Мощная пружина на растяжение

Подробности

Категория: Пружины

Просмотров: 5608

Пружины растяжения навивают почти всегда вплотную или даже с натягом между витками, достигаемым смешением проволокопитателя навивочного автомата по отношению к навиваемым виткам (пружины с межвитковым давлением).

Концы пружин снабжают зацепами, с помощью которых ее соединяют со стягиваемыми деталями. В отличие от пружин сжатия, нуждающихся в жестком направлении торцов, пружины растяжения работают в свободном состояния, центрируясь только точками опоры (завеса). Крепление зацепами обладает шарнирным свойством, благодаря чему пружина может при растяжении менять пространственное положение в значительных пределах. Это делает пружины растяжения особенно удобными для соединения деталей, угловое положение которых изменяется при работе, например, для завеса рычагов (рис. 891, I, II).

Однако крепление зацепами обладает недостатками. Габаритная длина пружины растяжения за счет зацепов всегда больше, чем пружин сжатия одинаковой гибкости. Зацепами трудно обеспечить центральное приложение нагрузки; пружина подвергается дополнительным изгибающим нагрузкам, а в самих зацепах возникают высокие напряжения изгиба, которые могут привести со временем к появлению остаточных деформаций. Вследствие деформации зацепов и участков перехода зацепов в спираль пружина вытягивается и теряет упругие характеристики. Пружины растяжения могут работать без потери упругих свойств только при пониженных расчетных напряжениях.

По этим причинам пружины растяжения почти никогда не применяют в ответственных силовых механизмах (циклического действия). Пружины сжатия в этих условиях обеспечивают и меньшие габариты, и большую надежность работы.

В случаях, когда по условиям работы упругий элемент должен растягиваться с изменением своего пространственного положения, нередко применяют установку пружин сжатия с реверсорами (рис. 892, I, II, III). Пружины такого типа, однако, малопригодны для механизмов высокочастотного циклического действия, так как масса реверсоров вызывает дополнительные инерционные нагрузки.

Применяемые конструкции зацепов показаны на рис. 893. Наиболее простые способы изготовления зацепов — отгибание половины витка (рис. 893, I, II), целого витка (рис. 893, III, IV) или полутора—двух витков (рис. 893, V) — применяют для неответственных, слабонагруженных пружин, так как зацепы такого вида подвержены изгибу. Также подвержены изгибу и петлевые зацепы (рис. 893, VI—VIII), кроме того, их изготовление значительно сложнее. Несколько прочнее зацепы с концами, заведенными в спираль пружины (рис. 893, IX, X).

Легкие пружины из проволоки малого диаметра крепят в пластинках с отверстиями под витки (рис. 893, XI—XIII). В зацепах этого типа необходимо устранить самовыворачивание пружины из отверстий, а также смещение пластинки с плоскости симметрии пружины, что конструктивно не так просто выполнить.

Иногда пружины устанавливают на ввертных резьбовых пробках (рис. 893, XIV—XVI) с фиксацией конечных витков завальцовкой (рис. 893, XV) или расклепыванием ниток пробки (рис. 893, XVI). В конструкциях этого типа крайне неблагоприятны условия работы витка, сходящего с последней нитки резьбовой пробки; виток работает на излом и избежать этого явления невозможно, если даже свести последнюю нитку на нет или заправить резьбу на конус.

Аналогичное явление происходит в конструкции с закладной пробкой, передающей силу на последний виток пружины, свернутый в кольцо малого диаметра (рис. 893, XVII).

Наиболее равномерную передачу сил на витки обеспечивает заправка конечных витков на конус с отгибом последнего витка на зацеп (рис. 893, XVIII, XIX) или с применением закладных зацепов (рис. 893, ХX—XXII). Изготовление таких пружин, однако, затруднительно, особенно при закладных зацепах, когда навивка конусного конца пружины должна производиться при заранее установленном в пружине зацепе.

Из представленных на рис. 893 конструкций наибольшей прочностью отличается конструкция с коническим зацепом (рис. 893, XXXII). Конус зацепа следует (с учетом упругих деформаций конечных витков) делать несколько более пологим, чем внутренний конус витков.

Пружины растяжения рассчитывают по тем же формулам, что и пружины сжатия. Наличие изгибающих напряжений в зацепах и витках пружины (при внецентренном приложении нагрузки) учитывают снижением расчетных напряжений в 1,2—1,5 раза по сравнению с напряжениями, допускаемыми для пружин сжатия центрального нагружения.

На рис. 894 изображена характеристика пружины растяжения. На рис. 895 показана характеристика пружины с начальным натяжением (пружины с межвитковым давлением).

Длина рабочей части пружины растяжения определяется из выражения

где i — число рабочих витков.

Длина рабочей части пружины в растянутом состоянии

где λ — упругое перемещение пружины.

Длина развертки пружины

где α — угол подъема витков

Lз — развернутая длина зацепов. Приближенно можно считать, что

Пружины растяжения обычно устанавливают с предварительным натягом, обеспечивающим замыкание стягиваемых деталей на упор в начальном положении. Сила предварительного натяга определяется условиями работы механизма. Шаг витков в состоянии предварительного натяга делают не меньше 1,5—2 диаметров проволоки с учетом возможности вытяжки зацепов в эксплуатации.

При растяжении диаметр пружины несколько уменьшается вследствие увеличения угла наклона витков.

Источник

Честно признаться, написать этот текст я собирался достаточно долго.
Просто есть и остаются «за» и «против». С одной стороны, абсолютное большинство автолюбителей — пользователей драйва, имеют очень примитивное представление о работе подвески автомобиля (без обид). С другой стороны, любая инициатива наказуема, и попытка объяснить что-то с позиции здравого смысла обязательного вызовет бурление со стороны диванных экспертов и капитанов «плавали — знаем».

Поэтому давайте договоримся на берегу: каждый при своем мнении, хорошо? Я совершенно не считаю себя гуру автомобильных подвесок, у меня есть только довольно скромный опыт моих собственных автомобилей, и свою позицию я не навязываю никому. Но у меня есть определенное образование, позволяющее иметь обоснованное мнение по данному вопросу.

Читайте также:  Растяжение или разрыв голеностопа

По научной специальности я механик, не «механик-автослесарь», а исследователь в области данного раздела физики. Для меня понятия «жесткость», «прочность», «упругость» — это очень конкретные, четко определенные вещи. В пользовательской среде на этот счет масса милых заблуждений, как сутевых, так и терминологических. Есть специальная литература, в которой все это, я уверен, можно прочитать. Сам я не читал, хотя конкретные книги в свободном доступе есть — но я и не собираюсь подвеску проектировать с нуля. Уверен, что занимаюсь изобретением велосипеда, но иногда такой путь нагляднее и понятнее.

Я только хочу внести смысловую ясность в вопрос, занимающий многих автовладельцев: пружины и амортизаторы. Но сначала договоримся о терминах:

Геометрический ход подвески — кинематически возможное перемещение колеса от крайней нижней до крайней верхней точки. Определяется конструкцией рычагов, наличием отбойников и ограничителей. Чем ровнее предполагаемое покрытие дороги — тем меньше ход подвески нужен.
Энергоемкость подвески — способность подвески поглощать и рассеивать энергию удара (быстрого сжатия).
«Жесткая подвеска» — подвеска, которая не поглощает удары полностью, а передает их на кузов.
«Мягкая подвеска» — подвеска, которая практически полностью поглощает удары.
Пробой подвески — следствие недостаточной энергоемкости, когда энергия удара не поглощается подвеской, а подвеска достигает геометрического предела хода.

ПРУЖИНА
Начнем с них, ведь каждый, кто разбирал автоматическую ручку, убежден, что знает о пружинах все. Корень этого заблуждения в нашей школьной программе. В самом начале курса физики рассказывают о «законе Гука», связывающем между собой силу и величину сжатия пружины через ее жесткость:

F = -kx

На самом деле, закон Гука несколько сложнее, но представим, что мы живем в идеальном мире. В этом идеальном мире пружина сопротивляется сжатию и растяжению одинаково, жесткость ее постоянна (то есть зависимость линейна), а все деформации упругие (то есть после снятия нагрузки пружина возвращается к исходной длине, независимо от количества циклов нагрузки-разгрузки). На графике это можно представить так.

Еще одно важное обстоятельство: любое изменение длины происходит МГНОВЕННО при изменении усилия.
Именно так ведет себя идеально-упругий элемент механической модели — элемент Гука. Реальная автомобильная пружина имеет несколько важных отличий.

Во-первых, она является пружиной сжатия. В свободном состоянии имеет некоторую длину, при установке на автомобиль сжимается под его весом, далее при работе подвески постоянно сжата. Растягивающих усилий не воспринимает в силу конструкции узлов крепления: пружина и спереди (на стойке) и сзади (между лонжероном/стаканом и рычагом) установлена враспор. Соответственно, диапазон работы пружины ограничивается.

Во-вторых, линейных материалов не существует, а автомобильные пружины специально делаются нелинейными за счет переменного шага витков. Коэффициент жесткости k — назовем его так — при этом перестает быть постоянной величиной. Это означает, что график принимает изогнутый вид.

Теперь перейдем к другому графику: зависимости жесткости от изменения длины.

Этот сложнее, давайте рассмотрим его подробно. В свободном состоянии пружина имеет некоторую жесткость. Если начать пружину растягивать (нас это мало интересует, но тем не менее), то ее жесткость начнет возрастать, пока не произойдет разрыв. Жесткость упадет до нуля, а дальнейшее удлинение будет происходить без сопротивления. На графике этот кусок непропорционально короткий, на самом деле зона растяжения по длине равна зоне сжатия — спасибо за дополнение IRomanoff.

Если пружину установить на автомобиль, то она под его весом сожмется на некоторую величину, лежащую внутри зоны нормального рабочего хода. Продолжая сжимать пружину, мы постепенно заведем ее в зону возникновения пластических (неупругих) деформаций. Если в этот момент пружину разгрузить, то ее исходная длина восстановится не полностью, а только частично. Длительная работа в таком режиме (на перегруженных машинах, например) приводит к накоплению остаточных деформаций и известному явлению просадки пружин.

Возможный рабочий ход заканчивается в точке геометрического предела сжатия, когда подвеска упирается в отбойник и не дает больше сжимать пружину. Если продолжать сжимать пружину (уже вне подвески либо без отбойников), то мы достигнем механического предела сжатия. При этом либо витки упрутся друг в друга, либо витки лопнут.

Таким образом, любая пружина характеризуется двумя параметрами: величиной нормального рабочего хода и средней жесткостью в течение рабочего хода.

Аналогичную диаграмму удобно было бы использовать для графического представления характеристик пружин. Ограничимся только зоной нормального рабочего хода. Например:

По-моему, вполне наглядно.

Теперь представим себе, что никакого амортизатора у нас нет, а в подвеске только пружина. Как скажется на работе подвески изменение ее параметров?
Если рабочий ход пружины будет больше геометрического хода подвески — ничего страшного не произойдет. Фактически, это и есть условие длительной надежной эксплуатации пружины. Другой вопрос, что большой рабочий ход подразумевает большое количество витков, а их не всегда есть возможность разместить при максимальном сжатии. Именно поэтому для особо тесных случаев пружины делают с переменным диаметром навивки.

Если рабочий ход пружины будет меньше геометрического хода подвески — пружина быстро продавится, так как часто будет выходить в неупругую зону. Именно поэтому НЕЛЬЗЯ пилить витки пружин! Каждый виток дает свой вклад в общий ход, пропорционально их числу. Скажем, если Вы уберете один виток из пяти, то ход пружины снизится на 20%, а общая жесткость на 20% вырастет. Но на те же 20% приблизится предел упругой работы, и при нагрузках она будет чаще уходить в зону неупругих дефораций.

Читайте также:  Расчет предела прочности на растяжение

Если жесткость пружины будет ниже, чем требует вес автомобиля или скорость прохождения неровностей, то она быстро просядет.

Если жесткость пружины будет выше, чем требует вес автомобиля, то подвеска будет ощущаться как жесткая, так как изменения усилия в пружине не будут вызывать существенных изменений длины. Такая пружина работает практически как жесткий стержень.

Еще пара слов об автобафферах. Они частично выключают из работы один из витков пружины. При этом рабочий ход пружины пропорционально сокращается, а жесткость сохраняется почти без изменений. Со стороны пользователя это воспринимается как более собранное поведение подвески, хотя достигнуто оно только путем снижения энергоемкости.

АМОРТИЗАТОР

Если бы в подвеске стояли только упругие элементы, то при прохождении неровностей машина совершала бы больше одного качания, что в свою очередь чревато потерей контакта колеса с дорогой. Поэтому в подвеске обязательно присутствует вязкий элемент — амортизатор. Его задача — поглощать энергию колебаний, как вследствие работы подвески, так и инерционных сил, действующих на кузов.

Вязкостью в механике называется параметр, связывающий скорость сжатия с усилием:


F = ηV

Проще говоря, идеально вязкий элемент (элемент Ньютона) не оказывает никакого сопротивления сжатию, если скорость сжатия бесконечно мала, и наоборот, при бесконечно быстром сжатии оказывает бесконечно большое сопротивление.

Как это работает в реальном амортизаторе, знают, наверное, все: внутри цилиндра ходит поршень с отверстием. Цилиндр с обеих сторон поршня заполнен маслом. При движении поршня масло должно перетекать с одной стороны на другую. Если масло густое, а отверстие маленькое — этот процесс требует времени, общая вязкость амортизатора будет большой. И наоборот, соответственно. Картинок в википедии полно.

Здесь и далее я буду пользоваться термином «вязкость амортизатора», хотя всем привычнее «жесткость». Жесткость легко спутать с пружиной, кроме того, в случае амортизатора, это не совсем корректно.

Что все это значит для конечного пользователя? Вязкий амортизатор при быстром сжатии-растяжении превращается в жесткую палку, невязкий амортизатор практически не оказывает сопротивления сжатию-растяжению.

Помимо вязкости, у амортизаторов есть еще один параметр — ход, максимально возможное перемещение поршня. В отличие от пружин, жесткость и рабочий ход которых являются независимыми параметрами, у амортизаторов они связаны. То есть, чем больше ход при сжатии, тем больше сопротивление.

Поясню на примере. У вас установлен невязкий амортизатор с большим ходом. Вы проезжаете неровность на асфальте, высотой в 1 сантиметр, с постоянной скоростью 60 км/ч. Для амортизатора это ерундовое сжатие, он будет сжиматься практически без сопротивления — то есть для данного препятствия его вязкость близка к нулю.

А теперь вы проезжаете бугор в 10 сантиметров с той же скоростью. Получается, что колесо и подвеска должны получить за то же самое время в 10 раз большее перемещение, соответственно и скорость сжатия возрастает в 10 раз, и сопротивление амортизатора становится в 10 раз больше.

Если у вас установлен вязкий короткоходный амортизатор, то неровность в 1 сантиметр для Вас будет ощутима, а 10 сантиметров амортизатор просто не успеет отработать — станет жесткой палкой и напрямую передаст удар на кузов.

Теперь рассмотрим отбой — обратный ход . Невязкий длинный амортизатор сохранит контакт с дорогой в обоих случаях. Вязкий короткий амортизатор не даст пружине прижать колесо обратно к дороге, и оно отправится в полет.

Рабочий ход НИКОГДА не должен быть меньше геометрического хода подвески. Представим себе, что мы сняли пружину и оставили только амортизатор. В этом случае шток амортизатора через поршень упрется в его дно, и весь вес автомобиля будет приложен к штоку. В общем-то, это не так страшно, однако во избежание повреждения клапанов на рычагах ставят ограничители хода сжатия.

А теперь поднимем машину. Подвеска идет вниз, преодолевая сопротивление сайлентблоков. Через некоторое время колесо и рычаги повиснут на амортизаторе. Вот это уже куда опаснее, так как сейчас на разрыв работает крепление штока к поршню. Если оно не выдержит — амортизатор порвется и просто перестанет работать. Веса колеса для этого недостаточно, но если добавить еще усилие от пружины, то проблем не избежать.

Попробуем представить графически параметры амортизаторов.

Самый вязкий амортизатор нужен автомобилю, который в принципе с неровностями не сталкивается, для которого принципиальна стабильность кузова — для гоночного автомобиля. На мельчайших неровностях такой амортизатор создаст ощущение стиральной доски. При прохождении даже мелких неровностей на скорости — колесо будет отрываться от земли. Зато никакого раскачивания и кренов в поворотах.

Самый мягкий амортизатор нужен самому легкому автомобилю с максимальным ходом подвески — ему нужно, что подвеска успевала отрабатывать неровности рельефа, при этом даже небольшое сопротивление для его веса будет заметно.

Чем тяжелее автомобиль — тем более вязкий амортизатор ему нужен.

Я намеренно не хочу лезть в достижения прогресса в этой области. Одно- и двухкамерные, масляные и газомасляные, с переменной вязкостью и все прочее оставим производителям. Основной принцип работы у них один.

СОВМЕСТНАЯ РАБОТА

Два вышеупомянутых элемента в подвеске соединены параллельно — то есть к ним прикладывается равное усилие от веса автомобиля и реакции покрытия, а уже они делят его между собой. Задача пружины — воспринимать усилие. Задача амортизатора — регулировать скорость деформирования. В механике такое соединение известно под названием вязко-упругой модели Кельвина-Фойгта.

Данная модель описывается дифференциальным уравнением, которое в обозначениях школьной физики выглядит так:

Читайте также:  Растяжение локтевого сустава восстановление

F = k*x(t) + η*dx(t)/dt

Данная модель имеет зависимость от скорости нагружения, поэтому рассмотрим два крайних случая. При бесконечно медленном нагружении, вязкий элемент не оказывает никакого сопротивления, вся нагрузка воспринимается упругим элементом. При бесконечно быстром нагружении вязкий элемент становится бесконечно жестким, упругий элемент в работу не включается вовсе. Однако через некоторое время нагрузка постепенно перераспределяется на упругий элемент, а вязкий из работы выключается. Вот и все.

Из этого уравнения следует еще одна важная диаграмма.

Из-за наличия вязкости деформирование становится нелинейным — при приложении усилия сжатие начинается не сразу, а при снятии усилия — не сразу начинается обратный ход. Петля, которая получается, называется петлей гистерезиса. Чем больше ее площадь, тем больше энергии поглотит подвеска, тем меньше перейдет на кузов вследствие удара.

Анализ этой диаграммы показывает, что в целях повышения энергоемкости нужно увеличивать площадь гистерезиса. Очевидно, что для этого либо следует увеличить кривизну (увеличив вязкость), либо увеличить ход. Проблема в том, что увеличивая вязкость вы, наоборот, уменьшаете ход при прочих равных (той же скорости прохождения препятствия). Поэтому для повышения энергоемкости нужно выбирать амортизатор с умеренной вязкостью, но большим ходом.

Как эта связка работает в машине? Вы поставили новую подвеску, опустили машину на колеса. Через несколько мгновений пружина приняла на себя полностью ее вес.

При проезде бугров возникает удар в подвеску, подвеска должна сократить длину. Пружина сделала бы это мгновенно, но ей не дает амортизатор. Если скорость проезда низкая, то вся энергия будет поглощена упругим сжатием пружины, до машины удар не дойдет. По мере роста скорости все меньшая часть успеет поглотиться подвеской, вплоть до жесткого удара в кузов. Чем больше вязкость амортизатора — тем меньше скорость прохождения препятствий.

При проезде ям подвеска должна увеличить длину. Если вязкость амортизатора низкая, то пружина за счет упругости легко это сделает. Если вязкость большая, то он сработает как растянутый жесткий стержень и не даст колесу достичь покрытия. При этом машина движется вперед, колесо летит над дорогой.

Еще один важный момент: комфортность передвижения. Комфортной будет подвеска, которая проглатывает все неровности и не передает их на кузов, однако такая подвеска плохо сопротивляется раскачиванию и наклону кузова при прохождении поворотов. Особенно это заметно в случае высоких и тяжелых автомобилей.
Частично эту проблему решает использование амортизаторов с переменной жесткостью в различных направлениях, это позволяет и сохранить мягкость при первом цикле, и быстро погасить колебания при последующих.

ВЫВОДЫ

У подвески две задачи: проглатывать неровности и сохранять управляемость. К сожалению, как это часто бывает, способы их решения противоположны. Энергоемкая, комфортная подвеска, будет валкой на дороге. Жесткая подвеска с хорошей управляемостью будет долбить в позвоночник. Попробую коротко резюмировать весь текст.

Для плохих дорог необходима энергоемкая подвеска. Энергоемкость повышается в первую очередь за счет величины рабочего хода пружины, чем больше ход, тем комфортнее подвеска.

Чем меньше вязкость амортизатора, тем проще подвеске постоянно сохранять контакт колеса с дорогой. При этом увеличивается склонность машины к раскачиванию вследствие инерционных сил.

Вязкие амортизаторы предотвращают раскачивание вследствие инерционных сил, однако ухудшают условия контакта колеса с НЕРОВНОЙ дорогой, так как не дают подвеске отрабатывать неровности.

На идеально ровных покрытиях вязкие амортизаторы, наоборот, обеспечивают плотный контакт колеса с дорогой за счет большей жесткости подвески в целом.

Один и тот же амортизатор для тяжелого автомобиля будет менее жестким, а для легкого более жестким.

Рекомендации по подбору элементов

Рабочий ход пружины не должен быть меньше геометрического хода подвески.

Рабочий ход амортизатора ни в коем случае не должен быть меньше рабочего хода пружины.

Жесткость пружины должна быть подобрана исходя из веса автомобиля и нагрузок на подвеску от дорожного покрытия так, чтобы максимально полно использовался ее рабочий ход.

Вязкость амортизатора должна быть подобрана исходя из веса автомобиля и рабочего хода пружины так, чтобы во всем диапазоне ускорений подвески пружина успевала сжиматься.

А самый главный вывод такой:
Пружина и амортизатор — это подобранная ПАРА элементов, изменение параметров одного из них приведет к дестабилизации работы подвески, и от балды этого делать нельзя.

Очень жаль, что производители автозапчастей, в особенности тюнинга, не снабжают свою продукцию конкретными графиками и числовыми показателями, а ограничиваются только маркетинговыми фразами и описанием инновационных технологий.

Надеюсь, что данный материал кому-нибудь пригодится и поможет на базовом уровне понять закономерности работы автомобильной подвески.

При копировании прошу ссылаться на меня — все написанное это хоть и примитивное, но самостоятельное исследование.

UPDATE: как я и предполагал, не прошло нескольких часов, как набежала толпа специалистов, которые принялись кричать, что, мол, примитив, школьная истина, пацаны на районе давно ушли вперед. На здоровье.
Я закрываю комментарии, потому что выслушивать колкости за собственный добровольный труд мне не интересно.

Источник