Модуль жесткости на растяжение

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 10 января 2018; проверки требуют 8 правок.

Модуль упругости — общее название нескольких физических величин, характеризующих способность твёрдого тела (материала, вещества) упруго деформироваться (то есть не постоянно) при приложении к нему силы. В области упругой деформации модуль упругости тела в общем случае зависит от напряжения и определяется производной (градиентом) зависимости напряжения от деформации, то есть тангенсом угла наклона начального линейного участка диаграммы напряжений-деформаций:

где:

В наиболее распространенном случае зависимость напряжения и деформации линейная (закон Гука):

.

Если напряжение измеряется в паскалях, то, поскольку деформация является безразмерной величиной, единицей измерения Е также будет паскаль. Альтернативным определением является определение, что модуль упругости — это напряжение, достаточное для того, чтобы вызвать увеличение длины образца в два раза. Такое определение не является точным для большинства материалов, потому что это значение намного больше чем предел текучести материала или значения, при котором удлинение становится нелинейным, однако оно может оказаться более интуитивным.

Разнообразие способов, которыми могут быть изменены напряжения и деформации, включая различные направления действия силы, позволяют определить множество типов модулей упругости. Здесь даны три основных модуля:

  • Модуль Юнга (E) характеризует сопротивление материала растяжению/сжатию при упругой деформации, или свойство объекта деформироваться вдоль оси при воздействии силы вдоль этой оси; определяется как отношение напряжения к деформации сжатия (удлинения). Часто модуль Юнга называют просто модулем упругости.
  • Модуль сдвига или модуль жесткости (G или ) характеризует способность материала сопротивляться изменению формы при сохранении его объёма; он определяется как отношение напряжения сдвига к деформации сдвига, определяемой как изменение прямого угла между плоскостями, по которым действуют касательные напряжения. Модуль сдвига является одной из составляющих явления вязкости.
  • Модуль объёмной упругости или Модуль объёмного сжатия (K) характеризует способность объекта изменять свой объём под воздействием всестороннего нормального напряжения (объёмного напряжения), одинакового по всем направлениям (возникающего, например, при гидростатическом давлении). Он равен отношению величины объёмного напряжения к величине относительного объёмного сжатия. В отличие от двух предыдущих величин, модуль объёмной упругости невязкой жидкости отличен от нуля (для несжимаемой жидкости — бесконечен).

Существуют и другие модули упругости: коэффициент Пуассона, параметры Ламе.

Гомогенные и изотропные материалы (твердые), обладающие линейными упругими свойствами, полностью описываются двумя модулями упругости, представляющими собой пару любых модулей. Если дана пара модулей упругости, все другие модули могут быть получены по формулам, представленным в таблице ниже.

В невязких течениях не существует сдвигового напряжения, поэтому сдвиговый модуль всегда равен нулю. Это влечёт также и равенство нулю модуля Юнга.

Модули упругости (Е) для некоторых веществ:

МатериалЕ, МПаЕ, кгс/см²
Алюминий70000713 800
Вода203020300
Дерево10000102 000
Кость30000305 900
Медь1000001 020 000
Резина550
Сталь2000002 039 400
Стекло70000713 800

См. также[править | править код]

  • Модуль Юнга
  • Модуль сдвига G
  • Жёсткость
  • Предел текучести
  • Упругость
  • Предел прочности
  • Упругие волны
  • Уравнение Гассмана
  • en:Dynamic modulus

Ссылки[править | править код]

  • Free database of engineering properties for over 63,000 materials
  • Расчёт модуля упругости по ПНАЭ Г-7-002-86
  • Иомдина Е. Н. Механические свойства тканей глаза человека. (недоступная ссылка)

Литература[править | править код]

  • Модули упругости // Большая Советская энциклопедия (в 30 т.) / А. М. Прохоров (гл. ред.). — 3-е изд. — М.: Сов. энциклопедия, 1974. — Т. XVI. — С. 406. — 616 с.
  • G. Mavko, T. Mukerji, J. Dvorkin. The Rock Physics Handbook. Cambridge University Press 2003 (paperback). ISBN 0-521-54344-4

Источник

Автор работы: Прокопенко Анастасия
Научный руководитель: к. ф.-м. н. Вильчевская Е.Н.

Теория стержней сыграла большую роль в развитии механики и математической физики. Именно в этой теории впервые возникли дифференциальные уравнения, как обыкновенные, так и в частных производных.

В механике сплошных сред, которая описывается уравнениями в частных производных, в которых в качестве независимых переменных выступают три пространственных координаты и время. А в теории стержней фигурируют всего две независимых переменных: одна пространственная координата (обычно длина дуги упругой линии), а второй координатой является время. Получается, что наличие одной пространственной координаты сильно упрощает ситуацию, и именно в теории стержней оказывается возможным исследовать пространственные формы движения.

Важно заметить, что тонкий стержень при малых деформациях допускает большие перемещения. Например, изначально прямой стержень можно свернуть в кольцо, при этом деформации стержня останутся пренебрежимо малыми.

Читайте также:  Задачи на растяжение ступенчатого стержня

Существует два метода вывода основных уравнений тонких стержней: асимптотический и прямой. Асимптотический метод основан на уравнениях трехмерной теории и ряде априорных предположений относительно внутренней структуры стержня и характера поведения решения. Прямой метод основан на непосредственном использовании фундаментальных законов механики. Этот метод имеет более широкую область применимости, поскольку при выводе основных уравнений не делается никаких предположений о характере поведения решения, а все особенности внутренней структуры стержня содержатся в тензорах жесткости. В данной работе рассматривается прямой метод.

  • Определить модули жесткости прямолинейных стержней на основании численного эксперимента
  • Исследовать влияние количества сквозных отверстий на модуль жесткости на поперечный сдвиг

Тензоры жесткости не зависят от деформации, поэтому они могут быть определены по данным линейной теории. Модули упругости будем находить при помощи статического метода. Суть это метода заключается в следующем: решается задача о статическом деформировании по теории стержней, в результате чего находятся перемещения и повороты. Затем та же задача решается по трехмерной теории, либо проводится физический эксперимент, в результате которого также находятся деформации. Важный момент статического метода определения модулей упругости является выбор формул, связывающих между собой характеристики состояния трехмерного тела и состояние соответствующей модели стержня.

Стержень – это модель тонкого трёхмерного тела. Потребуем, чтобы количество движения и кинетический момент у модели и у трёхмерного тела (прообраза) совпадали бы между собой. В результат придём к следующим уравнениям (для линейной теории):

Рис 1. Стержень со свободным концом

Рис 2. Стержень с заделками с двух сторон

Испытания на сдвиг часто используются для оценки механических
свойств материалов в хрупком или малопластичном состоянии, при воздействии коррозионной среды (коррозии под напряжением), а также для оценки пластичности и качества сварных соединений. Испытание на сдвиг воспроизводит характерные для многих конструктивных элементов условия механического нагружения и позволяет выявить свойства поверхностных слоев, наиболее напряженных при разрушении.

В изогнутом стержне в некоторых местах его происходит растяжение, а в других — сжатие. Растянуты линии на выпуклой стороне изогнутого стержня, а на вогнутой стороне происходит сжатие. Как и в случае пластинок, вдоль длины стержня внутри него существует «нейтральная» поверхность, на которой не происходит ни растяжения, ни сжатия. Она отделяет собой области сжатия от областей растяжения.
В этой задачи будет две компоненты модуля упругости: на сдвиг и на растяжение. При решении этой задачи нужно раскрыть векторное произведение (см. формула из метода решения). Из-за большого количества узлов погрешность будет большой. Чтобы избежать эту проблему нужно решить две задачи: сдвиг стержня со свободным концом (Рис. 1) и с заделкой, как показано на Рис 2.

Угол закручивания в первом случае будет равен:

Угол закручивания для стержня с двумя заделками:

Выражаем в обоих случаях перемещение, будем иметь соответственно:

Где — перемещение стержня со свободным концом, а — с заделкой с двух сторон, — модуль жесткости на поперечный сдвиг, — модуль жесткости на кручение.
Переходим к относительной координате сечения, делая замену .
Получаем итоговую формулу для модуля жесткости на поперечный сдвиг:

Для нахождения коэффициента сдвига, понадобиться следующая формула: , где — модуль сдвига, — площадь поперечного сечения.
Были предложены различные искусственные приемы отыскания корректирующего коэффициента k в уточненных теориях, основанных на сдвиговой модели Тимошенко. Все эти приемы являются приближенными. При построении уточненных уравнений, как математических аппроксимаций краевой задачи динамической теории упругости, не требуется введения каких–либо искусственных величин. Поэтому из сравнения математических аппроксимаций с соответствующими уточненными теориями, содержащими искусственные величины, можно найти формулы для корректирующих коэффициентов, иногда в явном виде. Отобразим такие величины на графике для сравнения с величиной, полученной по нашей формуле.

Рис 3. Зависимость коэффициента сдвига от коэффициента Пуассона

Рис 4. Формы поперечного сечения

В этом случае полученные значения модуля жесткости на поперечный сдвиг при разных формах сечения можно представить в виде гистограммы (Рис 5.):

Рис 5. Влияние формы сечения на модуль поперечного сдвига

Получается, что модуль жесткости на поперечный сдвиг при разных формах сечения имеет разные значения. Связано это с тем, что, если в случае растяжения стержня был один модуль жесткости на растяжении, то в случае изгиба стержня будет уже два модуля жесткости: один на растяжение, другой на изгиб.

Читайте также:  Чем отличается перелом от растяжения

При моделировании рассматривается задача об изгибе стержня длиной. Площадь сечения является постоянной величиной для разных форм сечений, площадь отверстий также постоянная величина.

Рис 6. Численные значения модуля жёсткости при разных формах сечения

По представленным значениям на Рис 6., сделаем вывод о том, как влияет расположение сквозных отверстий на модуль жесткости на поперечный сдвиг.
Во-первых, при увеличении числа сквозных отверстий, когда площадь отверстий не меняется, модуль сдвига будет значительно уменьшаться.
Во-вторых, при удалении от центра сквозных отверстий, модуль сдвига также будет уменьшаться.

Используя предложенный П.А. Жилиным статический метод
определения модулей упругости тонкостенных конструкций, были найдены модули сдвига стержней, различной формы поперечного сечения. И был найден модули жесткости для квадратной формы поперечного сечения со сквозными отверстиями.

В работе решен ряд тестовых задач о статическом деформировании по теории стержней. Тестовые задачи выбирались таким образом, чтобы решение каждой из них содержало бы только один неизвестный модуль упругости. Затем те же задачи были решены численным методом по трехмерной теории. Основываясь на сравнении напряженно-деформированного состояния стержней и трехмерных тел, были найдены корректирующие коэффициенты сдвига. Полученные величины имеют схожие значения с корректирующими коэффициентами сдвига, полученными на основании других методов.

Также удалось систематизировать данные и сделать вывод о влиянии расположения сквозных отверстий на модуль жесткости при поперечном сдвиге. А именно: при увеличении у стержня числа отверстий и при удалении их от центра, модуль сдвига будет значительно уменьшаться.

  • Феодосьев В. И. Сопротивление материалов. — М.: изд-во МГТУ им.Н. Э. Баумана, 1999
  • Ландау Л. Д., Лифшиц Е. М. Теоретическая физика. В 10-ти т. Т. VII. Теория упругости: Учеб. пособие. — 4-е изд., испр. и доп. — М.; Наука. Гл. ред. физ.-мат. лит., 1987. — 248 с.
  • Э. И. Григолюк, И. Т. Селезов. Механика твердых деформируемых тел. Том 5. Неклассические теории колебаний стержней, пластин и оболочек.
  • П. А. Жилин. Прикладная механика. Теория тонких упругих стержней.

Источник

Все твердые тела, как кристаллические, так и аморфные, имеют свойство изменять свою форму под воздействие приложенной к ним силы. Другими словами, они подвергаются деформации. Если тело возвращается к исходным размерам и форме после того, как внешнее усилие прекращает свое воздействие, то его называют упругим, а его деформацию считают упругой. Для любого тела существует предел приложенного усилия, после которого деформация перестает быть упругой, тело не возвращается в исходную форму и к исходным размерам, а остается в деформированном состоянии или разрушается. Теория упругих деформаций тел была создана в конце 17 века британским ученым Р. Гуком и развита в трудах его соотечественника Томаса Юнга. В их честь Гука и Юнга были названы соответственно закон и коэффициент, определяющий степень упругости тел. Он активно применяется в инженерном деле в ходе расчетов прочности конструкций и изделий.

Модуль Юнга

Основные сведения

Модуль Юнга, (называемый также модулем продольной упругости и модулем упругости первого рода) это важная механическая характеристика вещества. Он является мерой сопротивляемости продольным деформациям и определяет степень жесткости. Он обозначается как E; измеряется н/м2 или в Па.

Это важный коэффициент применяют при расчетах жесткости заготовок, узлов и конструкций, в определении их устойчивости к продольным деформациям. Вещества, применяемые для изготовления промышленных и строительных конструкций, имеют, как правило, весьма большие значения E. И поэтому на практике значения Е для них приводят в гигаПаскалях (1012Па)

Величину E для стержней поддается расчету, у более сложных конструкций она измеряется в ходе опытов.

Приближенные величины E возможно узнать из графика, построенного в ходе тестов на растяжение.

График теста на растяжение

E- это частное от деления нормальных напряжений σ на относительное удлинение ε.

E=α/ε

Закон Гука также можно сформулировать и с использованием модуля Юнга.

Физический смысл модуля Юнга

Во время принудительного изменения формы предметов внутри них порождаются силы, сопротивляющиеся такому изменению, и стремящиеся к восстановлению исходной формы и размеров упругих тел.

Если же тело не оказывает сопротивления изменению формы и по окончании воздействия остается в деформированном виде, то такое тело называют абсолютно неупругим, или пластичным. Характерным примером пластичного тела является брусок пластилина.

Р. Гук исследовал удлинение стрежней из различных веществ, под воздействием подвешенных к свободному концу гирь. Количественным выражением степени изменения формы считают относительное удлинение, равное отношению абсолютного удлинения и исходной длины.

В результате серии опытов было установлено, что абсолютное удлинение пропорционально с коэффициентом упругости исходной длине стрежня  и деформирующей силе F и обратно пропорционально площади сечения этого стержня S:

Δl = α * (lF) / S

Величину, обратную α, и называют модулем Юнга:

1/α = E

Относительная деформация:

ε = (Δl) / l = α * (F/S)

Отношение растягивающей силы F к S называют упругим напряжением σ:

ε=α σ

Закон Гука, записанный с использованием модуля Юнга, выглядит так:

σ = ε/α = E ε

Теперь можно сформулировать физический смысл модуля Юнга: он соответствует напряжению, вызываемому растягиванием стержнеобразного образца вдвое, при условии сохранения целостности.

В реальности подавляющее большинство образцов разрушаются до того, как растянутся вдвое от первоначальной длины. Значение E вычисляют с помощью косвенного метода на малых деформациях.

Коэффициент жёсткости при упругой деформации стержня вдоль его оси k = (ES) / l

Модуль Юнга определяет величину потенциальной энергии тел или сред, подвергшихся упругой деформации.

Значения модуля юнга для некоторых материалов

В таблице показаны значения E ряда распространенных веществ.

Материалмодуль Юнга E, ГПа
Алюминий70
Бронза75-125
Вольфрам350
Графен1000
Латунь95
Лёд3
Медь110
Свинец18
Серебро80
Серый чугун110
Сталь200/210
Стекло70

Модуль продольной упругости стали вдвое больше модуля Юнга меди или чугуна. Модуль Юнга широко применяется в формулах прочностных расчетов элементов конструкций и изделий в целом.

Предел прочности материала

Это предел возникающего напряжения, после которого образец начинает разрушаться.

Статический предел прочности измеряется при продолжительном приложении деформирующего усилия, динамический — при кратковременном, ударном характере такого усилия. Для большинства веществ динамический предел больше, чем статический.

Инструмент для определения предела прочности

Кроме того, существуют пределы прочности на сжатие материала и на растяжение. Они определяются на испытательных стенда опытным путем, при растягивании или сжатии образцов мощными гидравлическим машинами, снабженными точными динамометрами и измерителями давления. В случае невозможности достижения требуемого давления гидравлическим способом иногда применяют направленный взрыв в герметичной капсуле.

Допускаемое механическое напряжение в некоторых материалах при растяжении

Из жизненного опыта известно, что разные материалы по-разному сопротивляются изменению формы. Прочностные характеристики кристаллических и других твердых тел определяются силами межатомного взаимодействия. По мере роста межатомных расстояний возрастают и силы, притягивающие атомы друг к другу. Эти силы достигают максимума при определенной величине напряжения, равной приблизительно одной десятой от модуля Юнга.

Испытание на растяжение

Эту величину называют теоретической прочностью, при ее превышении начинается разрушение материала. В реальности разрушение начинается при меньших значениях, поскольку строение реальных образцов неоднородно. Это вызывает неравномерное распределение напряжений, и разрушение начинается с тех участков, где напряжения максимальны.

Значения σраст в МПа:

Материалы σраст 
Бор57000,083
Графит23900,023
Сапфир14950,030
Стальная проволока4150,01
Стекловолокно3500,034
Конструкционная сталь600,003
Нейлон480,0025

Эти цифры учитываются конструкторами при выборе материала деталей будущего изделия. С их использованием также проводятся прочностные расчеты. Так, например, тросы, используемые для подъемно- транспортных работ, должны иметь десятикратный запас по прочности. Периодически их проверяют, подвешивая груз в десять раз больше, чем паспортная грузоподъемность троса.

Запасы прочности, закладываемые в ответственные конструкции, также многократны.

Коэффициент запаса прочности

Для количественного выражения запаса прочности при конструировании применяют коэффициент запаса прочности. Он характеризует способность изделия к перегрузкам выше номинальных. Для бытовых изделий он невелик, но для ответственных узлов и деталей, могущих при разрушении представлять опасность для жизни и здоровья человека, его делают многократным.

Запас прочности

Точный расчет прочностных характеристик позволяет создать достаточный для безопасности запас прочности и одновременно не перетяжелить конструкцию, ухудшая ее эксплуатационные характеристики. Для таких расчетов используются сложные математические методы и совершенное программное обеспечение. Наиболее важные конструкции обсчитывают на суперкомпьютерах.

Связь с другими модулями упругости

Модуль Юнга связан с модулем сдвига, определяющим способность образца к сопротивлению против деформации сдвига, следующим соотношением:

E связан также и с модулем объёмной упругости, определяющим способность образца к сопротивлению против одновременного сжатия со всех сторон.

Источник