Относительное удлиннение при растяжении

    Äëÿ îòäåëüíî âçÿòîãî ýëåìåíòà êîíñòðóêöèè âçàèìîóðàâíîâåøåííûå àêòèâíàÿ ñèëà è ñèëà ðåàêöèè îïîðû ÿâëÿþòñÿ
âíåøíèìè ñèëàìè.
    Ðàññìîòðèì, êàêèì îáðàçîì êîíñòðóêöèÿ îêàçûâàåò ñîïðîòèâëåíèå âíåøíåé íàãðóçêå, çà ñ÷åò ÷åãî ïðîèñõîäèò èçìåíåíèå
ôîðìû è ðàçìåðîâ êîíñòðóêöèè — äåôîðìèðîâàíèå (îò ëàò. deformatio — èñêàæåíèå).
10.3.1. Ðàñòÿæåíèå
    Íå îáðàùàÿ âíèìàíèå íà òî, êàêèì îáðàçîì, ñ òî÷êè çðåíèÿ êîíñòðóêòèâíîãî ðåøåíèÿ, ïðèëîæåíû âíåøíèå ñèëû Ð,
ðàññìîòðèì ðàñòÿæåíèå ýëåìåíòà êîíñòðóêöèè, ñõåìà íàãðóæåíèÿ êîòîðîãî ïîêàçàíà íà ðèñ. 10.3,à.
Ðèñ. 10.3. Óïðîùåííàÿ ìîäåëü äåôîðìàöèè ïðè ðàñòÿæåíèè |
Íà ðèñ. 10.3 ïîêàçàíà òàêæå óïðîùåííàÿ ìîäåëü ìåæàòîìíûõ ñâÿçåé â òâåðäîì òåëå. Æåñòêèå è ïðî÷íûå ìåæàòîìíûå ñâÿçè, ñîåäèíÿþùèå àòîìû
íåäåôîðìèðîâàííîãî òåëà (ðèñ. 10.3,á), ïðè ðàñòÿæåíèè (ðèñ. 10.3,â) ñîçäàþò áîëüøèå
âíóòðåííèå ñèëû ïðîòèâîäåéñòâèÿ âíåøíåé íàãðóçêå, ñòðåìÿùèåñÿ ñîõðàíèòü òåëî êàê åäèíîå öåëîå.
    Ïîä äåéñòâèåì âíåøíèõ ñèë ÷àñòèöû (àòîìû) ìàòåðèàëà, èç êîòîðîãî ñäåëàíà êîíñòðóêöèÿ, áóäóò ïåðåìåùàòüñÿ, è
ïåðåìåùåíèå ÷àñòèö ïîä íàãðóçêîé áóäåò ïðîäîëæàòüñÿ, ïîêà ìåæäó âíåøíèìè è âíóòðåííèìè ñèëàìè íå óñòàíîâèòñÿ ðàâíîâåñèå.
    Òàêîå ñîñòîÿíèå íàçûâàåòñÿ äåôîðìèðîâàííûì
ñîñòîÿíèåì òåëà.
    Ìåðîé âîçäåéñòâèÿ âíåøíèõ ñèë íà àòîìû âåùåñòâà, êîòîðûå óäàëÿþòñÿ äðóã îò äðóãà (ïðè ðàñòÿæåíèè) èëè ñáëèæàþòñÿ
(ïðè ñæàòèè), ò. å. ìåðîé ïðîòèâîäåéñòâèÿ ìàòåðèàëà êîíñòðóêöèè âíåøíåìó ñèëîâîìó âîçäåéñòâèþ, ìåðîé âíóòðåííèõ ñèë â ìàòåðèàëå ÿâëÿåòñÿ
íàïðÿæåíèå. Íàïðÿæåíèåì íàçûâàåòñÿ âíóòðåííÿÿ ñèëà (âîçíèêàþùàÿ ïðè âîçäåéñòâèè âíåøíåé íàãðóçêè),
ïðèõîäÿùàÿñÿ íà åäèíèöó ïëîùàäè â îêðåñòíîñòè äàííîé òî÷êè ðàññìàòðèâàåìîãî ñå÷åíèÿ òåëà:
σ = Ð/F,
ãäå    | σ |    - | íàïðÿæåíèå, Ïà (1Ïà=1Í/ì2); |
P |    - | ñóììàðíàÿ ñèëà, Í; | |
F |    - | ïëîùàäü ïîïåðå÷íîãî ñå÷åíèÿ, ïåðïåíäèêóëÿðíîãî íàïðàâëåíèþ äåéñòâóþùåé ñèëû P,ì2. |
   Â èíæåíåðíîé ïðàêòèêå èíîãäà èçìåðÿþò íàïðÿæåíèÿ â äàÍ/ìì2 (1äàÍ= 10Í).
   Íàïðÿæåíèå, òàêèì îáðàçîì, ïîêàçûâàåò èíòåíñèâíîñòü ïðîòèâîäåéñòâèÿ âíóòðåííèõ ñèë âîçäåéñòâèþ âíåøíåé íàãðóçêè íà
ìåæàòîìíûå ñâÿçè ìàòåðèàëà êîíñòðóêöèè, èëè, ÷òî òî æå ñàìîå, èíòåíñèâíîñòü âîçäåéñòâèÿ âíåøíåé íàãðóçêè íà ìåæàòîìíûå ñâÿçè.
   Åñëè ðàññìîòðåòü äåôîðìèðîâàííîå ñîñòîÿíèå ñòåðæíÿ (áðóñà) (ðèñ. 10.4) ïðè ðàñòÿæåíèè âíåøíèìè ñèëàìè Ð
(ïîêàçàíû íà ðèñóíêå ÷åðíûìè ñòðåëêàìè), òî â ëþáîì ïðîèçâîëüíî âçÿòîì ïîïåðå÷íîì ñå÷åíèè (íàïðèìåð, ïëîñêîñòüþ À) ðàñïðåäåëåíèå
íîðìàëüíûõ íàïðÿæåíèé σ = Ð/F áóäåò ðàâíîìåðíûì.
Ðèñ. 10.4. Äåôîðìèðîâàííîå ñîñòîÿíèå áðóñà |
   Ðàâíîäåéñòâóþùàÿ ñèëà íàïðÿæåíèé σ — âíóòðåííÿÿ ñèëà
Ð = σF (íà ðèñ. 10.4 — áåëàÿ ñòðåëêà) — ïðîõîäèò ÷åðåç öåíòð òÿæåñòè ïîïåðå÷íîãî ñå÷åíèÿ âäîëü ëèíèè äåéñòâèÿ
âíåøíåé ñèëû è ðàâíà åé.
   Ïîä äåéñòâèåì ðàñòÿãèâàþùèõ ñèë Ð äëèíà ñòåðæíÿ l óâåëè÷èâàåòñÿ íà âåëè÷èíó Δl,
íàçûâàåìóþ àáñîëþòíûì óäëèíåíèåì. Ðàñòÿæåíèå ñîïðîâîæäàåòñÿ òàêæå óìåíüøåíèåì ïîïåðå÷íûõ ðàçìåðîâ
ñå÷åíèÿ. Ýòî ÿâëåíèå íîñèò íàçâàíèå «ýôôåêò Ïóàññîíà» (ïî èìåíè ôðàíöóçñêîãî ó÷åíîãî è ìåõàíèêà
Ñ. Ïóàññîíà). Àáñîëþòíîå ïîïåðå÷íîå ñóæåíèå
ñòåðæíÿ ïðè ðàñòÿæåíèè Δb =
b — b1; Δc = c — c1.
   Èìåííî çà ñ÷åò èçìåíåíèÿ ôîðìû è ðàçìåðîâ ëþáàÿ êîíñòðóêöèÿ ñîïðîòèâëÿåòñÿ (ñîçäàåò ñèëû ïðîòèâîäåéñòâèÿ) âíåøíèì íàãðóçêàì.
   Â èíæåíåðíîé ïðàêòèêå äåôîðìèðîâàííîå ñîñòîÿíèå ïðèíÿòî îöåíèâàòü íå òîëüêî àáñîëþòíûìè âåëè÷èíàìè èçìåíåíèé ôîðìû
( «ïåðåìåùåíèÿìè»), íî è îòíîñèòåëüíûìè áåçðàçìåðíûìè âåëè÷èíàìè —
«äåôîðìàöèÿìè»:
ε = Δl/l; ε = Δb/b = Δc/c,
ãäå    | ε |    - | îòíîñèòåëüíîå óäëèíåíèå ïðè ðàñòÿæåíèè; |
ε’ |    - | îòíîñèòåëüíûå ïîïåðå÷íûå äåôîðìàöèè. |
   Ïðè äîñòàòî÷íî áîëüøèõ âíåøíèõ íàãðóçêàõ (è, êàê ñëåäñòâèå, áîëüøèõ âíóòðåííèõ íàïðÿæåíèÿõ) ìåæàòîìíûå ñâÿçè ìàòåðèàëà ìîãóò
áûòü ðàçîðâàíû, ÷òî ïðèâåäåò ê ðàçðóøåíèþ êîíñòðóêöèè.
   Êîíñòðóêöèÿ äîëæíà áûòü ñïðîåêòèðîâàíà òàê, ÷òîáû îíà íå ðàçðóøèëàñü ïîä íàãðóçêîé. Äåôîðìàöèè (ïåðåìåùåíèÿ), êîòîðûå
íåèçáåæíî âîçíèêàþò â êîíñòðóêöèè ïîä íàãðóçêîé, äîëæíû áûòü âïîëíå îïðåäåëåííûìè è äîñòàòî÷íî ìàëûìè, ïîñêîëüêó âûáðàííûå ðàçìåðû è ôîðìà
ýëåìåíòîâ êîíñòðóêöèè îáåñïå÷èâàþò îïðåäåëåííîå êà÷åñòâî åå ôóíêöèîíèðîâàíèÿ.
   Òàê, èçìåíåíèå ïîä íàãðóçêîé ðàçìåðîâ è ôîðìû ýëåìåíòîâ êîíñòðóêöèè ñàìîëåòà, îáòåêàåìûõ ïîòîêîì âîçäóõà, ñóùåñòâåííûì îáðàçîì
âëèÿåò íà àýðîäèíàìè÷åñêèå õàðàêòåðèñòèêè è, êàê ñëåäñòâèå, — íà ëåòíî-òåõíè÷åñêèå õàðàêòåðèñòèêè ñàìîëåòà.
   Õàðàêòåð ðàáîòû êîíñòðóêöèè ïîä íàãðóçêîé âî ìíîãîì îïðåäåëÿåòñÿ âûáîðîì êîíñòðóêöèîííûõ
ìàòåðèàëîâ. Îäíîé èç îñíîâíûõ õàðàêòåðèñòèê ìàòåðèàëà êîíñòðóêöèè ÿâëÿåòñÿ äèàãðàììà ðàñòÿæåíèÿ (êðèâàÿ äåôîðìèðîâàíèÿ) — âçàèìîçàâèñèìîñòü íàïðÿæåíèé è äåôîðìàöèé
óäëèíåíèÿ, ïîëó÷àåìàÿ â ðåçóëüòàòå èñïûòàíèé îáðàçöîâ ìàòåðèàëîâ íà ðàñòÿæåíèå. Íà ðèñ. 10.5 ïîêàçàí òèïè÷íûé õàðàêòåð äèàãðàìì ðàñòÿæåíèÿ äëÿ
íåêîòîðûõ êîíñòðóêöèîííûõ ìàòåðèàëîâ, ïðèìåíÿåìûõ â ñàìîëåòîñòðîåíèè.
Ðèñ. 10.5. Äèàãðàììà ðàñòÿæåíèÿ |
   Ïðÿìîëèíåéíûå íà íåêîòîðîì ïðîòÿæåíèè äèàãðàììû ó÷àñòêè (0-À, 0-ÀÂ) õàðàêòåðèçóþò òàêóþ ñòàäèþ äåôîðìèðîâàíèÿ îáðàçöà,
êîãäà ïðè óâåëè÷åíèè íàãðóçêè äåôîðìàöèè ïðîïîðöèîíàëüíû íàïðÿæåíèÿì è ïðè ñíÿòèè íàãðóçêè èñ÷åçàþò, ò. å. îáðàçåö çà ñ÷åò ìåæàòîìíûõ ñâÿçåé
(ñèë óïðóãîñòè) âîçâðàùàåòñÿ â èñõîäíîå (íåäåôîðìèðîâàííîå) ñîñòîÿíèå. Íà ýòîì ó÷àñòêå ìàòåðèàë «ïîä÷èíÿåòñÿ»
çàêîíó Ãóêà (ïî èìåíè àíãëèéñêîãî åñòåñòâîèñïûòàòåëÿ
Ð. Ãóêà):
σ = Åε,
ãäå    | σ |    - | íàïðÿæåíèå, Ïà; |
E |    - | ìîäóëü óïðóãîñòè ìàòåðèàëà, èëè ìîäóëü Þíãà (ïî èìåíè àíãëèéñêîãî ó÷åíîãî Ò.Þíãà), Ïà; | |
ε |    - | îòíîñèòåëüíîå óäëèíåíèå. |
   Ìîäóëü óïðóãîñòè Å (íàêëîí êðèâîé äåôîðìèðîâàíèÿ â çîíå óïðóãîñòè
0-À (0-ÀÂ) äèàãðàììû: Å = tgα) ÿâëÿåòñÿ ìåðîé óïðóãîñòè («æåñòêîñòè») è õàðàêòåðèçóåò ïîäàòëèâîñòü (ñïîñîáíîñòü ê
äåôîðìèðîâàíèþ) ïîä íàãðóçêîé. Îòìåòèì, ÷òî ñòàëü — áîëåå æåñòêèé, ìåíåå ïîäàòëèâûé ìàòåðèàë, ÷åì àëþìèíèåâûé ñïëàâ.
   Òî÷êà À (ÀÂ) íà äèàãðàììàõ õàðàêòåðèçóåò íàèáîëüøóþ íàãðóçêó Ðïö è, ñîîòâåòñòâåííî,
íàïðÿæåíèÿ
ïðåäåëà ïðîïîðöèîíàëüíîñòè
σïö, ïðè êîòîðûõ åùå ñîáëþäàåòñÿ ëèíåéíàÿ
çàâèñèìîñòü σ — ε.
   Äàëüøå, çà òî÷êîé À (ÀÂ), ëèíåéíàÿ çàâèñèìîñòü σ — ε íàðóøàåòñÿ, ìàòåðèàë äåôîðìèðóåòñÿ («òå÷åò»)
ïîä íàãðóçêîé è ïðè ñíÿòèè íàãðóçêè íå âîçâðàùàåòñÿ ê èñõîäíîìó ñîñòîÿíèþ, â íåì âîçíèêàþò îñòàòî÷íûå ïëàñòè÷åñêèå
äåôîðìàöèè çà ñ÷åò òîãî, ÷òî ÷àñòü ìåæàòîìíûõ ñâÿçåé ðàçðóøàåòñÿ. Òî÷êà  íà äèàãðàììàõ õàðàêòåðèçóåò íàãðóçêó
Ðò è, ñîîòâåòñòâåííî,
íàïðÿæåíèÿ ïðåäåëà òåêó÷åñòè
σò, ïðè êîòîðûõ ìàòåðèàë «òå÷åò» áåç óâåëè÷åíèÿ íàãðóçêè. Íåêîòîðûå ìàòåðèàëû (íàïðèìåð, 4, ñì. ðèñ. 10.5)
èìåþò ÿâíî âûðàæåííóþ ïëîùàäêó òåêó÷åñòè À-Â, ãäå äåôîðìàöèè ñóùåñòâåííî óâåëè÷èâàþòñÿ áåç óâåëè÷åíèÿ
âíåøíåé íàãðóçêè. Äëÿ äðóãèõ ìàòåðèàëîâ (1, 2, 3) ïëîùàäêè òåêó÷åñòè îòñóòñòâóþò, â ýòîì ñëó÷àå òî÷êè À è  íà äèàãðàììå ïðàêòè÷åñêè
ñîâïàäàþò.
   Çîíà Â-Ñ äèàãðàììû íàçûâàåòñÿ çîíîé óïðî÷íåíèÿ. Çäåñü ïîñëå ñòàäèè òåêó÷åñòè
ìàòåðèàë ñíîâà ïðèîáðåòàåò ñïîñîáíîñòü óâåëè÷èâàòü ñîïðîòèâëåíèå äàëüíåéøåé äåôîðìàöèè, îäíàêî äëÿ óäëèíåíèÿ îáðàçöà â ýòîé çîíå òðåáóåòñÿ â
ñîòíè ðàç áîëåå ìåäëåííîå íàðàñòàíèå íàãðóçêè, ÷åì â çîíå óïðóãèõ äåôîðìàöèé.
Ðèñ. 10.6. Äèàãðàììà èñòèííûõ íàïðÿæåíèé |
   Òî÷êà Ñ äèàãðàììû õàðàêòåðèçóåò ìàêñèìàëüíóþ (ïðåäåëüíóþ) íàãðóçêó Ðmax è, ñîîòâåòñòâåííî,
íàïðÿæåíèÿ ïðåäåëà ïðî÷íîñòè èëè íàïðÿæåíèÿ âðåìåííîãî ñîïðîòèâëåíèÿ σâ, ïðè êîòîðûõ åùå ñîõðàíÿåòñÿ öåëîñòíîñòü
ýëåìåíòà êîíñòðóêöèè, íàãðóæåííîãî ðàñòÿæåíèåì.
   Äàëüøå, çà òî÷êîé Ñ äèàãðàììû, áåç óâåëè÷åíèÿ âíåøíåé íàãðóçêè èäåò ëàâèíîîáðàçíîå ðàçðóøåíèå ìåæàòîìíûõ ñâÿçåé
ìàòåðèàëà.
   Íàïðÿæåíèå σâ, òàêèì îáðàçîì, õàðàêòåðèçóåò ïðî÷íîñòü ìàòåðèàëà íà ðàçðûâ.
   Òî÷êà D äèàãðàììû õàðàêòåðèçóåò ðàçðóøåíèå (ðàçðûâ) îáðàçöà. Íèñõîäÿùàÿ âåòâü äèàãðàììû Ñ-D èìååò óñëîâíûé
õàðàêòåð, ïîñêîëüêó íàïðÿæåíèÿ ðàññ÷èòûâàþòñÿ äëÿ ïëîùàäè ïîïåðå÷íîãî ñå÷åíèÿ èñõîäíîãî îáðàçöà. Ðåàëüíî íàïðÿæåíèÿ ðàñòóò, ÷òî ïîêàçûâàåò
äèàãðàììà èñòèííûõ íàïðÿæåíèé (ðèñ. 10.6 — ïóíêòèðíàÿ ëèíèÿ),
â êîòîðîé íàïðÿæåíèÿ ðàññ÷èòûâàþòñÿ äëÿ èñòèííîé ïëîùàäè ïîïåðå÷íîãî ñå÷åíèÿ îáðàçöà.  èíòåðâàëå Î-À ðîñò íàïðÿæåíèÿ èäåò áåç
ðàçðóøåíèÿ ìåæàòîìíûõ ñâÿçåé, ïîñëå ñíÿòèÿ íàãðóçêè îáðàçåö âîçâðàùàåòñÿ ê èñõîäíîìó ñîñòîÿíèþ. Â èíòåðâàëå À-D ðîñò íàïðÿæåíèÿ
ïðîèñõîäèò çà ñ÷åò ðàçðóøåíèÿ ìåæàòîìíûõ ñâÿçåé è çíà÷èòåëüíîãî ìåñòíîãî óòîíåíèÿ îáðàçöà (îáðàçîâàíèÿ
øåéêè 1).  ìîìåíò ðàçðóøåíèÿ (òî÷êà D äèàãðàììû) ïëîùàäü ïîïåðå÷íîãî ñå÷åíèÿ ïëàñòè÷åñêè
äåôîðìèðîâàííîãî îáðàçöà ìåíüøå èñõîäíîé.
   Ïðî÷íîñòü êîíñòðóêöèè, åñòåñòâåííî, çàâèñèò îò ïðî÷íîñòè ìàòåðèàëà, èç êîòîðîãî îíà èçãîòîâëåíà.
   Ïðî÷íîñòü
(íåñóùàÿ ñïîñîáíîñòü)
êîíñòðóêöèè — ýòî ñïîñîáíîñòü êîíñòðóêöèè â îïðåäåëåííûõ óñëîâèÿõ âîñïðèíèìàòü (âûäåðæèâàòü) áåç
ðàçðóøåíèÿ âíåøíèå íàãðóçêè.
Íàãðóçêà, ïðè êîòîðîé ïðîèñõîäèò ðàçðóøåíèå êîíñòðóêöèè, íàçûâàåòñÿ
ðàçðóøàþùåé.
Ðèñ. 10.7. Òðàåêòîðèè íàïðÿæåíèé |
   Íåñóùàÿ ñïîñîáíîñòü âî ìíîãîì çàâèñèò îò ïëàñòè÷íîñòè ìàòåðèàëà. Ïëàñòè÷íîñòü
— ñïîñîáíîñòü ìàòåðèàëà ïîëó÷àòü áîëüøèå îñòàòî÷íûå äåôîðìàöèè, íå ðàçðóøàÿñü. Õðóïêîñòü
(ñâîéñòâî, ïðîòèâîïîëîæíîå ïëàñòè÷íîñòè) — ñïîñîáíîñòü ìàòåðèàëà ðàçðóøàòüñÿ áåç çàìåòíîé ïëàñòè÷åñêîé äåôîðìàöèè.
   Æåñòêîñòü — ñïîñîáíîñòü êîíñòðóêöèè ñîïðîòèâëÿòüñÿ äåéñòâèþ âíåøíèõ íàãðóçîê
ñ äîïóñòèìûìè â ýêñïëóàòàöèè äåôîðìàöèÿìè, íå íàðóøàþùèìè ðàáîòîñïîñîáíîñòü êîíñòðóêöèè.
   Íåñóùàÿ ñïîñîáíîñòü êîíñòðóêöèè ðåçêî ñíèæàåòñÿ èìåþùèìèñÿ â ìàòåðèàëå êîíñòðóêöèè ìèêðîòðåùèíàìè, âêðàïëåíèÿìè
èíîðîäíûõ ìàòåðèàëîâ, íàðóøàþùèìè ïîñòîÿíñòâî íàïðÿæåíèé.
   Êîíöåíòðàòîðû íàïðÿæåíèé
— ìåñòíûå ðåçêèå èçìåíåíèÿ îäíîðîäíîñòè (ôîðìû è, ñëåäîâàòåëüíî, æåñòêîñòè) êîíñòðóêöèè, ïðèâîäÿùèå ê ðåçêîìó ìåñòíîìó
(ëîêàëüíîìó) ïîâûøåíèþ íàïðÿæåíèé â êîíñòðóêöèè.
   Íà ðèñ. 10.7 ïîêàçàíî äåéñòâèå ðàñòÿãèâàþùåé âíåøíåé íàãðóçêè, ðàâíîìåðíî ðàñïðåäåëåííîé ïî êðàÿì ïðîñòåéøèõ êîíñòðóêòèâíûõ
ýëåìåíòîâ — ëèñòîâ. Ïóíêòèðíûå ëèíèè ïðåäñòàâëÿþò ñîáîé òàê íàçûâàåìûå òðàåêòîðèè íàïðÿæåíèé, âäîëü êîòîðûõ íàïðÿæåíèå ïåðåäàåòñÿ îò
ìîëåêóëû ê ìîëåêóëå. Äëÿ ãëàäêîãî ëèñòà ýòè ëèíèè ïàðàëëåëüíû, íàïðÿæåíèÿ â ëþáîì ñå÷åíèè ëèñòà îäèíàêîâû.
Ðèñ. 10.8. ïåðåäà÷à íàãðóçêè â ñîåäèíåíèè |
   Ñèëû, ïåðåäàþùèåñÿ ïî òðàåêòîðèÿì íàïðÿæåíèé â ëèñòàõ ñ êîíöåíòðàòîðàìè (íàäðåç â êðîìêå ëèñòà, îòâåðñòèå â öåíòðå ëèñòà),
îáõîäÿò ðàçðûâ â ìàòåðèàëå. Ïëîòíîñòü òðàåêòîðèé íàïðÿæåíèé óâåëè÷èâàåòñÿ, è ëîêàëüíûå íàïðÿæåíèÿ σ ó êðàÿ êîíöåíòðàòîðà âîçðàñòàþò
(èíîãäà ìíîãîêðàòíî). Â ýòèõ ìåñòàõ ìîæåò ïðîèçîéòè íàðóøåíèå (ðàçðûâ) ìåæàòîìíûõ ñâÿçåé, âîçíèêíóò ìèêðîòðåùèíû, ðàñïðîñòðàíåíèå êîòîðûõ âåäåò
ê ðàçðóøåíèþ êîíñòðóêöèè.
   Ðàñïðåäåëåíèå íàïðÿæåíèé â çàêîíöîâêàõ (ìåñòàõ ñîåäèíåíèÿ äåòàëåé)
îáû÷íî îñîáåííî
ñëîæíî, â íèõ îáÿçàòåëüíî ïîÿâëÿþòñÿ êîíöåíòðàöèè íàïðÿæåíèé
— ìåñòíîå ïîâûøåíèå íàïðÿæåíèé.
   Â ìåñòå ñîåäèíåíèÿ (ðèñ. 10.8) ëèñòîâ 1 è 3 ñ ïîìîùüþ çàêëåïîê (èëè ñâàðíûõ òî÷åê) 2 ïåðåäà÷à
íàãðóçêè áóäåò
ïðîèñõîäèòü òîëüêî ÷åðåç òî÷êè êðåïëåíèÿ. Ëèñòû ðàâíîìåðíî âêëþ÷àòñÿ â ðàáîòó íà äîñòàòî÷íî áîëüøîì óäàëåíèè îò ìåñòà
ñîåäèíåíèÿ.
   Çàøòðèõîâàííàÿ îáëàñòü ëèñòîâ ïðàêòè÷åñêè âûêëþ÷åíà èç ðàáîòû è íå èñïûòûâàåò íàïðÿæåíèé.  òî æå âðåìÿ
íàïðÿæåíèÿ â ïîïåðå÷íûõ ñå÷åíèÿõ ëèñòîâ ðàñïðåäåëåíû íåðàâíîìåðíî, ïðè÷åì σÀ-À > σÁ-Á > σÂ-Â.
   Êîíñòðóêòîð îñîáîå âíèìàíèå äîëæåí óäåëÿòü âûáîðó ôîðìû äåòàëåé, ðàáîòàþùèõ íà ðàñòÿæåíèå, è îñîáåííî èõ
çàêîíöîâîê, ÷òîáû óìåíüøèòü âîçìîæíûå êîíöåíòðàöèè íàïðÿæåíèé.
Источник
Сталь обладает свойствами упругоиластичных тел, для которых характерно наличие как упругих (обратимых), так и пластических (необратимых) деформаций при испытании на растяжение.
Стали различных марок проявляют упругие и пластичные свойства в разной степени Так, малоуглеродистые стали Ст0 . Ст3 обладают заметной пластичностью и большим удлинением при разрыве, в то же время высокоуглеродистые и легированные стали малопластичны и имеют небольшие удлинения при разрыве.
На диаграмме деформация — напряжение при испытании сталей на растяжение, вначале деформации пропорциональны напряжению. Максимальное напряжение, при котором сохраняется эта зависимость, называется пределом упругости σу. По достижении определенного напряжения, называемого пределом текучести σт, материал начинает интенсивно деформироваться (течь) без заметного увеличения напряжений. Эти деформации — пластические. По достижении определенною значения деформации процесс течения материала прекращается — материал как бы вновь приобретает прочность. Напряжения в материале растут вплоть до значения σв при котором материал разрушается. Значение σв, являющееся пределом прочности, у металлов называют временным сопротивлением разрыву. Деформации, соответствующие временному сопротивлению разрыву, называются относительным удлинением при разрыве.
При испытании стали на растяжение определяют предел текучести σт, временное сопротивление разрыву σв и относительное удлинение при разрыве ε. Испытания образцов стальной арматуры проводят на разрывных и универсальных испытательных машинах разных систем, которые должны обеспечивать точное центрирование оси образца относительно направления нагрузки; плавное возрастание нагрузки без толчков и пульсации, возможность приостановки нагружения с точностью до одного деления шкалы нагрузки и сохранения показания нагрузки в течение 30 с; возможность измерения деформаций образца.
Подготовка образцов. Для испытаний на растяжение применяют образцы арматурной стали круглые, гладкие или периодического профиля с необработанной поверхностью диаметром от 3 до 90 мм. Общую длину образцов арматуры назначают с учетом рабочей длины, которая должна составлять не менее 200 мм для образцов диаметром до 20 мм и не менее 10d (где d — диаметр образца) для образцов диаметром свыше 20 мм. Начальную площадь поперечного сечения S0 (мм2) необработанных образцов арматуры определяют в зависимости от их массы т (г) и длины l (мм) по формуле:
S0 = m/(ρI),
где ρ — плотность стали, равная 7,85- 10-1 г/мм3.
Если образцы диаметром от 3 до 40 мм обточены или они круглые и гладкие, то площадь поперечного сечения арматуры определяют по фактическому диаметру образца Для этого диаметр измеряют в трех местах по длине образца* в середине и по концам рабочей части, в каждом месте в двух взаимно перпендикулярных направлениях. Площадь поперечного сечения S0 находят по среднему значению диаметра. Фактические диаметры образцов арматурной стали определяют с погрешностью не более 0,1 мм; начальную и конечную рабочие длины образцов — с погрешностью не более 0,5 мм.
Массу образцов арматурной стали периодического профиля для расчета диаметра вычисляют с различной степенью точности в зависимости от диаметра для стали диаметром до 10 мм — с погрешностью не более 1 г; диаметром от 10 до 20 мм — не более 2 г; диаметром более 20 мм — не более 10 г.
Образцы арматурной стали, имеющие искривления, трещины расслоения, вмятины, а также другие поверхностные дефекты, не испытывают, они подлежат замене. Испытания арматурной стали считают недействительными при разрыве образца в захватах испытательной машины или по разметочным кернам (рискам) на рабочей длине образца В таком случае испытания повторяют на вновь подготовленных образцах из той же партии.
Определение предела текучести (физического). Наименьшее напряжение, при котором образец деформируется без видимого увеличения нагрузки, называют пределом текучести. Этот показатель определяют для арматуры из низкоуглеродистых сталей.
При испытании образец арматурной стали закрепляют в зажимах машины и после ее включения следят за показаниями стрелки силоизмерителя. По достижении металлом предела текучести (деформация происходит без увеличения нагрузки) стрелка силоизмерителя останавливается, а затем вновь начинает перемешаться. В момент остановки стрелки нагрузку фиксируют, принимая ее за нагрузку, соответствующую пределу текучести (физическому) σт (МПа), который вычисляют с погрешностью не более 5 МПа по формуле:
σт= Fт /So
где Fт — нагрузка, соответствующая началу текучести. H;
So — начальная площадь поперечного сечения образца в рабочей части, мм2.
Определение временного сопротивления. Временное сопротивление характеризует напряжение, соответствующее наибольшей нагрузке Fmax, которая предшествует разрушению образца.
При испытании для определения временного сопротивления σв образец растягивают под действием плавно возрастающей нагрузки до разрушения, при этом по силоизмерителю фиксируют максимальную нагрузку Fmах предшествующую разрушению. Временное сопротивление определяют с погрешностью не более 5МПа по формуле
σт= Fmax /So
Определение относительного удлинения после разрыва. Отношение приращения расчетной длины образца к ее первоначальной длине называют относительным удлинением.
Относительное удлинение после разрыва определяют на начальной расчетной длине образца l0, в пределах которой произошел разрыв Начальную расчетную длину образца l0 принимают равной: для арматурной стали диаметром до 10 мм — 100 мм, для стали большего диаметра — равной пяти диаметрам. При испытании горячекатаной арматурной стали классов А-I и А-III диаметром 6…9 мм начальную расчетную длину принимают также равной пяти диаметрам.
Для определения приращения при разрыве образцы (рис. 1, а) перед испытанием размечают на длину несколько большую, чем их рабочая длина. Разметка производится на п равных частей с помощью рисок, наносимых керном, делительной машиной или иным способом. Расстояние между рисками принимают для стержней диаметром 10 мм и более не больше их диаметра, для стержней диаметром менее 10 мм — не более 5 мм.
Число интервалов, соответствующее начальной расчетной длине образца l0, обозначают п. Если число интервалов получается дробным, n округляют до целого числа в большую сторону.
Рис.1. Образцы арматурной стали при определении относительногоудлинения после разрыва
а — при месте разрыва близком к середине образца (больше чем n/2 от захватов машины).
б — при месте разрыва на расстоянии, меньшем, чем n/2 от захвата машины
После разрыва образца полученные половинки тщательно складывают вместе так, чтобы их оси образовали одну прямую линию Если между сложенными концами половинок имеется зазор, получившийся в результате выкрашивания металла при испытании или других причин, то зазор включают в длину расчетной (конечной) части образца после разрыва. От места разрыва в одну сторону откладывают n/2 интервалов и ставят метку а. Дробную величину n/2 округляют до целого числа в большую сторону. Участок от места разрыва до первой риски принимают для расчета за полный интервал От метки а откладывают в сторону разрыва п интервалов и славят вторую метку b. Длина отрезка аb будет составлять конечную расчетную длину стержня lк.
В том случае, если место разрыва будет ближе, чем величина n/2 к краю захвата машины, то конечную расчетную длину образца lк, полученную после разрыва, определяют следующим образом (рис 17 1,б) Устанавливают число интервалов от места разрыва до крайней риски q и обозначают его т/2. Затем от точки q к месту разрыва откладывают метку с. После этого от метки с откладывают (n/2 т/2) интервалов и ставят метку с. Конечную расчетную длину образца lк в этом случае вычисляют по формуле
lк= сq+2 се
где сq и се — длины участков образна соответственно между метками с и q и с и е.
Если разрыв происходит на расстоянии от захвата меньшем, чем длина двух интервалов, расчетную длину нельзя точно определить, для этого необходимо провести повторное испытание.
Определив конечную длину lк, находят относительное удлинение ε (%).
ε=[( lк — l0)/l0]100,
где l0 и lк соответственно начальная и конечная расчетная длина образца,мм
Твердость стали
Твердость стали определяют чаще всего методами Бринелля или Роквелла, реже методом Виккерса.
Метод Бринелля. Определение твердости по методу Бринелля основано на вдавливании в предварительно отшлифованную поверхность испытуемого материала под определенной нагрузкой стальною закаленного шарика. По размеру полученного на испытуемом материале отпечатка судят о его твердости.
Для испытания твердости стали по методу Бринелля применяют приборы (рис. 17.2) с пределами измерений от 8 до 450 единиц. Испытуемый образец помещают на столике l, подвижно закрепленном на станине прибора. Система рычагов 4, 5, 6 передает многократно увеличенную нагрузку от груза 7 к шарику 2, вдавливаемому в образец. Шарик подрессорен пружиной 3. При передаче нагрузки поворачивается эксцентрик 8 и срабатывает звонок 9, показывающий, что нагрузка достигла задан-ного предела.
Диаметры стальных шариков, вдавливаемых в испытуемый материал, устанавливают в зависимости от прилагаемой нагрузки. Так, при диаметре 2,5 мм нагрузки на стальной шарик составляют 625 и 1875 Н; при диаметре 5 мм — 2,5 и 7,5 кН, при диаметре 10 мм — 10 и 30 кН. Для испытания стали обычно применяют стальные шарики диаметром 10 мм при нагрузке 30 кН.
Рис. 3. Отсчетный микроскоп
1-упор, 2-окно, 3-объектив
4-корпус, 5-винт, 6-втулка,
7-тубус, 8-окуляр
Рис. 2. Схема прибора Бринелля:
1-столик, 2- шарик, 3-пружина,
4-6- рычаги, 7-груз, 8- эксцентрик
9- звонок
Величину полученного на образце стали отпечатка измеряют отсчетным микроскопом с ценой деления 0,05 мм и с полем зрения не менее 6,5 мм. Некоторые типы приборов снабжены проекционным устройством, которое позволяет измерять диаметр отпечатка на экране.
Отсчетный микроскоп (рис.3) состоит из корпуса 4 заканчивающегося внизу упором l, и тубуса 7, вставленного во втулку 6 корпуса. Тубус вверху заканчивается окуляром 8, а внизу — объективом 3. Чтобы определить размер отпечатка, микроскоп устанавливают на поверхность испытанного материала так, чтобы отверстие в упоре микроскопа располагалось концентрично с отпечатком. Окно 2 поворачивают в направлении источника света и, вращая винт 5, добиваются резкого изображения поверхности отпечатка. Встроенную в микроскоп оптическую шкалу настраивают вращением обечайки окуляра 8
Для испытания применяют образны стали толщиной не менее чем 10-кратная глубина отпечатка. У отобранных для испытания образцов шлифовальным кругом или напильником так обрабатывают поверхность, чтобы края отпечатка были достаточно отчетливы для измерения его диаметра. Для испытания нельзя применять образцы, имеющие на поверхности окалину или другие посторонние вещества. Образец во время испытаний не должен прогибаться и смешаться.
Подготовленный образец стали закрепляют на столике l (см. рис.2) и включают прибор, постепенно прилагая нагрузку. Время выдержки при полной нагрузке 10 с. Диаметр отпечатка измеряют в двух взаимно перпендикулярных направлениях. За диаметр принимают его среднее арифметическое значение, при этом разность измерений диаметров одного отпечатка не должна превышать 2 % меньшего из них.
По диаметру отпечатка определяют его площадь. Число твердости по Бринеллю HВ вычисляют путем деления нагрузки F (H) на площадь поверхности сферического отпечатка 5 (мм2) по формуле
где D — диаметр шарика, мм; (d — диаметр отпечатка, мм.
Метод Бринелля применяют для сталей, твердость которых не более 450. Между твердостью по Бринеллю и пределом прочности стали а существует зависимость, σ=0,36НВ, справедливая для сталей с содержанием углерода до 0,8 %.
Метод Роквелла. Определение твердости по Роквеллу основано на вдавливании в испытуемый материал алмазного конуса с углом при вершине 120° или стального шарика диаметром 1,588 мм. Шарик или алмаз вдавливаются в образец под действием двух последовательно прилагаемых нагрузок; предварительной F0= 100 H и обшей F равной сумме предварительной и основной F=F0+F1 (основная нагрузка составляет 0.6; 1 или 1.5 кН).
Конструкции приборов Роквелла и Бринелля аналогичны — в приборе Роквелла также используется рычажная система нагружения. Плавность подачи нагрузки достигается с помощью масляного тормоза
Глубину вдавливания шарика или конуса измеряют по шкале индикатора, установленного на приборе. Индикатор снабжен тремя шкалами А, В и С, соответствующими различным условиям испытаний (шкалы А и С служат при испытании алмазным конусом при основной нагрузке F1 соответственно 0,6 и 1,5 кН, а шкала В — при испытании стальным шариком при нагрузке 1 кН). Глубину вдавливания по индикатору определяют с погрешностью не более 0,01 мм.
Рис. 4. Схема определения твердости стали по Роквеллу: а— шариком, б-алмазным конусом
При определении твердости по Роквеллу (рис.4) сначала испытуемый образец подвергают действию предварительной нагрузки F0,замеряя глубину погружения наконечника h0, затем плавно (в течение3…6 с) подают основную нагрузку и замеряют глубину погружения наконечника h при полной нагрузке F=F0+F1. Испытания проводят не менее чем в трех точках образца. Значение твердости вычисляют по формулам НR = (100 — е) — для шкал А и С; HR=(130-е) — для шкалы В. Значение параметра е вычисляют по формуле
е = (h — h0)/0,002.
Число твердости по Роквеллу отвлеченное; перед числом ставят знак НR с добавлением обозначения шкалы (А, В или С), по которой производилось испытание (например, НRВ 110).
Технологические испытания арматурной стали
Технологическими испытаниями устанавливают способность арматурной стали воспринимать деформации без нарушения целостности, т.е. без появления в ней трещин, надрывов, расслоений. От ранее рассмотренных механических испытаний технологические отличаются тем, что при испытании не определяют усилия для осуществления той или иной деформации. Для арматурной стали технологические испытания включают в себя испытание
прутковой арматуры на загиб и арматурной проволоки на перегиб.
Испытание на загиб. Арматура для железобетонных конструкций должна иметь на концах крюки с углом загиба до 180° и отгибы по длине арматуры на 45 и 90°. Поэтому арматурную сталь подвергают испытанию на холодный загиб.
Для испытания образцы арматурной стали подвергают холодному загибу на гидравлическом прессе по схеме, представленной на рис.5, a на нижней плите l пресса устанавливают две опоры 2, в верхней части которых вращаются два ролика 3. Ролики могут лежать в цилиндрической выточке в верхней части опор или быть насаженными на ось. Образец 4 кладут на опоры 2. Нагрузка на образец передается оправкой б, точно установленной посередине между опорами.
Рис. 5. Испытание арматуры стали на холодный загиб: a- схема установки образца в прессе, б- загиб до заданного угла, в- загиб на 180о вокруг оправки, г- загиб в плотную 1,5 –плиты пресса, 2-опоры, 3-ролики, 4- образец, 6- оправка
Ширина оправки и опор должна быть больше ширины образца. Толщину оправки устанавливают в соответствии со стандартом или принимают равной двум диаметрам (толщинам) испытуемого образца. Длину образца, отпиливаемого от прутка испытуемой арматуры, находят по формуле L = 5d+ 150мм, где d — диаметр прутка, мм. В зависимости от угла и способа загиба испытания могут быть следующих типов.
Испытание на загиб до заданного угла а приводят таким образом Образцы кладут на ролики опор, раздвинутых на расстояние С+ 2,Id, где С — толщина оправки. Оправку помешают на середину образца (рис.5,а) и плавно увеличивают нагрузку на образец до тех пор, пока угол загиба не достигнет задан-ной величины (рис.5,б).
Испытание на загиб до параллельности сторон (на угол 180°) проводят после предварительного загиба по вышеописанной схеме до угла не менее 150°. Затем образец догибают на прессе до параллельности его стороне прокладкой, толщина которой равна толщине оправки (рис.5,в)
Испытание на загиб вплотную (рис.5,г) также состоит из предварительного загиба образца на угол не менее 150° и последующего догиба сторон образца до их плотного соприкосновения.
При всех вариантах испытаний нагрузку подают плавно до заданного угла загиба образца, затем образец снимают с пресса и осматривают Если при загибе не обнаружено трещин, надрывов, изломов и расслоений, сталь считается выдержавшей испытание на холодный загиб. Возможен и другой вариант испытаний на холодный загиб, когда определяется минимальный угол загиба, при котором начинается разрушение образца.
Рис. 6. Прибор НГ-1-2 для определения числа перегибов проволоки: 1- упоры, 2-щеки тисков, 3- рычаг, 4-поводок, 5-сменные губки, 6- штифт, 7-винт, 8-образец
Испытание на перегиб. Арматурную проволоку испытывают па приборе НГ-1-2 (рис.6), представляющем собой небольшие настольные тиски, укрепляемые на прочном деревянном столе. Левая часть тисков 2 закреплена неподвижно, а правая перемешается посредством поворотного винта 7. В тиски вставляются сменные губки 5 соответствующего профиля (радиуса закругления R) и закрепляются штифтами б. Поводки 4, размер и высота установки которых зависят от диаметра испытуемой проволоки (табл.3), укрепляются в прорези рычага 3. В поводки вставляют верхний конец образца проволоки. Высоту установки поводка определяют по шкале, нанесенной на рычаге радом с прорезью Над прорезью находится отверстие для установки натяжного приспособления (для натяжения проволоки малого диаметра) Рычаг может отклоняться вручную в обе стороны на угол 90°; в вертикальном положении он фиксируется с помощью шарика, западающего в конусообразное углубление в кон не вилки рычага.
При проведении испытаний образец 8 длиной 100… 150 мм зажимают в губках 5 радиусом R; верхний конец образца пропускают через соответствующее по размеру отверстие поводка 4 Губки и поводок подбирают в зависимости от диаметра проволоки по табл.3. Перегиб проволоки осуществляется поворотом рычага до упора. Число перегибов фиксируется счетчиком.
Таблица 3
Зависимость размеров поводка и губок от диаметра проволоки
Диаметр проволоки, мм | Радиусзакругления губок R, мм | Диаметр отверстия поводка, мм | Pacстояние |
α | b | ||
3..3,5 3,5..4 4…5 5..6 6..7 | 7,5 | 1,7 2,0 2,0 2,8 2,8 |
Испытание проволоки на перегиб производят с равномерной скоростью, равной 60 перегибам в минуту. При этом первым перегибом считается загиб образца на 90° вправо; вторым — разгиб образца до начального положения и загиб его на 90° влево; третьим — разгиб образца до начального положения и загиб его снова на 90° вправо и т.д. до разрушения образца. Последний перегиб, на котором произошло разрушение образца, в расчет не принимают.
Контрольные вопросы
1. Как определяют номинальный диаметр стержней периодического профиля?
2. Каким силам при испытании подвергают стержневую арматуру и арматурную проволоку?
3.Какая нагрузка фиксируется при определении предела текучести и при определении временного сопротивления растяжению?
4. Как рассчитывают относительное удлинение арматуры при растяжении?
5. В каких единицах выражается твердость металлов?
6. Что служит критерием качества арматурной стали при испытании на загиб?
7. В каких единицах оценивается качество проволоки при испытании на перегиб?
Источник