Относительное удлинение при растяжении полипропилена
Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 26 апреля 2020;
проверки требуют 5 правок.
Полипропилен (PP) — термопластичный полимер пропилена (пропена).
Получение[править | править код]
Полипропилен получают полимеризацией пропилена в присутствии металлокомплексных катализаторов, например, катализаторов Циглера—Натта (например, смесь TiCl4 и AlR3):
nCH2=CH(CH3) → [-CH2-CH(CH3)-]n
Параметры, необходимые для получения полипропилена близки к тем, при которых получают полиэтилен низкого давления. При этом, в зависимости от конкретного катализатора, может получаться любой тип полимера или их смеси.
Полипропилен выпускается в виде порошка белого цвета или гранул с насыпной плотностью 0,4—0,5 г/см³. Полипропилен выпускается стабилизированным, окрашенным и неокрашенным.
Молекулярное строение[править | править код]
По типу молекулярной структуры можно выделить три основных типа: изотактический, синдиотактический и атактический.
Изотактическая и синдиотактическая молекулярные структуры могут характеризоваться разной степенью совершенства пространственной регулярности.
Стереоизомеры полипропилена существенно различаются по механическим, физическим и химическим свойствам. Атактический полипропилен представляет собой каучукоподобный материал с высокой текучестью, температурой плавления — около 80 °C, плотностью — 850 кг/м³, хорошей растворимостью в диэтиловом эфире. Изотактический полипропилен по своим свойствам выгодно отличается от атактического, а именно: он обладает высоким модулем упругости, большей плотностью — 910 кг/м³, высокой температурой плавления — 165—170 °C и лучшей стойкостью к действию химических реагентов. Стереоблокполимер полипропилена при исследовании с помощью рентгеновских лучей обнаруживает определённую кристалличность, которая не может быть такой же полной, как у чисто изотактических фракций, поскольку атактические участки вызывают нарушение в кристаллической решётке. Изотактический и синдиотактический образуются случайным образом;
Физико-механические свойства[править | править код]
В отличие от полиэтилена, полипропилен менее плотный (плотность 0,91 г/см³, что является наименьшим значением вообще для всех пластмасс), более твёрдый (стоек к истиранию), более термостойкий (начинает размягчаться при 140 °C, температура плавления 175 °C), почти не подвергается коррозионному растрескиванию. Обладает высокой чувствительностью к свету и кислороду (чувствительность понижается при введении стабилизаторов).
Поведение полипропилена при растяжении ещё в большей степени, чем полиэтилена, зависит от скорости приложения нагрузки и от температуры. Чем ниже скорость растяжения полипропилена, тем выше значение показателей механических свойств. При высоких скоростях растяжения разрушающее напряжение при растяжении полипропилена значительно ниже его предела текучести при растяжении.
Показатели основных физико-механических свойств полипропилена приведены в таблице:
Плотность, г/см³ | 0,90—0,91 |
Разрушающее напряжение при растяжении, кгс/см | 250—400 |
Относительное удлинение при разрыве, % | 200—800 |
Модуль упругости при изгибе, кгс/см | 6700—11900 |
Предел текучести при растяжении, кгс/см | 250—350 |
Относительно удлинение при пределе текучести, % | 10—20 |
Ударная вязкость с надрезом, кгс·см/см² | 33—80 |
Твердость по Бринеллю, кгс/мм² | 6,0—6,5 |
Физико-механические свойства полипропилена разных марок приведены в таблице:
Показатели / марка | 01П10/002 | 02П10/003 | 03П10/005 | 04П10/010 | 05П10/020 | 06П10/040 | 07П10/080 | 08П10/080 | 09П10/200 |
---|---|---|---|---|---|---|---|---|---|
Насыпная плотность, кг/л, не менее | 0,47 | 0,47 | 0,47 | 0,47 | 0,47 | 0,47 | 0,47 | 0,47 | 0,47 |
Показатель текучести расплава, г/10 мин | ≤0 | 0,2—0,4 | 0,4—0,7 | 0,7—1,2 | 1,2—3,5 | 3—6 | 5—15 | 5—15 | 15—25 |
Относительное удлинение при разрыве, %, не менее | 600 | 500 | 400 | 300 | 300 | — | — | — | — |
Предел текучести при разрыве, кгс/см, не менее | 260 | 280 | 270 | 260 | 260 | — | — | — | — |
Стойкость к растрескиванию, ч, не менее | 400 | 400 | 400 | 400 | 400 | — | — | — | — |
Характеристическая вязкость в декалине при 135 °C, 100 мл/г | — | — | — | — | — | 2,0—2,4 | 1,5—2,0 | 1,5—2,0 | 0,5—15 |
Содержание изотактической фракции, не менее | — | — | — | — | — | 95 | 93 | 95 | 93 |
Содержание атактической фракции, не более | — | — | — | — | — | 1,0 | 1,0 | 1,0 | 1,0 |
Морозостойкость, °C, не ниже | -5 | -5 | -5 | — | — | — | — | — | — |
Химические свойства[править | править код]
Полипропилен — химически стойкий материал. Заметное воздействие на него оказывают только сильные окислители — хлорсульфоновая кислота, дымящая азотная кислота, галогены, олеум. Концентрированная 58%-я серная кислота и 30%-й пероксид водорода при комнатной температуре действуют незначительно. Продолжительный контакт с этими реагентами при 60 °C и выше приводит к деструкции полипропилена.
В органических растворителях полипропилен при комнатной температуре незначительно набухает. Выше 100 °C он растворяется в ароматических углеводородах, таких, как бензол, толуол. Данные о стойкости полипропилена к воздействию некоторых химических реагентов приведены в таблице.
Среда | Температура, °C | Изменение массы, % | Примечание |
---|---|---|---|
Продолжительность выдержки образца в среде реагента 7 суток | |||
Азотная кислота, 50%-я | 70 | -0,1 | Образец растрескивается |
Натр едкий, 40%-й | 70 | Незначительное | |
90 | |||
Соляная кислота, конц. | 70 | +0,3 | |
90 | +0,5 | ||
Продолжительность выдержки образца в среде реагента 30 суток | |||
Азотная кислота, 94%-я | 20 | -0,2 | Образец хрупкий |
Ацетон | 20 | +2,0 | |
Бензин | 20 | +13,2 | |
Бензол | 20 | +12,5 | |
Едкий натр, 40%-й | 20 | Незначительное | |
Минеральное масло | 20 | +0,3 | |
Оливковое масло | 20 | +0,1 | |
Серная кислота, 80%-я | 20 | Незначительное | Слабое окрашивание |
Серная кислота, 98%-я | 20 | >> | |
Соляная кислота, конц. | 20 | +0,2 | |
Трансформаторное масло | 20 | +0,2 |
Вследствие наличия третичных углеродных атомов полипропилен более чувствителен к действию кислорода, особенно при воздействии ультрафиолета и повышенных температурах. Этим и объясняется значительно большая склонность полипропилена к старению по сравнению с полиэтиленом. Старение полипропилена протекает с более высокими скоростями и сопровождается резким ухудшением его механических свойств. Поэтому полипропилен применяется только в стабилизированном виде. Стабилизаторы предохраняют полипропилен от разрушения как в процессе переработки, так и во время эксплуатации. Полипропилен меньше, чем полиэтилен подвержен растрескиванию под воздействием агрессивных сред. Он успешно выдерживает стандартные испытания на растрескивание под напряжением, проводимые в самых разнообразных средах. Стойкость к растрескиванию в 20%-м водном растворе эмульгатора ОП-7 при 50 °C для полипропилена с показателем текучести расплава 0,5—2,0 г/10 мин, находящегося в напряжённом состоянии, более 2000 ч.
Полипропилен — водостойкий материал. Даже после длительного контакта с водой в течение 6 месяцев (при комнатной температуре) водопоглощение полипропилена составляет менее 0,5 %, а при 60 °C — менее 2 %.
Теплофизические свойства[править | править код]
Полипропилен имеет более высокую температуру плавления, чем полиэтилен, и соответственно более высокую температуру разложения. Чистый изотактический полипропилен плавится при 176 °C. Максимальная температура эксплуатации полипропилена 120—140 ºC. Все изделия из полипропилена выдерживают кипячение, и могут подвергаться стерилизации паром без какого-либо изменения их формы или механических свойств.
Превосходя полиэтилен по теплостойкости, полипропилен уступает ему по морозостойкости. Его температура хрупкости (морозостойкости) колеблется от −5 до −15 ºC. Морозостойкость можно повысить введением в макромолекулу изотактического полипропилена звеньев этилена (например, при сополимеризации пропилена с этиленом).
Показатели основных теплофизических свойств полипропилена приведены в таблице:
Температура плавления, °C | 160—170 |
Теплостойкость по методу НИИПП, °C | 160 |
Удельная теплоёмкость (от 20 до 60ºС), кал/(г·°C) | 0,46 |
Термический коэффициент линейного расширения (от 20 до 100 °C), 1/°C | 1,1⋅10−4 |
Температура хрупкости, °C | От −5 до −15 |
Электрические свойства[править | править код]
Показатели электрических свойств полипропилена приведены в таблице:
Переработка[править | править код]
Основные способы переработки — формование методами экструзии, вакуум- и пневмоформования, экструзионно-выдувного, инжекционно-выдувного, инжекционного, компрессионного формования, литьё под давлением.
Применение[править | править код]
Материал для производства плёнок (особенно упаковочных), мешков, тары, труб, деталей технической аппаратуры, пластиковых стаканчиков, предметов домашнего обихода, нетканых материалов, электроизоляционный материал, в строительстве для вибро- и шумоизоляции межэтажных перекрытий в системах «плавающий пол». При сополимеризации пропилена с этиленом получают некристаллизующиеся сополимеры, которые проявляют свойства каучука, отличающиеся повышенной химической стойкостью и сопротивлением старению.
Для вибро- и теплоизоляции также широко применяется пенополипропилен (ППП). Близок по характеристикам к вспененному полиэтилену (пенополиэтилен). Также встречаются декоративные экструзионные профили из ППП, заменяющие пенополистирол. Атактический полипропилен используют для изготовления строительных клеев, замазок, уплотняющих мастик, дорожных покрытий и липких плёнок.
Структура применения полипропилена в России в 2012 году была следующей: 38 % — тара, 30 % — нити, волокна, 18 % — плёнки, 6 % — трубы, 5 % — полипропиленовые листы, 3 % — прочее[1].
Рынок полипропилена[править | править код]
Полипропилен занимает второе место в мире среди полимеров по объёму потребления, с долей 26 % уступая только полиэтилену. Доля занимающего третью позицию поливинилхлорида (18 %) сокращается в пользу полипропилена. 76 % мирового потребления полипропилена приходится на гомополипропилен, остальное на сополимеры[2]. В России потребление полипропилена выросло с 250 тыс. т в 2002 году до 880 тыс. т в 2012 году[1], при этом остаётся на довольно низком уровне: 1,6 % от мирового[3] или 6 кг на человека в год против 18 кг/чел. в Западной Европе, 17 кг/чел. в США и 12 кг/чел. в Китае[2].
В мире наблюдается перепроизводство полипропилена: сейчас переизбыток оценивается в размере 7,4 млн тонн в год[1], в 2015 году при ожидаемом объёме мирового потребления 66 млн т производственные мощности составят 79 млн т[3].
Российское производство полипропилена началось в 1981 году на Томском нефтехимическом комбинате (ныне принадлежит «Сибуру»). В 1990-е годы установки по производству полипропилена были построены на Московском НПЗ («Газпром нефть» и «Сибур») и «Уфаоргсинтезе» («Башнефть»). В 2007 году производство полипропилена открылось на будённовском Ставролене («Лукойл»), а в 2013 году на омском Полиоме[2].
Крупнейшее российское производство полипропилена открылось 15 октября 2013 года — это принадлежащий «Сибуру» завод «Тобольск-Полимер»[1][2]. В момент запуска тобольского завода он входил в пятёрку самых мощных в мире (ещё два завода имели такую же мощность)[2][5]. Предприятие рассчитано на производство 510 тыс. т пропилена в год методом дегидрирования пропана (подрядчик — Maire Tecnimont, оборудование — UOP, получаемого на Тобольском нефтехимическом комбинате, и последующее производство из него 500 тыс. т полипропилена в год (подрядчик — Linde, оборудование — Ineos[1][4]. Мощности прочих российских заводов по выпуску полипропилена не превышают 250 тыс. т в год[2]. «Тобольск-Полимер» специализируется на выпуске гомополипропилена, в то время как производство сополимеров «Сибур» решил сосредоточить на Томском НХК и Московском НПЗ[4].
В 2015 году в России было произведено 1275 тыс. тонн полипропилена, при этом экспорт составил 350 тыс. тонн.[6][7]
См. также[править | править код]
- Система маркировки пластика
Примечания[править | править код]
Литература[править | править код]
- Перепёлкин В. П. Полипропилен, его свойства и методы переработки. — Л.: ЛДНТП, 1963. — 256 c.
- Кренцель Б. А., Л. Г. Сидорова. Полипропилен. — Киев.: Техника, 1964. — 89 с.
- Коллектив авторов (И. Амрож и т. д.). Полипропилен. Перевод со словацкого В. А. Егорова. Под ред. В. И. Пилиповского и И. К. Ярцева. — Л.: Химия, 1967. — 316 c.
- Иванюков Д. В., М. Л. Фридман. Полипропилен. — М.: Химия, 1974. — 270 с.
- Handbook of Polypropylene and Polypropylene Composites / ed. H.G. Karian. — NewYork.: MarcelDekker Inc, 2003. — 740 p.
- Polypropylene. An A to Z reference / ed. J. Karger-Kocsis. Kluwer, 1999. — 987 p.
- ГОСТ 26996-86 «Полипропилен и сополимеры пропилена».
Источник
Марки полипропилена, виды, классификация
Производители и цены
Рейтинг производителей полипропилена
Полипропиленовые изделия и продукция
Оборудование для получения и переработки полипропилена
Книги и журналы о полипропилене
Фотографии
Видео
Процесс производства полипропилена
Исторические факты
Перспективы и прогнозы развития
Краткие характеристики и свойства:
Полипропилен — (хостален, данлай, моплен, новолен, олеоформ, поли-про, пропатен, профакс и др.)
{-CH(CH3)-CH2-}n термопластичный, кристаллический, изотактический полимер. Молекулярная масса 300-700 тысяч, плотность 0,905-0,920 г/см3, температура плавления 160-176 С, σраст. 24-40 МПа, относительное удлинение 200-800% , ρυ-1017 Ом*см. Устойчив в воде и агрессивных неорганических средах (кроме сильных окислителей), ниже 80 С — в органических растворителях (выше этой температуры набухает). Для полипропиленов характерны высокая стойкость к многократным изгибам и к истиранию, сравнительно высокая ударная вязкость { (7-14)*103 Дж/м2 по Изоду с надрезом}. Максимальная температура эксплуатации 120-140 С.
Полипропилен характеризуется свойствами, позволяющими отнести его к конструкционным материалам. Полипропилен применяется для производства изделий конструкционного профиля, газо- и продуктопроводных напорных труб, жестких пленок, изделий бытового и хозяйственного назначения.
Полипропилен получают полимеризацией мономера пропилена в присутствии металлоорганических катализаторов.
Обозначение марки полипропилена (Таблица 1-1) состоит из пяти цифр: первая (2 или 0) указывает на давление, при котором происходил процесс синтеза, соответственно низкое(2) или среднее(0). Вторая цифра указывает на вид материала: 1-полимер, 2-сополимер. Три последующие цифры являются десятикратным значением ПТР. В обозначении композиции через тире указывается номер рецептуры стабилизации и далее, через запятую, цвет и число рецептуры окрашивания. Например, марка 21180-16 Т20,-это материал, полученный на металлоорганических катализаторах при низком давлении, ПТР составляет 18г/10мин, рецептура добавки №16-антикоррозионная, материал содержит 20% талька.
Полипропилен перерабатывается всеми известными способами.
Таблица 1-1
Основные свойства полипропилена
Свойства полипропилена | Марки полипропилена | ||
21060 | 01020 | 21060-29 А20 | |
Плотность, кг/м3 | 910 | 900 | 1050 |
Разрушающее напряжение при растяжении, МПа | 30 | 32 | 21 |
Относительное удлинение, % | 100 | 300 | До 50 |
Ударная вязкость, кДж/м2 | 25-40 | 25-40 | До 20 |
Модуль упругости при изгибе, МПа | 1220-1670 | 1860 | — |
Теплостойкость по Мартенсу С | 120 | 110 | 90 |
Удельное объемное электрическое сопротивление, Ом*м | 1014-1016 | 1014-1016 | — |
Тангенс угла диэлектрических потерь при 106Гц,*104 | 3 | 5 | — |
Диэлектрическая проницаемость при 106 Гц | 2,2 | 2,4 | — |
Морозостойкость, С | -20 | -25 | -60 |
Показатели пожароопасности
Полипропилен | Температура С | Теплота сгорания | |
Твоспламенения | Тсамовоспламенения | МДж/кг | |
325 | 350 | 44-46 |
Максимальная удельная оптическая плотность дыма (Дт-удельная оптическая плотность)
Полипропилен | Дт, м3*кг-1 | Температура соответствующая Дт, С |
750 | 360 |
Особенности горения: пламя — воспламеняется легко, горит после удаления из пламени, окраска пламени — светящееся с желтой верхушкой, сердцевина пламени голубая, характер горения — небольшое количество копоти, без образования сажи, расплав капает, запах — горящего парафина.
Перерабатываемость полипропилена, методи переработки и назначение промышленных термопластов: ПТР — показатель текучести расплава, ПТР=(600*m)/t, г/10мин. m — средняя масса экструдированных отрезков, (г). t — интервал времени между двумя последовательными отсечениями, (с)
Полипропилен ГОСТ 26996 | Марка | ПТР г/10мин | Метод переработки | Назначение |
21003 | 0,2-0,3 | Экструзия | Листы, профили | |
21015 | 1,5 | Экструзия, экструзионно-раздувное формование | Трубы, листы, пленки | |
21060 | 4,0-8,0 | Литье под давлением | Штучные изделия | |
21180 | 15-20 | Формование волокон | — |
Основные предприятия — производители полипропилена в России и СНГ
ПОЛИПРОПИЛЕН | Торговая марка | Изготовитель |
ПП, PP | Томский нефтехимический з-д | |
Каплен | Московский нефтеперерабатывающий з-д, Кусковский химзавод(Москва, Капотня) | |
Бален | Уфаоргсинтез | |
Армлен | Полипластик-Технопол (Москва) | |
Томполен | Полимер Компаунд (г. Томск) | |
Нурален | Пластмассы (Москва) | |
Новолен | Барс (Москва) | |
Филен | Завод композиционных материалов и пластмасс (Томск) | |
Топлен | Фарм-Пласт (Тольятти) | |
Тана | (Северодонецк, Украина) | |
Липол | Лисичанскнефтеоргсинтез (ЛиНОС г. Лисичанск, Украина) |
Основные зарубежные аналоги отечественных марок промышленных пластмасс
ПОЛИПРОПИЛЕН, ПП, (PP) | Торговая марка | Изготовитель |
Acclear | BP Chemicals | |
Accpro (тальконаполненный) | BP Chemicals | |
Accucomp, Accuguard, Accutech | ALCO Compaunders | |
Adstryn | Basel | |
Bormod, Borpact, Borsoft | Borealis | |
Chisso | Chisso | |
Clyrel | Basel | |
Demilen | Vamp Tech | |
Eltex | BP Solvay Polyethilene | |
Hipol | Mitsui Petrochemicals | |
Koylene | Indian Petrochemicals | |
Prolen | Polibrasil Resians | |
Propathene | Lucite Internfnional | |
Slovalen | Plactcom | |
Stamylan P | SABI Euro-Petrochemicals | |
Tipplen | TVK | |
Juplene | SK Chemicale |
Краткое описание, методы переработки, основное назначение, качественная оценка свойств полипропилена и специфические особенности
Полипропилен термостабилизированный: Более жесткий материал, чем полиэтилен. Благодаря правильному расположению атомных группировок относительно основной цепи (изотактическая структура) отличается повышенной прочностью по сравнению с ПЭНД, его теплостойкость также выше, но морозостойкость (температура хрупкости) ниже прмерно в 5 раз, чем у полиэтилена. Химически стоек: концентрированная серная кислота (58%) и (30%) перекись водорода при комнатной температуре не оказывают заметного влияние. Подвержен более интенсивному старению чем ПЭНД
Методы переработки: Литье под давлением. Центробежное литье. Экструзия. Раздувка. Пневматическое, вакуумное формование. Штамповка. Механическая обработка резанием, сверлением, фрезерованием и т.д. Сварка в струе инертного газа. Пресование. Вихревое и другие виды напыления
Основное назначение: трубы, фитинги, шпули, детали, электроприборы, пленки, волокна
Фотография полипропилена:
Источник