ на этот вопрос? А городской центр медицинской профилактики (Екатеринбург, Свердловская область) знает и вам рассказывает:

Батарейка — автономный источник электричества для питания устройств. Элементы питания могут быть разных размеров и типов. При этом они также могут быть одноразовыми и перезаряжаемыми.

По данным ученых из агентства по охране окружающей среды США на долю батареек приходится более 50% токсических выбросов из всех бытовых отходов. Также подсчитано, что одна пальчиковая батарейка, выброшенная в мусорное ведро, загрязняет тяжелыми металлами примерно 20 квадратных метров земли, а в лесу на этой площади живут и растут два дерева, два крота, один ежик и несколько тысяч дождевых червей!

Аккумуляторы содержат в себе много различных химических веществ: это разные металлы — железо, марганец, цинк, литий, натрий, алюминий, в том числе и такие опасные и ядовитые как ртуть, никель, кадмий; щелочи или кислоты, солевые растворы, играющие роль электролитов и состоящие из тех самых металлов.

Что такое щелочи и кислоты, наверное, знают все. Если вы еще не знаете, что это за «химия», то стоит сказать, что это химически активные, едкие вещества, контакт с которыми приводит к разрушению, коррозии материалов и предметов, а для человека они опасны тем, что вызывают ожоги кожных покровов.

Когда люди выбрасывают батарейки в мусорное ведро, то, как следствие, они попадают на городские свалки. А поскольку полигоны для захоронения отходов не оснащены защитой фильтрации от вредных примесей и тяжелых металлов, поэтому все эти активные и вредные вещества попадают в грунтовые воды.

Попадая в организм человека, вредные вещества, которые содержатся в использованных батарейках, накапливаются в нем, поэтому даже малое количество ртути или никеля говорит о конкретной опасности. К примеру свинец накапливается в почках и вызывает заболевания мозга, нервные расстройства. Кадмий накапливается в печени, почках, костях и щитовидной железе, приводит к нарушениям кальциевого обмена в организме и является канцерогеном, то есть провоцирует рак. Ртуть влияет на мозг, нервную систему, почки и печень, вызывает нервные расстройства, ухудшение зрения, слуха, нарушения двигательного аппарата, заболевания дыхательной системы.

Наиболее уязвимы к действию тяжелых металлов дети. Кстати, в случае с детьми опасной для жизни батарейка становится уже в момент покупки. Маленькие блестящие устройства часто привлекают детей, которые способны быстро и незаметно проглотить батарейку. В итоге либо малыш задыхается из-за застревания, либо начинается растворение поверхности под действием температуры и желудочного сока. Из поврежденной батарейки вытекает электролит, и уже через несколько часов наступает ожог и некроз окружающих тканей, их перфорация. При этом сигнал в виде боли организм получает, когда уже практически поздно что-то предпринимать.

Состав батареек может быть разным, в зависимости от их типа. Например, алкалиновые содержат в себе щелочной электролит, ртутные элементы питания ‒ оксид ртути и щелочь, литиевые батарейки ‒ литиевый катод, органический электролит и анод из различных материалов.

Солевые и щелочные — это в основном те батарейки, которые мы привыкли называть «пальчиковыми» и «мизинчиковыми». И именно их мы чаще всего используем. Довольно широко используются и плоские батарейки («таблетки»), например, для часов, в компьютерах, приборах и детских игрушках.

Советы по применению батареек для уменьшения их экологического вреда

Рекомендуется отдавать предпочтение такой технике, которая не нуждается в использования батареек: продукты, работающие от сети, от альтернативных источников энергии или от ручного завода.

Следует покупать перезаряжаемые батарейки.

Покупать нужно батарейки с надписью «без кадмия», «без ртути».

Запрещается выбрасывать батарейки в корзину общего мусора. Их нужно складировать в места, для последующей утилизации. Если нет возможности отнести батарейки в пункты сбора их рекомендуется копить в пластиковой закрытой таре желательно не в доме.

Поиск единомышленников поможет очистить планету и также создать ответственность за собранный груз. К тому же, так появится большая возможность вывезти батарейки на утилизацию.

В России существует 1 завод, где открыта линия по переработке батареек. Он находится в Челябинске, и называется «Мегаполис Ресурс».

Источник

Любой химический ожог, как собственно и термальный, характеризуется повреждением тела человека при контакте с химическими веществами, способными вызвать разрушение тканей.

Это в большинстве случаев кислота, щелочь, летучие масла, битум, керосин и бензин, фосфор и т.д. Причем чаще всего пораженные участки относятся к верхним конечностям, реже к нижним, еще реже к туловищу. Но иногда от такого ожога страдают глаза, лицо или органы пищевода и полость рта.

Надо учитывать, что последствия такого ожога зависят от глубины, тяжести проникновения и концентрации химического вещества, а также от качества своевременно оказанного лечения. В этом материале мы рассмотрим виды химических ожогов, их фото, а также узнаем, какую первую помощь следует оказать человеку в домашних условиях при химическом ожоге кожи.

Степени химических ожогов

При таких ожогах чаще всего поражается кожа лица, кисти рук, пищевод и желудок. Основными веществами, вызывающими ожоги, являются кислоты (серная, соляная, азотная, плавиковая и др.), щёлочи (едкий натр, едкое кали и др.), бензин, керосин, соли тяжёлых металлов (хлористый цинк, азотнокислое серебро и др.), некоторые летучие масла, фосфор, битум. 

Тяжесть поражения кожи и слизистых оболочек при химическом ожоге зависит от концентрации вещества и длительности его действия на ткани. Всего принято выделять 4 степени тяжести ожога химическими веществами:

  • 4 степень. Поражение затрагивает все ткани, включая кожный покров, мышцы и сухожилия.
  • 3 степень. Поражению подвергаются те слои кожного покрова, которые расположены вблизи жировой подкожной ткани. Характерные особенности, свойственные ожогу этой степени, заключаются в появлении пузырей с жидкостью мутноватого оттенка или с примесью крови. В области поражения нарушается чувствительность, то есть, пострадавший не чувствует боли в рамках него.
  • 2 степень. В этом случае поражение затрагивает, помимо верхнего слоя кожного покрова, еще и более глубокие его слои. Характеризуется ожог данной степени проявлениями в виде отечности и покраснения, кроме того, появляются также заполненные жидкостью прозрачного цвета пузырьки.
  • 1 степень. Поражению подвергается только верхний слой кожного покрова. В числе основных проявлений, которые сопутствуют данному виду ожога, выделяют незначительный в выраженности отек и покраснение кожи. Помимо этого также в области поражения возникают легкие болезненные ощущения.

Примечательно, что признаки химического ожога в полной мере проявляются не сразу, потому оценить их степень можно лишь после оказания первой помощи. Первый симптом – жгучая боль на месте, куда попал химикат, и легкое покраснение. Если сразу же не начать оказывать помощь, ожог перейдет из 1 степени во 2 и даже 3, так как вещество продолжает действовать, проникая все глубже в слои ткани.

Первая помощь при химических ожогах

В домашних условиях оказание первой помощи при химических ожогах кожи включает: скорейшее удаление химического вещества с пораженной поверхности, снижение концентрации его остатков на коже за счет обильного промывания водой в течение 15-30 минут, охлаждение пораженных участков с целью уменьшения боли.

  1. При химических ожогах кислотой для нейтрализации используют 2-3% раствор питьевой соды.
  2. При ожогах щелочами – 1-2% раствор лимонной, борной или уксусной кислоты.
  3. При ожогах известью сначала сухим путём удаляют остатки извести и только потом длительно и энергично смывают поражённый участок.
  4. При ожогах фосфором необходимо сбросить горящую одежду или накинуть на горящую поверхность любую ткань, смоченную водой. Тушат пламя фосфора струёй воды из-под крана или 1-2% раствором медного купороса. Пинцетом удаляют все видимые частицы фосфора, после чего на обожжённую поверхность накладывают повязку, обильно смоченную 2% раствором медного купороса, 5% раствором двууглекислой соды или 3-5% раствором марганцевокислого калия.

Затем можно наложить стерильную повязку из марли, но не из ваты – ее использовать нельзя. В процессе нейтрализации химического агента с пострадавшего аккуратно снимается одежда, контактирующая с обожжённой областью, часы и украшения. Для снижения воспалительного процесса пострадавший участок кожи промывается прохладной водой, а пострадавшему необходимо дать сильный анальгетик (боль бывает вплоть до потери сознания).

При химическом ожоге обратитесь за неотложной медицинской помощью, если:

  1. У пострадавшего имеются признаки шока (потеря сознания, бледность, поверхностное дыхание).
  2. Пострадавший чувствует сильную боль, которую не удается снять с помощью безрецептурных анальгетиков, например, ацетаминофена или ибупрофена .
  3. Химический ожог распространился глубже первого слоя кожи и охватывает участок диаметром более 7,5 см.
  4. Затронуты глаза, руки, ноги, лицо, область паха, ягодиц или крупного сустава, а также полость рта и пищевод (если пострадавший выпил химическое вещество).

Отправляясь в отделение скорой помощи, возьмите с собой емкость с химическим веществом или его подробное описание для идентификации. Известная природа химического вещества дает возможность при оказании помощи в стационаре произвести его нейтрализацию, которую обычно трудно произвести в бытовых условиях.

Химический ожог пищевода

Может случиться так, что химическое вещество попало в пищевод и желудок. Это может быть сделано преднамеренно или оказаться несчастным случаем. Очень часто такими веществами оказываются аккумуляторный электролит и уксусная эссенция.

Более редкими случаями является попадание в пищевод и желудок щелочей или концентрированных кислот. У пострадавшего появляются сильные боли во рту, глотке, пищеводе, гортани и желудке. При поражении гортани больной может ощущать нехватку воздуха. Появляется рвота с кровавой слизью и кусочками слизистой желудка, которая отделяется из-за ожога.

Так как данного рода ожоги распространяются очень быстро, больной нуждается в оказании немедленной первой помощи, предусматривающей в самую первую очередь промывание желудка. Его можно промыть раствором питьевой соды, если речь идет об ожоге кислотами, либо слабым раствором уксусной кислоты при ожоге щелочами. В данном случае человеку нужно давать пить не просто большое, а действительно огромное количество жидкости, что даст возможность полностью избавиться от химического компонента.

При таких ожогах следует как можно быстрее вызвать врачей скорой помощи либо самостоятельно отвести больного в больницу.

Химический ожог глаза

 Химический ожог глаза всегда считается тяжелой ситуацией с точки зрения лечения в офтальмологии. Все зависит от степени поражения, от агента, от глубины проникновения. Такой ожог может иногда привести не просто к ослаблению зрения, а даже к полной его потере.

  • Химический ожог глаза кислотой самый «легкий» в лечении по сравнению с другими видами агентов.
  • Химический ожог глаза щелочью сложен в лечении тем, что вызывает гидролиз самой структуры белка, что разрушает клетки и может быстро привести к влажному некрозу. Это способно затронуть внутриглазную жидкость и значительно повысить внутриглазное давление.

При химическом ожоге глаза в качестве первой помощи необходимо сделать обильное промывание и срочно обращаться к специалисту, лучше вызывать Скорую помощь.

Термический ожог кожи

Термические ожоги возникают вследствие воздействия огня, пара, горячей воды (кипятка), солнечных лучей и т.п. Наиболее часто термические ожоги получают от огня, они составляют 84 на 1000 пострадавших. Второе место занимают термические ожоги, полученные от горячих жидкостей, третье место – электроожоги.

Такие ожоги бывают трех степеней:

  • I степень – покраснение кожных покровов, отек кожи;
  • II степень – появление на месте ожога пузырей, наполненных прозрачной жидкостью;
  • III степень – термические ожоги третьей степени подразделяют на два вида: IIIА (дермальные, поражение верхних слоев кожи) и IIIБ (омертвение всех слоев кожи, когда образуется некротический струп).

Источник

Читайте также:  По телу пошли красные пятна как ожоги