Нормативные и расчетные сопротивления при растяжении

Любая бетонная конструкция должна переносить определенные в технической документации нагрузки в течение длительного времени без разрушений. В строительных проектах указываются основные характеристики, к которым относятся плотность, показатели расчетного сопротивления бетона, морозоустойчивость, водонепроницаемость. Проблема состоит в том, что даже самый качественный бетон неоднороден. Элементы имеют различные геометрические размеры и сечения, поэтому разные участки сооружения могут иметь неодинаковые свойства. Для уточнения характеристик материала вводится методика вычисления прочности.
Что такое расчетное сопротивление?
Расчетное сопротивление бетонной смеси – характеристика отражающая свойство материала противостоять внешним механическим нагрузкам. Его применяют при проектировании зданий и сооружений. Данный показатель получают из нормативных значений противодействия конкретной марки раствора делением на специальный коэффициент.
Этот коэффициент, применяемый для вычисления расчетного сопротивления бетона на сжатие обозначается γb и может принимать значения:
- 1,3 – для максимальных возможных величин по несущей способности;
- 1 – для максимальных значений по пригодности к эксплуатации.
Коэффициенты надежности материала при механическом растяжении обозначаются γbt, они могут быть равны:
- 1,5 – для максимальных показателей несущей способности во время определения класса на сжатие;
- 1,3 – для максимальных значений несущей способности на осевое растяжение;
- 1 – для максимальных величин по пригодности к эксплуатации.
Классы бетонов обозначаются от В10 до В60, значения их нормативного противодействия приводятся в специальных таблицах.
Как получить расчетное сопротивление?
Для получения расчетного сопротивления бетона по осевому сжатию определяется класс материала, из таблицы берутся его нормативные данные и производится вычисление по формуле:
Rb=Rbn/γb,
где Rb – расчетные данные на осевое сжатие, множитель Rbn – нормативные , γb – коэффициент.
Аналогично рассчитывают расчетное сопротивление бетона осевому растяжению:
Rbt=Rbtn/γbt,
где Rbt – расчетные значения на осевое растяжение, множитель Rbtn – нормативные показатели на растяжение, γbt – коэффициент для растяжения.
Учитывая условия, в которых будут эксплуатироваться бетонные конструкции, вводятся и другие коэффициенты γbi, учитывающие эти особенности:
- для непродолжительных статических нагрузок 1;
- для длительных статических нагрузок 0,9;
- элементы, заливаемые вертикально 0,9;
- коэффициенты, отражающие климатические особенности, назначение сооружения, площадь сечения указываются в документации отдельно.
Нормативное сопротивление
До 2001 года единственной характеристикой бетона указывающей на противодействие механической силе, считалась марка, обозначавшаяся буквой «М». Теперь, согласно СНиП 2.03.01 введена другая характеристика, так называемый класс прочности, обозначающаяся буквой «В». Для определения свойств железобетонных и бетонных конструкций были предложены нормативы, согласно СП 52-101-2003.
Для определения класса раствор заливают в куб с ребром 150 мм. Уплотняют его в форме и дают полностью затвердеть при температуре 18-20ºС в течение 28 суток. После этого образец поступает на испытание, и разрушается на специальном прессе. Сопротивление бетона осевой нагрузке, выраженное в МПа и является свойством, по которому определяется данная характеристика. Иногда для определения класса берется призменный образец, высота которого в четыре раза больше ребра основания.
Дополнительно образец подвергается проверке на осевое растяжение, который тоже необходимо учитывать при проведении вычислений.
При правильном определении класса не требуется делать дополнительных испытаний, поскольку они уже занесены в специализированные таблицы.
Используя эти таблицы можно, имея данные на сжатие, сразу определить показатели и на растяжение. По ним ясно видно – этот параметр для любого бетона на растяжение гораздо меньше, чем на сжатие, это обязательно учитывается при проектировании.
Эти параметры для различного класса прочности сводятся в специальную таблицу. Значения могут меняться в зависимости от условий определяемых соответствующими коэффициентами:
Из таблицы видно, что расчетное значение ниже нормативного, поскольку учитывает сторонние факторы, тип воздействия на бетонную конструкцию, возможную неоднородность материала, центр тяжести контура.
При определении противодействия бетона силовому воздействию учитывается его деформация. Для этого берется начальный параметр данной величины и делится на коэффициент, включающий в себя ползучесть, а также поперечную деформацию массива, его температурную деформацию в диапазоне -40 — +50ºС. При вычислении свойств напряженно деформированного элемента используют специальные диаграммы, демонстрирующие предельную нагрузку в зависимости от сечений и расположения детали и вида материала. Эта методика позволяет рассчитывать факторы, приводящие к появлению трещин.
График Зависимости напряжений от деформаций
При определении характеристик железобетонных конструкций применяют методику моделирования наклонных сечений. Учитывается толщина и тип арматуры, отдельно рассчитывается ее прочность.
Заключение
Сопротивление бетона рассчитывается в зависимости от действия на него различных сил, которые могут быть сжимающими, поперечными, изгибающими, а также под местным сжатием. Для внецентренно сжатых и растянутых элементов, находящихся под изгибом, момент рассчитывается для сечений, перпендикулярных их продольной оси.
Для элементов с сечениями в виде прямоугольника, квадрата или тавра применяются формулы, предельной нагрузки каждого элемента, для других сечений используются специальные нелинейные диаграммы.
Расчетное сопротивление позволит подобрать класс прочности и марку этого материала для получения оптимальных эксплуатационных свойств массива, элемента или детали. В отличие от нормативных показателей, данные учитывают геометрические особенности, условия эксплуатации, виды деформаций. Вводятся коэффициенты надежности по бетону, разновидности используемой арматуры и другие характеристики, влияющие на конечную прочность зданий и сооружений, где применяется литой бетон или конструктивные элементы из этого материла.
Источник
Механические свойства материалов изменчивы (имеют разброс своих значений при испытании стандартных образцов), поэтому государственными стандартами и техническими условиями установлены гарантированные пределы их изменения.
Основными параметрами сопротивления стали силовым воздействиям являются нормативное сопротивление стали по пределу текучести R и по временному сопротивлению Run, равные соответственно пределу текучести ст^ и временному сопротивлению стм стали, установленным с обеспеченностью 0,95.
Основной расчетной характеристикой стали является расчетное сопротивление, которая обеспечивает надежность прочности материала, близкую к 99,98%. Значение расчетного сопротивления получается делением нормативного сопротивления на коэффициент надежности по материалу ут:
• по пределу текучести
;
• по временному сопротивлению
Коэффициент надежности по материалу (
) учитывает неблагоприятные отклонения сопротивления материала от его нормативного значения вследствие неоднородности свойств, а также установленные допуски на размеры сечений проката. Для сталей, поставляемых по ГОСТ 27772, значение коэффициента ут, как правило, составляет 1,025; для остального проката и труб — 1,050.
Расчетные сопротивления при растяжении, сжатии и изгибе листового, широкополосного универсального и фасонного проката по ГОСТ 27772 для стальных конструкций зданий и сооружений приведены в табл. 3.2.
Расчетное сопротивление сдвигу принимается равным Rs = 0,58R.
Таблица 3.2
Нормативные и расчетные сопротивления стали
Класс прочности стали | Нормативное сопротивление, МПа | Расчетное сопротивление, МПа | |||||
Толщина проката, мм | у =1,025 (ГОСТ 27772) | Ут= | 1,050 | ||||
R уп | Run | R У | R и | R У | R и | ||
С235 | от 2 до 8 | 235 | 360 | 230 | 350 | 225 | 345 |
С245 | от 2 до 20 | 245 | 370 | 240 | 360 | 235 | 350 |
свыше 20 до 30 | 235 | 370 | 230 | 360 | 225 | 350 | |
С255 | от 2 до 20 | 245 | 370 | 240 | 360 | 235 | 350 |
свыше 20 до 40 | 235 | 370 | 230 | 360 | 225 | 350 | |
С285 | от 2 до 10 | 275 | 390 | 270 | 380 | 260 | 370 |
свыше 10 до 20 | 265 | 380 | 260 | 370 | 250 | 360 | |
от 2 до 20 | 325 | 470 | 320 | 460 | 310 | 450 | |
С345 | свыше 20 до 40 | 305 | 460 | 300 | 450 | 290 | 440 |
свыше 40 до 80 | 285 | 450 | 280 | 440 | 270 | 430 | |
свыше 80 до 100 | 265 | 430 | 260 | 420 | 250 | 410 | |
С345К | от 4 до 10 | 345 | 470 | 335 | 460 | 330 | 450 |
С375 | от 2 до 20 | 355 | 490 | 345 | 480 | 340 | 465 |
свыше 20 до 40 | 335 | 480 | 325 | 470 | 320 | 455 |
Источник
|
Источник
Нормативные сопротивления.
Основными характеристиками сопротивления материалов силовым воздействиям являются нормативные сопротивления Rтн Rвн устанавливаемые нормами проектирования строительных конструкций.
Механические свойства материалов изменчивы, поэтому нормативные сопротивления устанавливают на основе статистической обработки показателей механических свойств материалов, выпускаемых нашей промышленностью. Значения нормативных сопротивлений устанавливают такими, чтобы обеспеченность их составляла не менее 0,95.
Значение нормативного сопротивления стали равно значению контрольной или браковочной характеристики, устанавливаемой соответствующими государственными стандартами и имеет обеспеченность не менее 0,95.
Для углеродистой стали и стали повышенной прочности и алюминиевых сплавов за основную характеристику нормативного сопротивления принято значение предела текучести, поскольку при напряжениях, равных пределу текучести, в растянутых, изгибаемых и других элементах начинают развиваться пластические деформации, а сжатые элементы начинают терять устойчивость.
Расчетные сопротивления материала.
Расчетные сопротивления материала R и Rв определяют делением нормативного сопротивления на коэффициент надежности по материалу:
Коэффициент надежности по материалам .Значение механических свойств металлов проверяется на металлургических заводах выборочными испытаниями. Механические свойства металлов контролируют на малых образцах при кратковременном одноосном растяжении, фактически же металл работает длительное время в большеразмерных конструкциях при сложном напряженном состоянии. В прокатных профилях могут быть минусовые допуски. Возможно попадание в конструкции материала со свойствами ниже установленных в ГОСТе. Влияние этих факторов на снижение несущей способности конструкций учитывают коэффициентом надежности по материалам.
Нормативное сопротивление стали
Нормативное сопротивление материала — наибольшее сопротивление в материале, которое установлено нормами на основе статистических результатов испытания стандартных образцов.
Расчетное сопротивление материала – сопротивление, используемое в расчетах строительных конструкций и оснований и определено по формуле:
— нормативное сопротивление материала;
— коэффициент надежности по материалу.
Обеспеченность нормативного сопротивления стали равно 0,95 (это значит, что из 100 образцов 5 образцов имеют сопротивление ниже нормативного).
Виды нормативных сопротивлений стали:
-) — предел текучести стали равный по ГОСТам и ТУ;
-) — временное сопротивление равное по ГОСТам и ТУ.
Виды расчетных сопротивлений стали:
-) — расчетное сопротивление стали на растяжение, сжатие и изгиб по пределу текучести;
-) — расчетное сопротивление стали на растяжение, сжатие и изгиб по временному сопротивлению;
-) — расчетное сопротивление стали на срез.
Расчетное сопротивление , определяются по таблице 51* СНиПа в зависимости:
-) от класса стали;
-) от вида проката (листовой, фасонный);
-) от толщины элемента
Нагрузки и воздействия
зависимости от продолжительности действия нагрузок следует различать постоянные и временные (длительные, кратковременные, особые) нагрузки.
Нагрузки, возникающие при изготовлении, хранении и перевозке конструкций, а также при возведении сооружений, следует учитывать в расчетах как кратковременные нагрузки.
К постоянным нагрузкам следует относить:
а) вес частей сооружений, в том числе вес несущих и ограждающих строительных конструкций;
б) вес и давление грунтов (насыпей, засыпок), горное давление.
Сохраняющиеся в конструкции или основании усилия от предварительного напряжения следует
учитывать в расчетах как усилия от постоянных нагрузок.
К длительным нагрузкам следует относить:
а) вес временных перегородок, подливок и подбетонок под оборудование;
б) вес стационарного оборудования: станков, аппаратов, моторов, емкостей, трубопроводов с арматурой, опорными частями и изоляцией, ленточных транспортеров, конвейеров, постоянных подъемных машин с их канатами и направляющими, а также вес жидкостей и твердых тел, заполняющих оборудование;
в) давление газов, жидкостей и сыпучих тел в емкостях и трубопроводах, избыточное давление и разрежение воздуха, возникающие при вентиляции шахт;
г) нагрузки на перекрытия от складируемых материалов и стеллажного оборудования в складских помещениях, холодильниках, зернохранилищах, книгохранилищах, архивах и подобных помещениях;
д) температурные технологические воздействия от стационарного оборудования;
е) вес слоя воды на водонаполненных плоских покрытиях;
ж) вес отложений производственной пыли, если ее накопление не исключено соответствующими мероприятиями;
з) нагрузки от людей, животных, оборудования на перекрытия жилых, общественных и сельскохозяйственных зданий с пониженными нормативными значениями, приведенными в табл. 3;
и) вертикальные нагрузки от мостовых и подвесных кранов с пониженным нормативным значением, определяемым умножением полного нормативного значения вертикальной нагрузки от одного крана (см. п. 4.2) в каждом пролете здания на коэффициент: 0,5 — для групп режимов работы кранов 4К—6К; 0,6 — для группы режима работы кранов 7К; 0,7 — для группы режима работы кранов 8К. Группы режимов работы кранов принимаются по ГОСТ 25546-82;
к) снеговые нагрузки с пониженным нормативным значением, определяемым умножением полного нормативного значения в соответствии с указаниями п. 5.1 на коэффициент: 0,3 — для III снегового района; 0,5 — для IV района; 0,6 — для V и VI районов;
л) температурные климатические воздействия с пониженными нормативными значениями, определяемыми в соответствии с указаниями пп. 8.2—8.6 при условии θ1 = θ2 = θ3 = θ 4 = θ 5 = 0, ΔI = ΔVII = 0;
м) воздействия, обусловленные деформациями основания, не сопровождающимися коренным изменением структуры грунта, а также оттаиванием вечномерзлых грунтов;
н) воздействия, обусловленные изменением влажности, усадкой и ползучестью материалов.
. К кратковременным нагрузкам следует относить:
а) нагрузки от оборудования, возникающие в пускоостановочном, переходном и испытательном режимах, а также при его перестановке или замене;
б) вес людей, ремонтных материалов в зонах обслуживания и ремонта оборудования;
в) нагрузки от людей, животных, оборудования на перекрытия жилых, общественных и сельскохозяйственных зданий с полными нормативными значениями, кроме нагрузок, указанных в п. 1.7а, б, г, д;
г) нагрузки от подвижного подъемно-транспортного оборудования (погрузчиков, электрокаров, кранов-штабелеров, тельферов, а также от мостовых и подвесных кранов с полным нормативным значением);
д) снеговые нагрузки с полным нормативным значением;
е) температурные климатические воздействия с полным нормативным значением;
ж) ветровые нагрузки;
з) гололедные нагрузки.
К особым нагрузкам следует относить:
а) сейсмические воздействия;
б) взрывные воздействия;
в) нагрузки, вызываемые резкими нарушениями технологического процесса, временной неисправностью или поломкой оборудования;
г) воздействия, обусловленные деформациями основания, сопровождающимися коренным изменением структуры грунта (при замачивании просадочных грунтов) или оседанием его в районах горных выработок и в карстовых.
Нормативные и расчётные сопротивления стали
Нормативные сопротивления. Основными характеристиками сопротивления материалов силовым воздействиям являются нормативные сопротивления RТН, RВН устанавливаемые нормами проектирования строительных конструкций.
Значение нормативного сопротивления стали равно значению контрольной или браковочной характеристики, устанавливаемой соответствующими государственными стандартами и имеет обеспеченность не менее 0,95. Установлены два вида нормативных сопротивлений — по пределу текучести RТН=υТ и временному сопротивлению RВН=υВ. В соответствии со стандартом значения предела текучести и временного сопротивления имеют обеспеченность в пределах 0,95—0,995.Значения υТ и υВ являются браковочными и при приемке проката контролируются, являющиеся нормативными сопротивлениями. Расчетные сопротивления материала R и RB определяют делением нормативного сопротивления на коэфф. надежности по материалуγmR= RТН/ γm RВ= RВН/ γm. Коэффициент надежности по материалам γm. Значение механических свойств металлов проверяется на металлургических заводах выборочными испытаниями. Механические свойства металлов контролируют на малых образцах при кратковременном одноосном растяжении, фактически же металл работает длительное время в большеразмерных конструкциях при сложном напряженном состоянии. При расчете конструкций с использованием расчетного сопротивления, установленного по временному сопротивлению, вводится дополнительный коэфф. надежности γm=1,3.
Методики расчёта ИК
Все расчеты делятся на две группы — статические (или силовые) и конструктивные. Цель силовых расчетов — определить усилия, действующие в конструкции (системе) и в каждом элементе, или, как говорят, определить игру сил. Этим занимается строительная механика. Цель конструктивных расчетов — подтвердить, что при принятых размерах сечений ни одно возможное предельное состояние не наступит. Есть и третья цель — обеспечение путем обоснованного выбора габаритов элемента н размеров сечений минимума расхода металла или иных экономических показателей. Для этого используется раздел строительной механики — теория оптимального проектирования. При выполнении конструктивных расчетов в соответствии с техническими требованиями выполняются три основных проверки — прочности, общей устойчивости, жесткости (гибкости). Проверка прочности: в форме проверки напряжений σ= N/Фн ≤Ryγc ; в форме проверки несущей способности N≤ ФнRyγc ; в форме проверки отношения действующего силового фактора (N) и несущей способности N/( ФнRyγc)≤1, где Фн— геометрический фактор нетто, т. е. с учетом ослабления сечениа, если таковое имеется. Проверка устойчивости (формы):в виде проверки напряжений σ≤ σср или σ= N(ϕtФ)≤ Ryγcр где σср — критическое напряжение для элементов, у которых сжатие возникает при разных видах работы — внентральное сжатие, внецентренное, иэгиб; ϕt — коэф- ициент устойчивости при указанных видах работы.
Проверка жесткости (гибкости):
f/l≤[f/l]— общая деформация; f/l — относительная дефор- ация (мера деформативности); [f/l]—предельная от- эсительная деформация;
Не нашли то, что искали? Воспользуйтесь поиском гугл на сайте:
Источник