Напряжения и перемещения при осевом растяжении сжатия

Напряжения и перемещения при осевом растяжении сжатия thumbnail

Внутренние усилия при растяжении-сжатии.

Осевое (центральное) растяжение или сжатие прямого бруса вызывается внешними силами, вектор равнодействующей которых совпадает с осью бруса. При растяжении или сжатии в поперечных сечениях бруса возникают только продольные силы N. Продольная сила N в некотором сечении равна алгебраической сумме проекции на ось стержня всех внешних сил, действующих по одну сторону от рассматриваемого сечения. По правилу знаков продольной силы N принято считать, что от растягивающих внешних нагрузок возникают положительные продольные силы N, а от сжимающих — продольные силы N отрицательны (рис. 5).

правило знаков для продольных сил

Чтобы выявить участки стержня или его сечения, где продольная сила имеет наибольшее значение, строят эпюру продольных сил, применяя метод сечений, подробно рассмотренный в статье:
Анализ внутренних силовых факторов в статистически определимых системах
Ещё настоятельно рекомендую взглянуть на статью:
Расчёт статистически определимого бруса
Если разберёте теорию в данной статье и задачи по ссылкам, то станете гуру в теме «Растяжение-сжатие» =)

Напряжения при растяжении-сжатии.

Определенная методом сечений продольная сила N, является равнодействующей внутренних усилий распределенных по поперечному сечению стержня (рис. 2, б). Исходя из определения напряжений, согласно выражению (1), можно записать для продольной силы:

напряжения при растяжении-сжатии

где σ — нормальное напряжение в произвольной точке поперечного сечения стержня.


Чтобы определить нормальные напряжения в любой точке бруса необходимо знать закон их распределения по поперечному сечению бруса. Экспериментальные исследования показывают: если нанести на поверхность стержня ряд взаимно перпендикулярных линий, то после приложения внешней растягивающей нагрузки поперечные линии не искривляются и остаются параллельными друг другу (рис.6, а). Об этом явлении говорит гипотеза плоских сечений (гипотеза Бернулли): сечения, плоские до деформации, остаются плоскими и после деформации.

механизм деформации растяжения

Так как все продольные волокна стержня деформируются одинаково, то и напряжения в поперечном сечении одинаковы, а эпюра напряжений σ по высоте поперечного сечения стержня выглядит, как показано на рис.6, б. Видно, что напряжения равномерно распределены по поперечному сечению стержня, т.е. во всех точках сечения σ = const. Выражение для определения величины напряжения имеет вид:

формула напряжения

Таким образом, нормальные напряжения, возникающие в поперечных сечениях растянутого или сжатого бруса, равны отношению продольной силы к площади его поперечного сечения. Нормальные напряжения принято считать положительными при растяжении и отрицательными при сжатии.

Деформации при растяжении-сжатии.

Рассмотрим деформации, возникающие при растяжении (сжатии) стержня (рис.6, а). Под действием силы F брус удлиняется на некоторую величину Δl называемую абсолютным удлинением, или абсолютной продольной деформацией, которая численно равна разности длины бруса после деформации l1 и его длины до деформации l

абсолютное удлинение

Отношение абсолютной продольной деформации бруса Δl к его первоначальной длине l называют относительным удлинением, или относительной продольной деформацией:

относительное удлинение

При растяжении продольная деформация положительна, а при сжатии – отрицательна. Для большинства конструкционных материалов на стадии упругой деформации выполняется закон Гука (4), устанавливающий линейную зависимость между напряжениями и деформациями:

закон гука

где модуль продольной упругости Е, называемый еще модулем упругости первого рода является коэффициентом пропорциональности, между напряжениями и деформациями. Он характеризует жесткость материала при растяжении или сжатии (табл. 1).

Таблица 1

Модуль продольной упругости для различных материалов

модуль продольной упругости для различных материалов

Абсолютная поперечная деформация бруса равна разности размеров поперечного сечения после и до деформации:

абсолютная поперечная деформация бруса

Соответственно, относительную поперечную деформацию определяют по формуле:

относительная поперечная деформация

При растяжении размеры поперечного сечения бруса уменьшаются, и ε’ имеет отрицательное значение. Опытом установлено, что в пределах действия закона Гука при растяжении бруса поперечная деформация прямо пропорциональна продольной. Отношение поперечной деформации ε’ к продольной деформации ε называется коэффициентом поперечной деформации, или коэффициентом Пуассона μ:

коэффициент пуассона

Экспериментально установлено, что на упругой стадии нагружения любого материала значение μ = const и для различных материалов значения коэффициента Пуассона находятся в пределах от 0 до 0,5 (табл. 2).

Таблица 2

Коэффициент Пуассона.

коэффициент пуассона для материалов

Абсолютное удлинение стержня Δl прямо пропорционально продольной силе N:

абсолютное удлинение стержня

Данной формулой можно пользоваться для вычисления абсолютного удлинения участка стержня длиной l при условии, что в пределах этого участка значение продольной силы постоянно. В случае, когда продольная сила N изменяется в пределах участка стержня, Δl определяют интегрированием в пределах этого участка:

Напряжения и перемещения при осевом растяжении сжатия

Произведение (Е·А) называют жесткостью сечения стержня при растяжении (сжатии).

Механические свойства материалов.

Основными механическими свойствами материалов при их деформации являются прочность, пластичность, хрупкость, упругость и твердость.

Читайте также:  Как уменьшить боль при растяжении

Прочность — способность материала сопротивляться воздействию внешних сил, не разрушаясь и без появления остаточных деформаций.

Пластичность – свойство материала выдерживать без разрушения большие остаточные деформации. Неисчезающие после снятия внешних нагрузок деформации называются пластическими.

Хрупкость – свойство материала разрушаться при очень малых остаточных деформациях (например, чугун, бетон, стекло).

Идеальная упругость – свойство материала (тела) полностью восстанавливать свою форму и размеры после устранения причин, вызвавших деформацию.

Твердость – свойство материала сопротивляться проникновению в него других тел.

Рассмотрим диаграмму растяжения стержня из малоуглеродистой стали. Пусть круглый стержень длинной l0 и начальным постоянным поперечным сечением площади A0 статически растягивается с обоих торцов силой F.

растягивание стержня до разрушения

Диаграмма сжатия стержня имеет вид (рис. 10, а)

диаграмма растяжения стали

где Δl = l — l0 абсолютное удлинение стержня; ε = Δl / l0 — относительное продольное удлинение стержня; σ = F / A0 — нормальное напряжение; E — модуль Юнга; σп — предел пропорциональности; σуп — предел упругости; σт — предел текучести; σв — предел прочности (временное сопротивление); εост — остаточная деформация после снятия внешних нагрузок. Для материалов, не имеющих ярко выраженную площадку текучести, вводят условный предел текучести σ0,2 — напряжение, при котором достигается 0,2% остаточной деформации. При достижении предела прочности в центре стержня возникает локальное утончение его диаметра («шейка»). Дальнейшее абсолютное удлинение стержня идет в зоне шейки ( зона местной текучести). При достижении напряжением предела текучести σт глянцевая поверхность стержня становится немного матовой – на его поверхности появляются микротрещины (линии Людерса-Чернова), направленные под углом 45° к оси стержня.

примеры разрушения материалов

Расчеты на прочность и жесткость при растяжении и сжатии.

Опасным сечением при растяжении и сжатии называется поперечное сечение бруса, в котором возникает максимальное нормальное напряжение. Допускаемые напряжения вычисляются по формуле:

формула допускаемые напряжения

где σпред — предельное напряжение (σпред = σт — для пластических материалов и σпред = σв — для хрупких материалов); [n] — коэффициент запаса прочности. Для пластических материалов [n] = [nт] = 1,2 … 2,5; для хрупких материалов [n] = [nв] = 2 … 5, а для древесины [n] = 8 ÷ 12.

Расчеты на прочность при растяжении и сжатии.

Целью расчета любой конструкции является использование полученных результатов для оценки пригодности этой конструкции к эксплуатации при минимальном расходе материала, что находит отражение в методах расчета на прочность и жесткость.

Условие прочности стержня при его растяжении (сжатии):

Условие прочности стержня

При проектном расчете определяется площадь опасного сечения стержня:

площадь при проектном расчёте

При определении допускаемой нагрузки рассчитывается допускаемая нормальная сила:

допускаемая нормальная сила

Расчет на жесткость при растяжении и сжатии.

Работоспособность стержня определяется его предельной деформацией [ l ]. Абсолютное удлинение стержня должно удовлетворять условию:

ограничение абсолютного удлинения стержня

Часто дополнительно делают расчет на жесткость отдельных участков стержня.

Следующая важная статья теории:
Изгиб балки

Источник

Напряжения и деформации. Коэффициент Пуассона. Закон Гука

Осевое растяжение (рис. 2.1, а) и сжатие (рис. 2.1, б) возникают под действием сил, направленных вдоль оси бруса (стержня). При растяжении (сжатии) в поперечном сечении бруса возникает только одно внутреннее усилие — продольная сила N. На растяжение (сжатие) работают канаты, стержни ферм и т.п. Растяжение (сжатие) могут вызвать сосредоточенные силы и продольная распределенная нагрузка (рис. 2.2). Здесь q — интенсивность продольной распределенной нагрузки, сила, приходящаяся на единицу длины, Н/м, кН/м.

Осевое растяжение (а) и сжатие (б)

Рис. 2.1. Осевое растяжение (а) и сжатие (б)

Элемент, работающий на растяжение

Рис. 2.2. Элемент, работающий на растяжение

Изобразим стержень, который подвергается центральному растяжению (рис. 2.3). Для определения внутренних сил применим метод сечений. В произвольном сечении стержня покажем внутренние усилия, которые при данном виде нагружения будут совпадать с направлением нормальных напряжений.

Дефрмации при осевом растяжении (а) и равнодействующая внутренних сил (б)

Рис. 2.3. Дефрмации при осевом растяжении (а) и равнодействующая внутренних сил (б): / — исходное состояние; 2 — деформационное состояние

Равнодействующая внутренних усилий будет состоять только из продольной составляющей:
Напряжения и перемещения при осевом растяжении сжатия

Она будет приложена в центре тяжести сечения стержня, который совпадает с продольной осью.

Напряжения и перемещения при осевом растяжении сжатия

При расчетах по методу сечений будем всегда продольную силу направлять наружу. Если N > 0, то она направлена верно, а если получается, что jV

Составим уравнение равновесия отсеченной части:

Напряжения и перемещения при осевом растяжении сжатия

Из гипотезы плоских сечений, высказанной голландским ученым Д. Бернулли, следует, что в пределах действия закона Гука плоские поперечные сечения стержня смещаются при растяжении параллельно начальным положениям, оставаясь плоскими (рис. 2.3, б). Это возможно лишь в случае, если нормальные напряжения во всех точках сечения одинаковы, т.е. О = const. Отсюда следует:

Читайте также:  Бывает ли от к при растяжении

Напряжения и перемещения при осевом растяжении сжатия

Под действием осевых растягивающих сил стержень постоянного сечения площадью А удлиняется на величину

Напряжения и перемещения при осевом растяжении сжатия

где /j и /0 — длины стержня в деформированном и начальном состояниях;

А/ — абсолютное или полное удлинение.

Относительное удлинение

Напряжения и перемещения при осевом растяжении сжатия

При растяжении и сжатии возникает также и поперечная деформация стержня

Напряжения и перемещения при осевом растяжении сжатия

где и а ширина стержня в деформированном и первоначальном состояниях; А а — абсолютная поперечная деформация.

Относительная поперечная деформация

Напряжения и перемещения при осевом растяжении сжатия

Знак (-) показывает, что при растяжении поперечные размеры стержня уменьшаются.

Коэффициент Пуассона. Отношение поперечной деформации к продольной при растяжении (сжатии), взятое по абсолютной величине, называют коэффициентом Пуассона:

Напряжения и перемещения при осевом растяжении сжатия

Значение V для всех материалов находится в пределах 0

Закон Гука. Для подавляющего большинства конструкционных материалов с достаточной для практики точностью можно считать, что в известных пределах нагружения между продольной деформацией и соответствующим (действующим в ее направлении) нормальным напряжением существует пропорциональная (линейная) зависимость. Эта зависимость носит название закона Гука и записывается в виде
Напряжения и перемещения при осевом растяжении сжатия

где Е — коэффициент пропорциональности, именуемый модулем упругости первого рода (модуль Юнга).

По физическому смыслу модуль упругости — напряжение, которое вызывает деформацию ? = 1 (удлинение стержня, равное первоначальной длине).

Для статей по данным экспериментов Е = (2…2,2)105 МПа для ста-

N А/

леи. Учитывая, что О = —, ? = —, закон Гука для растянутого стержня можно записать

Напряжения и перемещения при осевом растяжении сжатия

где X] =— — коэффициент податливости стержня, показывающий уд-

is • А

линение (укорочение) стержня, вызываемое растягивающей силой F= 1 Н.

Произведение ЕА называют жесткостью сечения стержня при растяжении (сжатии). Для стержней переменного (ступенчатого) сечения удлинения определяют по участкам (ступеням) и результаты суммируют алгебраически:

Напряжения и перемещения при осевом растяжении сжатия

где i — номер участка (i = 1, 2,…,«).

При расчете упругих перемещений стержня от нескольких сил часто применяют принцип независимости действия сил: перемещение стержня от действия группы сил может быть получено как сумма перемещений от действия каждой силы в отдельности.

Пример 2.1. Определить полное удлинение стержня (рис. 2.4).

Решение

Определение внутренних сил и построение их эпюрыНапряжения и перемещения при осевом растяжении сжатия

Рис. 2.4. Определение внутренних сил и построение их эпюры

Определим с помощью метода сечений значения продольной силы на каждом участке. Для этого сделаем три сечения. Рассмотрим равновесие отсеченных частей:
Напряжения и перемещения при осевом растяжении сжатия

Изобразим графически распределение продольных сил по длине стержня. График изменения продольных сил по длине стержня называется эпюрой. Каждая ордината эпюры равна значению N в данном сечении. Эпюру строят на линии, проведенной параллельно оси стержня. Подставив найденные значения N, N2, N3 в формулу, определим общее удлинение стержня

Напряжения и перемещения при осевом растяжении сжатия

Пример 2.2. Определить величину напряжения О. возникающего в поперечном сечении, абсолютное удлинение Д/ и относительное укорочение ? стального стержня диаметром d = 40 мм, длиной / = 1,5 м, растягиваемого силой F = 100 кН, если Е = 2,1 • 105 Н/мм2 (рис. 2.5).

К примеру 2.2

Рис. 2.5. К примеру 2.2

Решение

Площадь сечения
Напряжения и перемещения при осевом растяжении сжатия Напряжение

Напряжения и перемещения при осевом растяжении сжатия

Абсолютное удлинение
Напряжения и перемещения при осевом растяжении сжатия Относительное удлинение

Напряжения и перемещения при осевом растяжении сжатия

Пример 2.3. Стальная штанга длиной / = 8 м и площадью сечения А = 8 см2 под действием растягивающей нагрузки получила абсолютное удлинение А/ = 5,7 мм. Определить величину нагрузки F и напряжения G, если известно, что модуль упругости материала тяги Е = 2,МО5 МПа (рис. 2.6).

Решение

Относительное удлинение
Напряжения и перемещения при осевом растяжении сжатия Величина напряжения

Напряжения и перемещения при осевом растяжении сжатия

Величина нагрузки
К примеру 2.3

Напряжения и перемещения при осевом растяжении сжатия

Рис. 2.6. К примеру 2.3

Источник

Растяжение  (сжатие) – это такой   вид нагружения стержня, при котором в его поперечном сечении возникает внутренняя продольная сила Ν, действующая вдоль центральной оси z.

Продольная сила Ν – это равнодействующая всех внутренних нормальных сил в сечении. Для вычисления продольной силы применяется метод сечений.

2014-09-07 19-04-45 Скриншот экрана

Продольная сила Ν численно равна алгебраической сумме проекций всех сил, действующих по одну сторону от рассматриваемого сечения,  на продольную ось бруса.

Правило знаков для продольной силы Ν: при растяжении продольная сила положительна, при сжатии – отрицательна.

2014-09-07 19-09-39 Скриншот экрана

График изменения продольных сил по длине стержня называется эпюрой. Эпюра N строится методом сечений на характерных участках бруса. Строится эпюра для использования ее при расчете бруса на прочность. Она дает возможность найти наибольшие значения продольных сил и положение сечений, в которых они возникают.

Читайте также:  Работа деформации при растяжении

При растяжении (сжатии) возникают только нормальные напряжения. Согласно гипотезе Я. Бернулли (или гипотеза плоских сечений) в поперечных сечениях, удаленных от места приложения нагрузок, нормальные напряжения распределяются по сечению практически равномерно, а сами сечения, перпендикулярные к оси стержня z, остаются плоскими в процессе нагружения.

Нормальные напряжения в сечении при  растяжении (сжатии) вычисляются по формуле

2014-09-01 21-40-08 Скриншот экрана

где Аплощадь поперечного сечения.

Правило знаков для σ совпадает с правилом знаков для N.

В наклонном сечении, нормаль к которому составляет угол α с осью стержня z,

2014-09-01 21-43-41 Скриншот экрана

При растяжении в продольном направлении стержень удлиняется, а его поперечные размеры уменьшаются, при сжатии, напротив, в продольном направлении стержень укорачивается, а его поперечные размеры увеличиваются; Δℓ — абсолютное удлинение или укорочение участка стержня длиной ℓ, Δbабсолютная поперечная деформация.

Относительное удлинение или укорочение участка стержня длиной ℓ, называемое линейной деформацией, определяется следующим образом

ε=Δℓ/ℓ.

Экспериментально установлено, что в определенной области нагрузок при упругом поведении материала между нормальными напряжениями и линейными деформациями существует линейная зависимость (закон Гука для напряжений)

σ=εЕ,

где Е – модуль продольной упругости или модуль Юнга, это физическая const. Для каждого из материалов величина модуля упругости имеет свое значение:

сталь, Е = 2.105 МПа,

медь, Е = 1.105 МПа,

алюминий, Е = 0,7.105 МПа.

Значение модуля упругости устанавливается экспериментально.

Согласно закону Гука (данную запись называют законом Гука для деформаций)

Δℓ=Νℓ/ЕА

Произведение ЕА – называется жесткостью стержня при растяжении – сжатии.

Перемещение произвольного сечения ступенчатого стержня

w=∑Δℓi

Относительная поперечная деформация:

ε′=Δb/b

где b – поперечный размер стержня.

Эксперименты также показывают, что в упругой стадии деформирования между продольной и поперечной деформациями существует взаимосвязь

μ  =│ε′⁄ε│ — const,

где   μ —  коэффициент Пуассона, берется по модулю ,поскольку у продольной и поперечной деформации разные знаки (при растяжении продольные волокна увеличиваются, а поперечные уменьшаются в размере).

Для твердых материалов имеет значения коэффициент Пуассона

0≤μ ≤0,5

Изменение температуры стержня вызывает его удлинение (при нагревании) или укорочение (при охлаждении)

2014-09-01 22-02-54 Скриншот экрана

где — a- коэффициент линейного температурного расширения; Δtº=(tºк-tºн) — изменение температуры между значениями начальным (tºн) и конечным (tºк).

Статически неопределимыми называют системы, имеющие лишние связи – внешние или внутренние.

Для определения внутренних усилий в таких системах недостаточно рассматривать только уравнения равновесия.

В этом случае требуются дополнительные уравнения, число которых равно количеству лишних связей. Дополнительные уравнения составляются на основе анализа картины деформирования системы и использования законов деформирования ее элементов.

Алгоритм решения подобных задач включает следующее:

1)   Статическая часть. Составляются уравнения равновесия с включением неизвестных усилий, действующих по направлению лишних связей.

2)    Геометрическая часть. Составляются уравнения, описывающие взаимосвязь перемещений характерных точек, удлинений и укорочений отдельных стержней между собой.

3)   Физическая связь. Записываются законы деформирования отдельных стержней системы.

Порядок расчета статически неопределимых брусьев

  1.  Задаться направлениями возможных опорных реакций и составить уравнение      статики для всей системы в целом.
  2. Определить степень статической неопределимости и использовать метод сечений с целью выразить неизвестные усилия через неизвестные опорные реакции. При этом неизвестные продольные силы (N) следует предполагать положительными и поэтому направлять «от сечения».
  3. Сформулировать условие совместности деформаций участков бруса.
  4. В процессе превращения условия совместности в уравнение совместности деформаций различий в характере деформаций участков не учитывать.

Порядок расчета статически неопределимых шарнирно-стержневых систем

  1. Задаться направлениями опорных реакций, но уравнений равновесия для всей системы не составлять, а сразу использовать метод сечений и составить уравнения статики для выделенной части системы.
  2. Определить степень статической неопределимости как разницу между количеством всех неизвестных, оказавшихся в уравнениях статики, и числом самих этих уравнений.
  3. Рассмотреть (изобразить) любую возможную картину деформаций системы и из ее анализа сформулировать условия совместности деформаций стержней системы (столько, какова степень статической неопределимости).
  4. В процессе преобразования условий совместности в уравнения совместности деформаций обязательно учитывать различие в характере деформаций стержней (т.е. вводить удлинение со знаком «плюс», а укорочение со знаком «минус») в соответствии с той картиной деформации, которую мы рассматриваем.

Источник