Нагрузка на растяжение трубы
19245
0
3
Ulysse 27 августа, 2016Специализация: дорожное строительство, отделочные работы.
Каркас дома в этом примере изготовлен из профильной трубы
Обычно, когда трубы используются в быту (в качестве каркаса или опорных частей какой-нибудь конструкции), то внимание вопросам устойчивости и прочности не уделяется. Нам заведомо известно, что нагрузка будет небольшой и расчет на прочность не понадобится. Но знание методики оценки прочности и устойчивости точно не будет лишним, все-таки лучше твердо быть уверенным в надежности постройки, чем уповать на счастливый случай.
В каких случаях нужен расчет на прочность и устойчивость
Расчет прочности и устойчивости чаще всего нужен строительным организациям, ведь им нужно обосновать принятое решение, а делать сильный запас нельзя ввиду удорожания конечной конструкции. Сложные конструкции, конечно, вручную никто не рассчитывает, можно пользоваться тем же SCAD или ЛИРА САПР для расчета, но простенькие конструкции можно рассчитать и своими руками.
Вместо ручного расчета можно воспользоваться и разными онлайн-калькуляторами, в них, как правило, представлено несколько простейших расчетных схем, дается возможность выбора профиля (не только труба, но и двутавры, швеллеры). Задав нагрузку и указав геометрические характеристики, человек получает максимальные прогибы и значения поперечной силы и изгибающего момента в опасном сечении.
Пример работы простенького калькулятора для расчета
В принципе, если вы сооружаете простенький навес над крыльцом или делаете перильное ограждение лестницы у себя дома из профильной трубы, то можно обойтись и вовсе без расчета. Но лучше все же потратить пару минут и прикинуть – достаточной ли будет несущая способность вашего каркаса для навеса или столбов для забора.
Если в точности следовать правилам расчета, то согласно СП 20.13330.2012 нужно сперва определить такие нагрузки как:
- постоянная – имеется ввиду собственный вес конструкции и прочие типы нагрузок, которые будут оказывать воздействие на протяжении всего срока службы;
- временная длительная – речь идет о продолжительном воздействии, но со временем это нагрузка может исчезнуть. Например, вес оборудования, мебели;
- кратковременная – как пример можно привести вес снежного покрова на крыше/козырьке над крыльцом, ветровое воздействие и т. д.;
- особые – те, которые предсказать невозможно, это может быть и землетрясение, и стойки из трубы машиной.
Согласно тому же нормативу расчет трубопроводов на прочность и устойчивость выполняется с учетом самого неблагоприятного сочетания нагрузок из всех возможных. При этом определяются такие параметры трубопровода как толщина стенки самой трубы и переходников, тройников, заглушек. Расчет отличается в зависимости от того, проходит трубопровод под или над землей.
В быту усложнять себе жизнь точно не стоит. Если вы планируете простенькую постройку (из труб будет возведен каркас для забора или навеса, беседки), то вручную считать несущую способность нет смысла, нагрузка все равно будет мизерная и запас прочности будет достаточный. Даже трубы 40х50 мм с головой хватит для устройства навеса или стоек для будущего еврозабора.
На фото – довольно простая конструкция. Тут можно обойтись и без расчета
Для оценки несущей способности можно воспользоваться готовыми таблицами, в которых в зависимости от длины пролета указана максимальная нагрузка, которую труба может выдержать. При этом уже учтен собственный вес трубопровода, а нагрузка представлена в виде сосредоточенной силы, приложенной по центру пролета.
Например, труба 40х40 с толщиной стенки 2 мм при пролете 1 м способна выдержать нагрузку в 709 кг, но при увеличении пролета до 6 м максимально допустимая нагрузка сокращается до 5 кг.
Допустимая нагрузка в зависимости от длины пролета
Отсюда и первое важное замечание – не делайте пролеты слишком большими, это сокращает допустимую нагрузку на него. Если нужно перекрыть большое расстояние лучше установите пару стоек, получите увеличение допустимой нагрузки на балку.
Классификация и расчет простейших конструкций
В принципе, из труб можно создать конструкцию любой сложности и конфигурации, но в быту чаще всего используются типовые схемы. Например, схема балки, с жестким защемлением с одного конца может использоваться как модель опоры будущего столба забора или опоры под навес. Так что рассмотрев расчет 4-5 типовых схем можно считать, что большинство задач в частном строительстве решить удастся.
Область применения трубы в зависимости от класса
Изучая ассортимент проката, вы можете столкнуться с такими терминами как группа прочности труб, класс прочности, класс качества и т. д. Все эти показатели позволяют сразу узнать назначение изделия и ряд его характеристики.
Важно! Все, о чем будет идти речь далее, касается металлических труб. В случае с ПВХ, полипропиленовыми трубами тоже, конечно, можно определить прочность, устойчивость, но учитывая сравнительно мягкие условия их работы такую классификацию приводить нет смысла.
Так как металлические трубы работают в напорном режиме, периодически могут возникать гидравлические удары, особое значение приобретает постоянство размеров и соответствие эксплуатационным нагрузкам.
Например, по группам качества можно выделить 2 типа трубопровода:
- класс А – контролируются механические и геометрические показатели;
- класс D – учитывается и стойкость к гидравлическим ударам.
Возможно и разделение трубного проката на классы в зависимости от назначения, в этом случае:
- 1 класс – говорит о том, что прокат может использоваться для организации водо-и газоснабжения;
- 2 класс – указывает на повышенную стойкость к давлению, гидроударам. Такой прокат уже подойдет, например, для строительства магистрали.
Классификация по прочности
Классы прочности труб приводятся в зависимости от того, какое временное сопротивление растяжению показывает металл стенки. По маркировке можно сразу судить о прочности трубопровода, например, обозначение К64 означает следующее: буква К говорит о том, что речь идет о классе прочности, число показывает временное сопротивление растяжению (единицы измерения кг∙с/мм2).
Минимальный показатель прочности составляет 34 кг∙с/мм2, а максимальный — 65 кг∙с/мм2. При этом класс трубы по прочности подбирается исходя не только из максимальной нагрузки на металл, условия эксплуатации также учитываются.
Существует несколько нормативов, описывающих требования к трубам по прочности, например, для проката, который используется при строительстве газонефтепроводов актуален ГОСТ 20295-85.
Примеры маркировки труб
Помимо классификации по прочности вводится и разделение в зависимости от типа труб:
- тип 1 – прямошовные (используется контактная сварка высокочастотным током), диаметр составляет до 426 мм;
- тип 2 – спиральношовные;
- тип 3 – прямошовные.
Также отличаться трубы могут и по составу стали, высокопрочный прокат выпускается из низколегированной стали. Углеродистая сталь идет на производство проката с классом прочности К34 – К42.
Содержание углерода
Что касается физических характеристик, то для класса прочности К34 сопротивление на разрыв равно 33,3 кг∙с/мм2, предел текучести как минимум 20,6 кг∙с/мм2, а относительное удлинение не более 24%. Для более прочной трубы К60 эти показатели уже составляют 58,8 кг∙с/мм2, 41,2 кг∙с/мм2 и 16% соответственно.
Характеристики труб по классам прочности
Расчет типовых схем
В частном строительстве сложные конструкции из труб не используются. Их просто слишком сложно создавать, да и нет нужды в них по большому счету. Так что при строительстве с чем-то сложнее треугольной фермы (под стропильную систему) вы вряд ли столкнетесь.
В любом случае все расчеты можно выполнить своими руками, если вы еще не забыли основы сопромата и строительной механики.
Расчет консоли
Консоль – обычная балка, жестко закрепленная с одной стороны. Как пример можно привести столбик под забор или кусок трубы, который вы прикрепили к стене дома, чтобы сделать навес над крыльцом.
В принципе, нагрузка может быть какой-угодно, это может быть:
- одиночная сила, приложенная либо к краю консоли, либо где-нибудь в пролете;
- равномерно распределенная по всей длине (либо на отдельном участке балки) нагрузка;
- нагрузка, интенсивной которой меняется по какому-либо закону;
- также на консоль могут действовать пары сил, вызывающие изгиб балки.
В быту чаще всего приходится иметь дело именно с нагрузкой балки единичной силой и равномерно распределенной нагрузкой (например, ветровая нагрузка). В случае с равномерно распределенной нагрузкой максимальный изгибающий момент будет наблюдаться непосредственно у жесткой заделки, а его величину можно определить по формуле
M= ql22;
где М – изгибающий момент;
q – интенсивность равномерно распределенной нагрузки;
l – длина балки.
В случае же с сосредоточенной силой, приложенной к консоли, и считать то нечего – для того, чтобы узнать максимальный момент в балке достаточно перемножить величину силы на плечо, т.е. формула примет вид
M= F∙l.
Максимальные моменты при нагрузке консоли сосредоточенной и распределенной нагрузкой
Все эти расчеты нужны для единственной цели – проверить достаточно ли будет прочность балки при эксплуатационных нагрузках, любая инструкция этого требует. При расчете нужно, чтобы полученное значение было ниже справочной величины предела прочности, желательно, чтобы был запас хотя бы 15-20%, все-таки предусмотреть все типы нагрузок сложно.
Для определения максимального напряжения в опасном сечении используется формула вида
σ= MmaxW;
где σ – напряжение в опасном сечении;
Mmax – максимальный изгибающий момент;
W – момент сопротивления сечения, справочная величина, хотя ее и можно рассчитать вручную, но лучше просто подсмотреть ее значение в сортаменте.
Балка на двух опорах
Еще один простейший вариант использования трубы – в качестве легкой и прочной балки. Например, для устройства перекрытий в доме или при строительстве беседки. Вариантов загружений здесь тоже может быть несколько, мы остановимся только на простейших.
Балка загружена сосредоточенной силой по центру
Сосредоточенная сила по центру пролета – самый простой вариант нагружения балки. При этом опасное сечение будет располагаться непосредственно под точкой приложения силы, а определить величину изгибающего момента можно по формуле.
M= F∙l4.
Чуть более сложный вариант – равномерно распределенная нагрузка (например, собственный вес перекрытия). В этом случае максимальный изгибающий момент будет равен
M= ql28.
Балка загружена равномерно распределенной нагрузкой
В случае с балкой на 2 опорах важным становится и ее жесткость, то есть максимальное перемещение под нагрузкой, чтобы условие по жесткости выполнялось нужно, чтобы прогиб не превышал допустимую величину (задается как часть длины пролета балки, например, l/300).
При действии на балку сосредоточенной силы максимальный прогиб будет находиться под точкой приложения силы, то есть по центру.
Расчетная формула имеет вид
f= Fl348EI.
где E – модуль упругости материала;
I – момент инерции.
Модуль упругости – величина справочная, для стали, например, он равен 2∙105 Мпа, а момент инерции указывается в сортаменте для каждого размера трубы, так что вычислять его отдельно не нужно и расчет своими руками выполнить сможет даже гуманитарий.
Сортамент круглых труб
Для равномерно распределенной нагрузки, приложенной по всей длине балки, максимальное перемещение будет наблюдаться по центру. Определить его можно по формуле
f= 5ql4384EI.
Чаще всего если при расчете на прочность все условия выполнились и есть запас хотя бы 10%, то и с жесткостью никаких проблем нет. Но изредка могут быть случаи, когда прочность достаточна, а вот прогиб превышает допустимый. В таком случае просто увеличиваем сечение, то есть берем следующую по сортаменту трубу и повторяем расчет до тех пор, пока условие не выполнится.
Статически неопределимые конструкции
В принципе, с такими схемами работать тоже несложно, но нужны хотя бы минимальные познания в сопромате, строительной механике. Статически неопределимые схемы хороши тем, что позволяют более экономно использовать материал, ну а минус их в том, что расчет усложняется.
Простейшие схемы статически непреодолимых балок
Простейший пример – представьте себе пролет длиной 6 метров, нужно перекрыть его одной балкой. Вариантов решения задачи 2:
- просто уложить длинную балку с максимально крупным сечением. Но за счет только собственного веса ее прочностной ресурс будет почти полностью выбран, да и цена такого решения будет немалой;
- установить в пролете пару стоек, система станет статически неопределимой, зато допустимая нагрузка на балку возрастет на порядок. В итоге можно взять меньшее сечение и сэкономить на материале без снижения прочности и жесткости.
Заключение
Конечно, перечисленные варианты нагрузок не претендуют на полный перечень всех возможных вариантов загружения. Но для использования в быту этого вполне достаточно, тем более что далеко не все занимаются самостоятельно расчетом своих будущих построек.
Но если вы все же решитесь взять в руки калькулятор и проверить прочность и жесткость уже существующих/только планирующихся конструкций, то предложенные формулы лишними не будут. Главное в этом деле – не экономить на материале, но и не брать слишком большой запас, нужно найти золотую середину, расчет на прочность и жесткость позволяет сделать это.
На видео в этой статье показан пример расчета трубы на изгиб в SolidWorks.
В комментариях оставляйте свои замечания/предложения по поводу расчета трубных конструкций.
Понравилась статья? Подписывайтесь на наш канал Яндекс.Дзен
27 августа 2016г.
Если вы хотите выразить благодарность, добавить уточнение или возражение, что-то спросить у автора — добавьте комментарий или скажите спасибо!
Источник
ГОСТ 10006-80
(ИСО 6892-84)
Группа В69
МКС 23.040.10
77.040.10
ОКСТУ 1309
1. РАЗРАБОТАН И ВНЕСЕН Министерством металлургии СССР
2. УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Государственного комитета стандартов Совета Министров СССР от 31.03.80 N 1464
3. Стандарт полностью соответствует ИСО 6892-84* в части испытания труб (по сущности метода, условию проведения испытания, обработке результатов)
________________
* Доступ к международным и зарубежным документам, упомянутым в тексте, можно получить, обратившись в Службу поддержки пользователей. — Примечание изготовителя базы данных.
4. ВЗАМЕН ГОСТ 10006-73
5. ССЫЛОЧНЫЕ НОРМАТИВНО-ТЕХНИЧЕСКИЕ ДОКУМЕНТЫ
6. Ограничение срока действия снято по протоколу N 7-95 Межгосударственного совета по стандартизации, метрологии и сертификации (ИУС 11-95)
7. ИЗДАНИЕ (сентябрь 2010 г.) с Изменениями N 1, 2, 3, 4, утвержденными в декабре 1985 г., июле 1987 г., октябре 1989 г., декабре 1990 г. (ИУС 4-86, 12-87, 2-90, 5-91)
Настоящий стандарт устанавливает метод статических испытаний на растяжение металлических бесшовных, сварных, биметаллических труб для определения при температуре (20) °С следующих характеристик:
— предела текучести (физического);
— предела текучести (условного);
— временного сопротивления;
— относительного удлинения после разрыва;
— относительного сужения после разрыва.
Термины и определения — по ГОСТ 1497.
Стандарт не распространяется на испытание сварных соединений и металла сварных швов.
Стандарт соответствует ИСО 6892-84 в части испытания на растяжение металлических труб (по сущности метода, условию проведения испытания, обработке результатов).
(Измененная редакция, Изм. N 3, 4).
1. МЕТОДЫ ОТБОРА ОБРАЗЦОВ
1.1. Для испытания труб на растяжение применяют продольные и поперечные образцы. Ориентацию продольной оси образца указывают в нормативно-технической документации (НТД) на трубы.
1.2. Продольные образцы изготовляют как указано в пп.1.2.1-1.2.3.
1.2.1. В виде отрезка трубы полного сечения без ограничения наружного диаметра (приложение 1, черт.1).
1.2.2. В виде полосы для труб с толщиной стенки до 12 мм, вырезанной вдоль оси трубы (сегмент), с шириной рабочей части, указанной в табл.1.
Таблица 1
мм
Hapужный диаметр трубы | Толщина стенки | Ширина рабочей части |
От 16,0 до 20,0 включ. | До 3,0 включ. | 8,0 |
Св. 20,0 | » 10,0 включ. | 10,0 |
« | Св. 10,0 до 12,0 включ. | 12,0 |
Продольные образцы в виде полос могут изготовляться без головок (приложение 2, черт.1) и с головками (приложение 2, черт.2).
(Измененная редакция, Изм. N 1, 3).
1.2.3. В виде цилиндрического образца типа III ГОСТ 1497.
Цилиндрические образцы изготовляют из труб с толщиной стенки 5 мм и более.
Диаметр рабочей части цилиндрического образца устанавливают равным:
5,0; 8,0; 10,0 мм — при номинальной толщине стенки соответственно: свыше 7,0 до 10,0 мм включительно, свыше 10,0 до 14,0 мм включительно, свыше 14,0 мм.
Примечание. По согласованию изготовителя с потребителем допускается изготовление образцов диаметром 3 мм при толщине стенки от 5,0 до 7,0 мм включительно.
1.2.3а. По согласованию изготовителя с потребителем допускается испытание цилиндрических образцов типа II или III по ГОСТ 1497.
(Введен дополнительно, Изм. N 2).
1.3. Для испытания биметаллических труб с толщиной стенки до 12,0 мм включительно применяют образцы с сохранением плакировки: в виде отрезка трубы полного сечения или сегментных образцов по п.1.2.2.
При испытании биметаллических труб с толщиной стенки свыше 12,0 мм изготовляют цилиндрические образцы из основного слоя.
1.3.1. Продольные цилиндрические образцы и образцы в виде полос из сварных труб изготовляют из проб (заготовок), вырезанных из основного металла на расстоянии от сварного шва, обеспечивающем отсутствие термического влияния сварки.
(Измененная редакция, Изм. N 3).
1.3.2. При испытаниях профильных труб, имеющих плоские грани или участки с цилиндрической поверхностью, допускается изготовление продольных полос шириной рабочей части не менее 8 мм.
1.4. Вид применяемого образца указывается в нормативно-технической документации на трубы. При отсутствии указаний вид образца устанавливается предприятием-изготовителем.
В случаях разногласий в оценке качества металлопродукции по результатам испытаний продольных образцов в виде полос (приложение 2, черт.1) применяют образцы в виде сегмента с головками (приложение 2, черт.2).
1.5. Начальная расчетная длина образцов по ГОСТ 1497.
При получении расчетной длины менее 20 мм на образцах, отобранных от капиллярных или тонкостенных труб, ее принимают равной 20 мм.
1.6. Предельные отклонения по ширине рабочей части продольных образцов в виде полос при их изготовлении должны соответствовать указанным в табл.2.
Таблица 2
мм
Номинальная ширина | Предельное отклонение | Допустимая разность наибольшей |
8 | ±0,20 | 0,05 |
10,0 | ||
12,0 | 0,10 |
Примечание. При испытании высокопрочных сталей рекомендуется использовать поле допуска на ширину образца для создания утонения в середине расчетной части.
Форма головки и размеры переходной части образцов могут изменяться в зависимости от конструкции машины.
1.7. Продольные образцы в виде полос и отрезков труб должны сохранять поверхностные слои нетронутыми. Заусенцы на гранях образцов должны быть удалены легкой запиловкой.
(Измененная редакция, Изм. N 3).
1.8. Поперечные образцы изготовляют цилиндрическими пропорциональными, вырезанными из тела трубы, перпендикулярно к ее продольной оси, с размерами, указанными в табл.3.
(Измененная редакция, Изм. N 3, 4).
1.9. Трубы наружным диаметром 426 мм и свыше допускается испытывать по ГОСТ 1497 на цилиндрических и плоских образцах. Допускается правка статической нагрузкой рабочей и захватной части поперечного образца.
(Измененная редакция, Изм. N 3).
1.10. При испытании образцов в виде полосы допускается выправлять концы, зажимаемые захватами машины. Выправление концов проводят за пределами рабочей длины образца.
1.11. Измерение образцов проводят до испытания как указано в пп.1.11.1-1.11.4.
1.11.1. Образцы в виде отрезков трубы. Наружный диаметр измеряют в двух взаимно перпендикулярных направлениях; в трех местах; у краев и посередине рабочей части.
Таблица 3
мм
Наружный диаметр трубы | Толщина стенки трубы, не менее | Диаметр рабочей части образца | ||||
От | 120 | до | 160 | включ. | 14 | 3,0 |
Св. | 160 | до | 250 | включ. | 20 | 5,0 |
Св. | 250 | до | 290 | включ. | 17 | |
Св. | 220 | до | 290 | включ. | 32 | 8,0 |
Св. | 290 | до | 320 | включ. | 26 | 10,0 |
Св. | 320 | 24 |
Примечания:
1. На головках цилиндрических продольных и поперечных образцов допускаются плоские участки, обусловленные формой труб.
2. По согласованию изготовителя с потребителем допускается изготовление цилиндрических образцов, отличающихся от размеров диаметра рабочей части, приведенных в табл.3, при других значениях наружного диаметра и толщин стенки труб.
Наименьшее среднеарифметическое значение трех пар измерений заносится в протокол испытаний.
Измерения проводят с предельной погрешностью до 0,05 мм при диаметре трубы до 20 мм включительно и с предельной погрешностью до 0,1 мм при диаметре трубы свыше 20 мм.
Толщину стенки измеряют на расстоянии не менее 10 мм от торца в четырех точках в двух взаимно перпендикулярных направлениях. Измерения проводят с точностью до 0,01 мм. В протокол испытаний заносят среднее арифметическое значение четырех измерений.
(Измененная редакция, Изм. N 4).
1.11.2. Образцы в виде сегментов. Ширину и толщину измеряют не менее чем в трех местах (в середине и по краям рабочей части образца). За начальную площадь поперечного сечения принимают наименьшее из полученных значений на основании произведенных измерений.
Измерение ширины предельных образцов в виде полос проводят с предельной погрешностью до 0,05 мм, а толщины — до 0,01 мм.
(Измененная редакция, Изм. N 3, 4).
1.11.3. Для труб наружным диаметром до 10,0 мм включительно допускается определение площади поперечного сечения () по номинальным размерам диаметра и толщины стенки.
В этом случае в протоколе испытаний записывается: » определяется по номиналу».
1.11.4. Цилиндрические образцы измеряют по ГОСТ 1497. Округление вычисленной площади поперечного сечения труб или образцов проводят в соответствии с табл.4.
(Измененная редакция, Изм. N 1).
1.12. Начальная расчетная длина образцов устанавливается с точностью до 1% от ее величины и ограничивается неглубоким кернением или другими способами, обеспечивающими необходимую точность и не вызывающими разрушения по разметочным линиям.
Начальная расчетная длина округляется в большую сторону до ближайшего числа, кратного 5 или 10.
Таблица 4
мм
Площадь поперечного сечения | Округление | ||||||
До | 10 | включ. | До | 0,01 | |||
Св. | 10 | » | 20 | « | « | 0,05 | |
« | 20 | « | 100 | « | « | 0,1 | |
« | 100 | « | 200 | « | « | 0,5 | |
« | 200 | « | 1,0 |
Для возможности пересчета относительного удлинения с отнесением места разрыва к середине разметку образцов проводят по всей длине рабочей части.
Измерение образцов после испытания проводят с предельной погрешностью до 0,1 мм.
(Измененная редакция, Изм. N 1, 4).
1.13. Рабочая длина образцов должна быть равна:
— для патрубков — ;
— для продольных образцов в виде полос толщиной менее 3 мм — от до ;
— для продольных образцов в виде полос толщиной 3,0 мм и более — от до ;
— для цилиндрических образцов — от до . При арбитражных испытаниях должна быть наибольшей в указанных интервалах.
На образцах толщиной менее 2 мм и образцах из металлов с повышенной хрупкостью деления наносят любым способом (накаткой, красителем, карандашом, а также кернением на переходных частях образцов), не вызывающим разрушения по разметочным линиям.
(Измененная редакция, Изм. N 3, 4).
2. ОБОРУДОВАНИЕ
В качестве испытательных машин применяют разрывные и универсальные испытательные машины всех систем, соответствующие требованиям настоящего стандарта и ГОСТ 28840.
При проведении испытаний должны быть соблюдены следующие условия:
— надежное центрирование образца в захватах испытательной машины;
— плавность возрастания нагрузки при нагружении образца;
— система «машина-образец» должна иметь характеристику упругой податливости К, которая учитывается при выборе скорости нагружения образца.
Для измерения толщины стенки труб с внутренним диаметром менее 10 мм применяют стенкомеры индикаторные — по ГОСТ 11358.
(Измененная редакция, Изм. N 1, 3).
3. ПРОВЕДЕНИЕ ИСПЫТАНИЙ
3.1. Скорость испытания образцов при определении физического , верхнего , нижнего , условного пределов текучести и временного сопротивления — по ГОСТ 1497.
(Измененная редакция, Изм. N 4).
3.1.1. (Исключен, Изм. N 4).
3.1.2. Предел текучести условный с допуском на величину пластической деформации при нагружении (или с иным установленным допуском) определяют по диаграмме, полученной на испытательной машине или без построения диаграммы растяжения с помощью специальных устройств (микропроцессоров и др.).
Масштаб диаграммы по оси удлинения должен быть не менее 50:1. Допускается использовать диаграммы с масштабом по оси удлинения не менее 10:1.
(Измененная редакция, Изм. N 4).
3.1.3. При определении временного сопротивления скорость растяжения должна быть не более 0,4 от длины расчетной части образца, выраженной в мм/мин.
(Измененная редакция, Изм. N 1).
3.1.4. Разрешается проводить испытания со скоростями, регламентированными в НТД на трубы.
3.2. При испытании образцов в виде отрезков труб полного сечения концы образцов, захватываемые зажимами машин, плотно закрывают цилиндрическими или с углом конусности до 1° металлическими пробками (приложение 1, черт.2). При разногласиях, возникших при оценке качества труб по результатам испытаний механических свойств, применяют только цилиндрические пробки.
Допускается проводить испытания круглых и профильных труб на образцах со сплющенными концами (приложение 1, черт.3).
При контрольно-сдаточных испытаниях допускается применять пробки длиной не менее высоты захвата испытательной машины.
(Измененная редакция, Изм. N 1).
3.3. Испытание плоских и цилиндрических образцов проводят по ГОСТ 1497.
3.3.1. За результат испытания принимаются механические свойства, полученные при испытании каждого образца. Количество образцов для испытаний указывается в НТД на трубы.
3.4. Результаты испытаний не учитываются в случаях, указанных в пп.3.4.1-3.4.3.
3.4.1. При разрыве образца по точкам кернения или за пределами расчетной длины, при разрыве образца в зажимах испытательной машины или по дефектам производства (расслой, плена, газовые раковины и т.д.), если при этом какая-либо механическая характеристика по своей величине не отвечает установленным требованиям.
3.4.2. При образовании двух или более шеек и двух или более мест разрыва.
3.4.3. При разрыве отрезка трубы по спирали, если в расчетной длине образца образовались два или более витка спирали.
(Измененная редакция, Изм. N 3).
3.5. В указанных случаях испытание на растяжение повторяют на образцах, отобранных от той же плавки или партии.
Количество образцов для повторного испытания должно соответствовать числу недействительных испытаний.
4. ОБРАБОТКА РЕЗУЛЬТАТОВ
4.1. Площадь поперечного сечения образца в виде отрезка трубы , мм, вычисляют по формуле
.
4.2. Площадь поперечного сечения образца в виде полосы сегментного сечения , мм, вычисляют по формуле
,
где
.
Значения в зависимости от ширины образца приведены в обязательных приложениях 6 и 7.
4.3. Площадь поперечного сечения цилиндрического образца , мм, вычисляют по формуле
.
(Измененная редакция, Изм. N 1).
4.4. Площадь поперечного сечения профильных труб определяется весовым методом, если другой способ не указан в НТД на трубы.
Для профильных труб с периметром до 60 мм допускается определение площади поперечного сечения «по номинальным размерам».
4.5. Весовым методом площадь поперечного сечения , мм, вычисляют по формуле
,,