Осевое растяжение сжатие это

Осевое растяжение сжатие это thumbnail

Растяжение  (сжатие) – это такой   вид нагружения стержня, при котором в его поперечном сечении возникает внутренняя продольная сила Ν, действующая вдоль центральной оси z.

Продольная сила Ν – это равнодействующая всех внутренних нормальных сил в сечении. Для вычисления продольной силы применяется метод сечений.

2014-09-07 19-04-45 Скриншот экрана

Продольная сила Ν численно равна алгебраической сумме проекций всех сил, действующих по одну сторону от рассматриваемого сечения,  на продольную ось бруса.

Правило знаков для продольной силы Ν: при растяжении продольная сила положительна, при сжатии – отрицательна.

2014-09-07 19-09-39 Скриншот экрана

График изменения продольных сил по длине стержня называется эпюрой. Эпюра N строится методом сечений на характерных участках бруса. Строится эпюра для использования ее при расчете бруса на прочность. Она дает возможность найти наибольшие значения продольных сил и положение сечений, в которых они возникают.

При растяжении (сжатии) возникают только нормальные напряжения. Согласно гипотезе Я. Бернулли (или гипотеза плоских сечений) в поперечных сечениях, удаленных от места приложения нагрузок, нормальные напряжения распределяются по сечению практически равномерно, а сами сечения, перпендикулярные к оси стержня z, остаются плоскими в процессе нагружения.

Нормальные напряжения в сечении при  растяжении (сжатии) вычисляются по формуле

где Аплощадь поперечного сечения.

Правило знаков для σ совпадает с правилом знаков для N.

В наклонном сечении, нормаль к которому составляет угол α с осью стержня z,

При растяжении в продольном направлении стержень удлиняется, а его поперечные размеры уменьшаются, при сжатии, напротив, в продольном направлении стержень укорачивается, а его поперечные размеры увеличиваются; Δℓ — абсолютное удлинение или укорочение участка стержня длиной ℓ, Δbабсолютная поперечная деформация.

Относительное удлинение или укорочение участка стержня длиной ℓ, называемое линейной деформацией, определяется следующим образом

ε=Δℓ/ℓ.

Экспериментально установлено, что в определенной области нагрузок при упругом поведении материала между нормальными напряжениями и линейными деформациями существует линейная зависимость (закон Гука для напряжений)

σ=εЕ,

где Е – модуль продольной упругости или модуль Юнга, это физическая const. Для каждого из материалов величина модуля упругости имеет свое значение:

сталь, Е = 2.105 МПа,

медь, Е = 1.105 МПа,

алюминий, Е = 0,7.105 МПа.

Значение модуля упругости устанавливается экспериментально.

Согласно закону Гука (данную запись называют законом Гука для деформаций)

Δℓ=Νℓ/ЕА

Произведение ЕА – называется жесткостью стержня при растяжении – сжатии.

Перемещение произвольного сечения ступенчатого стержня

w=∑Δℓi

Относительная поперечная деформация:

ε′=Δb/b

где b – поперечный размер стержня.

Эксперименты также показывают, что в упругой стадии деформирования между продольной и поперечной деформациями существует взаимосвязь

μ  =│ε′⁄ε│ — const,

где   μ —  коэффициент Пуассона, берется по модулю ,поскольку у продольной и поперечной деформации разные знаки (при растяжении продольные волокна увеличиваются, а поперечные уменьшаются в размере).

Для твердых материалов имеет значения коэффициент Пуассона

0≤μ ≤0,5

Изменение температуры стержня вызывает его удлинение (при нагревании) или укорочение (при охлаждении)

2014-09-01 22-02-54 Скриншот экрана

где — a- коэффициент линейного температурного расширения; Δtº=(tºк-tºн) — изменение температуры между значениями начальным (tºн) и конечным (tºк).

Статически неопределимыми называют системы, имеющие лишние связи – внешние или внутренние.

Для определения внутренних усилий в таких системах недостаточно рассматривать только уравнения равновесия.

В этом случае требуются дополнительные уравнения, число которых равно количеству лишних связей. Дополнительные уравнения составляются на основе анализа картины деформирования системы и использования законов деформирования ее элементов.

Алгоритм решения подобных задач включает следующее:

1)   Статическая часть. Составляются уравнения равновесия с включением неизвестных усилий, действующих по направлению лишних связей.

2)    Геометрическая часть. Составляются уравнения, описывающие взаимосвязь перемещений характерных точек, удлинений и укорочений отдельных стержней между собой.

3)   Физическая связь. Записываются законы деформирования отдельных стержней системы.

Порядок расчета статически неопределимых брусьев

  1.  Задаться направлениями возможных опорных реакций и составить уравнение      статики для всей системы в целом.
  2. Определить степень статической неопределимости и использовать метод сечений с целью выразить неизвестные усилия через неизвестные опорные реакции. При этом неизвестные продольные силы (N) следует предполагать положительными и поэтому направлять «от сечения».
  3. Сформулировать условие совместности деформаций участков бруса.
  4. В процессе превращения условия совместности в уравнение совместности деформаций различий в характере деформаций участков не учитывать.

Порядок расчета статически неопределимых шарнирно-стержневых систем

  1. Задаться направлениями опорных реакций, но уравнений равновесия для всей системы не составлять, а сразу использовать метод сечений и составить уравнения статики для выделенной части системы.
  2. Определить степень статической неопределимости как разницу между количеством всех неизвестных, оказавшихся в уравнениях статики, и числом самих этих уравнений.
  3. Рассмотреть (изобразить) любую возможную картину деформаций системы и из ее анализа сформулировать условия совместности деформаций стержней системы (столько, какова степень статической неопределимости).
  4. В процессе преобразования условий совместности в уравнения совместности деформаций обязательно учитывать различие в характере деформаций стержней (т.е. вводить удлинение со знаком «плюс», а укорочение со знаком «минус») в соответствии с той картиной деформации, которую мы рассматриваем.
Читайте также:  Преобразования графиков функций растяжение и сжатие вдоль оси ординат

Источник

Внутренние усилия при растяжении-сжатии.

Осевое (центральное) растяжение или сжатие прямого бруса вызывается внешними силами, вектор равнодействующей которых совпадает с осью бруса. При растяжении или сжатии в поперечных сечениях бруса возникают только продольные силы N. Продольная сила N в некотором сечении равна алгебраической сумме проекции на ось стержня всех внешних сил, действующих по одну сторону от рассматриваемого сечения. По правилу знаков продольной силы N принято считать, что от растягивающих внешних нагрузок возникают положительные продольные силы N, а от сжимающих — продольные силы N отрицательны (рис. 5).

правило знаков для продольных сил

Чтобы выявить участки стержня или его сечения, где продольная сила имеет наибольшее значение, строят эпюру продольных сил, применяя метод сечений, подробно рассмотренный в статье:
Анализ внутренних силовых факторов в статистически определимых системах
Ещё настоятельно рекомендую взглянуть на статью:
Расчёт статистически определимого бруса
Если разберёте теорию в данной статье и задачи по ссылкам, то станете гуру в теме «Растяжение-сжатие» =)

Напряжения при растяжении-сжатии.

Определенная методом сечений продольная сила N, является равнодействующей внутренних усилий распределенных по поперечному сечению стержня (рис. 2, б). Исходя из определения напряжений, согласно выражению (1), можно записать для продольной силы:

где σ — нормальное напряжение в произвольной точке поперечного сечения стержня.


Чтобы определить нормальные напряжения в любой точке бруса необходимо знать закон их распределения по поперечному сечению бруса. Экспериментальные исследования показывают: если нанести на поверхность стержня ряд взаимно перпендикулярных линий, то после приложения внешней растягивающей нагрузки поперечные линии не искривляются и остаются параллельными друг другу (рис.6, а). Об этом явлении говорит гипотеза плоских сечений (гипотеза Бернулли): сечения, плоские до деформации, остаются плоскими и после деформации.

механизм деформации растяжения

Так как все продольные волокна стержня деформируются одинаково, то и напряжения в поперечном сечении одинаковы, а эпюра напряжений σ по высоте поперечного сечения стержня выглядит, как показано на рис.6, б. Видно, что напряжения равномерно распределены по поперечному сечению стержня, т.е. во всех точках сечения σ = const. Выражение для определения величины напряжения имеет вид:

Таким образом, нормальные напряжения, возникающие в поперечных сечениях растянутого или сжатого бруса, равны отношению продольной силы к площади его поперечного сечения. Нормальные напряжения принято считать положительными при растяжении и отрицательными при сжатии.

Деформации при растяжении-сжатии.

Рассмотрим деформации, возникающие при растяжении (сжатии) стержня (рис.6, а). Под действием силы F брус удлиняется на некоторую величину Δl называемую абсолютным удлинением, или абсолютной продольной деформацией, которая численно равна разности длины бруса после деформации l1 и его длины до деформации l

Отношение абсолютной продольной деформации бруса Δl к его первоначальной длине l называют относительным удлинением, или относительной продольной деформацией:

При растяжении продольная деформация положительна, а при сжатии – отрицательна. Для большинства конструкционных материалов на стадии упругой деформации выполняется закон Гука (4), устанавливающий линейную зависимость между напряжениями и деформациями:

где модуль продольной упругости Е, называемый еще модулем упругости первого рода является коэффициентом пропорциональности, между напряжениями и деформациями. Он характеризует жесткость материала при растяжении или сжатии (табл. 1).

Таблица 1

Модуль продольной упругости для различных материалов

модуль продольной упругости для различных материалов

Абсолютная поперечная деформация бруса равна разности размеров поперечного сечения после и до деформации:

Соответственно, относительную поперечную деформацию определяют по формуле:

При растяжении размеры поперечного сечения бруса уменьшаются, и ε’ имеет отрицательное значение. Опытом установлено, что в пределах действия закона Гука при растяжении бруса поперечная деформация прямо пропорциональна продольной. Отношение поперечной деформации ε’ к продольной деформации ε называется коэффициентом поперечной деформации, или коэффициентом Пуассона μ:

Экспериментально установлено, что на упругой стадии нагружения любого материала значение μ = const и для различных материалов значения коэффициента Пуассона находятся в пределах от 0 до 0,5 (табл. 2).

Таблица 2

Коэффициент Пуассона.

коэффициент пуассона для материалов

Абсолютное удлинение стержня Δl прямо пропорционально продольной силе N:

Данной формулой можно пользоваться для вычисления абсолютного удлинения участка стержня длиной l при условии, что в пределах этого участка значение продольной силы постоянно. В случае, когда продольная сила N изменяется в пределах участка стержня, Δl определяют интегрированием в пределах этого участка:

Читайте также:  Растяжение связок плеча больничный

Произведение (Е·А) называют жесткостью сечения стержня при растяжении (сжатии).

Механические свойства материалов.

Основными механическими свойствами материалов при их деформации являются прочность, пластичность, хрупкость, упругость и твердость.

Прочность — способность материала сопротивляться воздействию внешних сил, не разрушаясь и без появления остаточных деформаций.

Пластичность – свойство материала выдерживать без разрушения большие остаточные деформации. Неисчезающие после снятия внешних нагрузок деформации называются пластическими.

Хрупкость – свойство материала разрушаться при очень малых остаточных деформациях (например, чугун, бетон, стекло).

Идеальная упругость – свойство материала (тела) полностью восстанавливать свою форму и размеры после устранения причин, вызвавших деформацию.

Твердость – свойство материала сопротивляться проникновению в него других тел.

Рассмотрим диаграмму растяжения стержня из малоуглеродистой стали. Пусть круглый стержень длинной l0 и начальным постоянным поперечным сечением площади A0 статически растягивается с обоих торцов силой F.

растягивание стержня до разрушения

Диаграмма сжатия стержня имеет вид (рис. 10, а)

диаграмма растяжения стали

где Δl = l — l0 абсолютное удлинение стержня; ε = Δl / l0 — относительное продольное удлинение стержня; σ = F / A0 — нормальное напряжение; E — модуль Юнга; σп — предел пропорциональности; σуп — предел упругости; σт — предел текучести; σв — предел прочности (временное сопротивление); εост — остаточная деформация после снятия внешних нагрузок. Для материалов, не имеющих ярко выраженную площадку текучести, вводят условный предел текучести σ0,2 — напряжение, при котором достигается 0,2% остаточной деформации. При достижении предела прочности в центре стержня возникает локальное утончение его диаметра («шейка»). Дальнейшее абсолютное удлинение стержня идет в зоне шейки ( зона местной текучести). При достижении напряжением предела текучести σт глянцевая поверхность стержня становится немного матовой – на его поверхности появляются микротрещины (линии Людерса-Чернова), направленные под углом 45° к оси стержня.

примеры разрушения материалов

Расчеты на прочность и жесткость при растяжении и сжатии.

Опасным сечением при растяжении и сжатии называется поперечное сечение бруса, в котором возникает максимальное нормальное напряжение. Допускаемые напряжения вычисляются по формуле:

где σпред — предельное напряжение (σпред = σт — для пластических материалов и σпред = σв — для хрупких материалов); [n] — коэффициент запаса прочности. Для пластических материалов [n] = [nт] = 1,2 … 2,5; для хрупких материалов [n] = [nв] = 2 … 5, а для древесины [n] = 8 ÷ 12.

Расчеты на прочность при растяжении и сжатии.

Целью расчета любой конструкции является использование полученных результатов для оценки пригодности этой конструкции к эксплуатации при минимальном расходе материала, что находит отражение в методах расчета на прочность и жесткость.

Условие прочности стержня при его растяжении (сжатии):

При проектном расчете определяется площадь опасного сечения стержня:

При определении допускаемой нагрузки рассчитывается допускаемая нормальная сила:

Расчет на жесткость при растяжении и сжатии.

Работоспособность стержня определяется его предельной деформацией [ l ]. Абсолютное удлинение стержня должно удовлетворять условию:

Часто дополнительно делают расчет на жесткость отдельных участков стержня.

Следующая важная статья теории:
Изгиб балки

Источник

ПРОДОЛЬНАЯ СИЛА

Осевым (центральным) растяжением (сжатием) называется такой вид деформации бруса, при котором внутренние силы в его поперечных сечениях приводятся к одной равнодействующей силе N, направленной вдоль оси z (см. рис. 1.16, г). Эта сила, как указывалось в параграфе 1.5, называется продольной, или нормальной, поскольку она перпендикулярна (нормальна) поперечному сечению.

Осевое растяжение и сжатие часто встречаются в строительной практике. Растяжение, например, возникает в тросе любого подъемника (рис. 2.1, а), на сжатие под действием собственного веса при отсутствии ветровой нагрузки работают сооружения башенного типа (рис. 2.1, б).

Рис. 2.1

Тонкий и длинный прямой брус, работающий на растяжение или сжатие, обычно называют стержнем‘. Вертикально стоящий брус, предназначенный для восприятия сжимающей нагрузки [1]

от вышележащих конструкций, называется колонной, или стойкой (рис. 2.2).

Рис. 2.2

Продольную силу определяют методом сечений. Брус рассекают воображаемой плоскостью, перпендикулярной его оси, мысленно отбрасывают одну из образовавшихся частей, а ее действие на оставшуюся часть заменяют неизвестной силой N (рис. 2.3). После этого составляют единственное уравнение равновесия оставшейся части ^Z = 0, из которого и определяют значение N.

Рис. 2.3

Правило знаков. Силу N принято считать положительной при растяжении, т.е. когда она направлена от сечения (см. рис. 2.3). При сжатии, наоборот, продольная сила отрицательна и направлена к сечению.

Если направление продольной силы неизвестно, то во избежание ошибки в знаке ее условно принимают положительной, полагая, что брус растянут. Знак «плюс» при решении уравнения равновесия подтвердит сделанное предположение, знак «минус» укажет на ошибочность выбранного направления, и в действительности брус не растянут, а сжат.

Читайте также:  Перетянуть руку при растяжении

В тех случаях, когда значения продольной силы в различных сечениях бруса неодинаковы, строят эпюру продольной силы, которая представляет собой график изменения силы N по длине бруса. Эпюра необходима для расчета бруса на прочность. Она позволяет быстро находить опасные сечения, т.е. сечения, где продольная сила достигает наибольших абсолютных значений. Рассмотрим порядок построения такой эпюры.

Пример 2.1. Определить значения продольной силы на всех участках бруса, нагруженного силами Fx — 60 кН, F2 — 40 кН, = 90 кН (рис. 2.4, а), и построить эпюру продольной силы.

Решение. Брус имеет три участка. Их границами являются сечения, где приложены внешние силы. Расчет защемленного бруса целесообразно начинать со свободного конца, так как при этом отпадает необходимость в предварительном определении реакции заделки. Пользуясь методом сечений, мысленно разрежем брус по сечению 1—1 верхнего участка и отбросим нижнюю часть, заменяя ее действие на оставшуюся верхнюю неизвестной продольной силой N (рис. 2.4, б).

Рис. 2.4

Следуя рекомендации, предположим, что эта сила направлена от сечения (рассматриваемый участок растянут), и, руководствуясь правилом знаков статики, составим уравнение равновесия верхней части:

откуда

Продольная сила получилась отрицательной, следовательно, ее первоначальное направление выбрано неправильно и участок работает не на растяжение, а на сжатие. Заметим, что полученное значение продольной силы справедливо на всем протяжении верхнего участка, поскольку в любом его поперечном сечении удовлетворяется записанное уравнение равновесия.

Путем аналогичных рассуждений в сечении 2—2 (рис. 2.4, в) получим:
т.е. средний участок тоже сжат.

Далее формально следовало бы составить уравнение равновесия и для третьего участка, но, анализируя выражения усилий 7V, и N2, замечаем, что продольная сила в поперечном сечении прямого бруса численно равна алгебраической сумме проекций на его ось всех внешних сил, приложенных с одной стороны (в данном случае — сверху) от рассматриваемого сечения.

Сформулированный вывод имеет большое практическое значение. Он позволяет определять продольную силу, не прибегая каждый раз к изображению отсеченной части бруса и составлению уравнений равновесия. При этом необходимо руководствоваться введенным выше правилом знаков силы N («плюс» — при растяжении, «минус» — при сжатии).

С учетом изложенного в сечении 3—3 (рис. 2.4, г):
или

Сила положительна, поэтому нижний участок растянут.

Вычислив значения продольной силы на каждом участке, покажем ее графическое изменение по длине бруса. Для этого проведем параллельно оси бруса так называемую базисную линию (ось эпюры) и отложим перпендикулярно ей в выбранном масштабе найденные числовые значения силы ЛЧрис. 2.4, д): положительные — вправо, отрицательные — влево (для горизонтально расположенного бруса соответственно вверх и вниз). Соединим полученные точки прямыми, параллельными базисной линии, и укажем алгебраические знаки. Построенную таким образом эпюру заштрихуем линиями, перпендикулярными оси. По этим линиям можно судить о значении продольной силы в соответствующих поперечных сечениях бруса.

Графическое оформление эпюры должно отвечать требованиям Р 50- 77—88 и ГОСТ 2.303—68*. Ось эпюры следует выполнять сплошной основной линией толщиной s — 0,5—1,4 мм, саму эпюру — сплошной линией толщиной 2s. Линии штриховки и выносные должны быть тонкими, ТОЛЩИНОЙ ОТ 5/3 ДО 5/2.

При рассмотрении построенной эпюры видно, что в сечениях, где приложены сосредоточенные внешние силы (на границах участков), внутренняя сила меняется скачкообразно, причем размер скачка равен соответствующей внешней силе. Так, скачок на уровне заделки характеризует значение реакции (V— 70 кН). Положительный знак на нижнем участке эпюры свидетельствует о том, что реакция направлена вниз (от опорного сечения).

Пример 2.2. Исследовать, как влияет на работу бруса перенос внешней силы по линии ее действия.

Решение. На рис. 2.5, а внешняя сила приложена к свободному концу и растягивает весь брус: в любом поперечном сечении возникает продольная сила N — /»(рис. 2.5, б). Если перенести силу Fпо оси в точку К (рис. 2.5, в), то равновесие бруса не нарушится, реакция заделки не изменится, но растянутой окажется только верхняя часть (рис. 2.5, г). Если внешнюю силу приложить к закрепленному концу бруса, то она не вызовет растяжения вообще (рис. 2.5, д).

Рис. 2.5

Таким образом, перенос силы по линии ее действия существенно меняет характер работы бруса. Следовательно, понятие точки приложения силы, которое не имеет конкретного смысла для абсолютно твердого тела (в статике), при определении внутренних сил в деформируемом теле приобретает первостепенное значение.

Источник