Модуль упругости при растяжении стеклопластик
Сравнение физико-механических свойств эпоксидного композиционного материала производства фирмы ООО «Эволюшн Моторс» с различными металлическими материалами.
В таблице 1 приведены физико-механические характеристики композиционного материала изготовленного ООО «Эволюшн Моторс». Испытания проводились лабораторией неметаллических материалов ОАО «НПП «Звезда».
Таблица 1.
Физико-механические характеристики композиционного материала изготовленного ООО «Эволюшн Моторс».
Наименование показателя | Величина показателя | Метод измерения |
Плотность материала, г/см3 | 1,72 | ГОСТ 15139-69 |
Прочность при разрыве, МПа | 277 | ГОСТ 11262-80 |
Модуль упругости при растяжении, МПа | 5,1*103 | ГОСТ 9550-81 |
Разрушающее изгибающее напряжение, МПа | 155 | ГОСТ 4648-71 |
Ударная вязкость по Шарпи, кДж/м2 | 172 | ГОСТ 4647-80 |
В таблице 2 приведены физико-механические характеристики различных металлических материалов из справочника авиационных материалов [1].
Таблица 2 Физико-механических показателей различных материалов.
Наименование показателя | Наименование материала | |||
Сталь 3 | Сталь 45 | Дуралюмин Д16 | Алюминиево-магниевый сплав АМг6 | |
1 | 2 | 3 | 4 | 5 |
Плотность материала, г/см3 | 7,8 | 7,8 | 2,8 | 2,6 |
Допускаемое напряжение при растяжении (статическая нагрузка), МПа | 125 | 200 | 270 | 147 |
1 | 2 | 3 | 4 | 5 |
Модуль нормальной упругости, МПа | 210*103 | 200*103 | 6,8*103 | 6,9*103 |
Допускаемое напряжение при изгибе (статическая нагрузка), МПа | 140 | 240 | 270 | 147 |
Ударная вязкость, кДж/м2 | 784 | 882 | 230 | 392 |
При указанных в таблице 2 значениях допускаемых напряжений в материале не происходит значительных деформаций, способных разрушить конструкцию. Значения в таблице 1 получены при разрушении материала, поэтому для корректного сравнения необходимо учитывать коэффициент запаса прочности. Если этот коэффициент равен 2 (нагрузки, возникающие в материале в 2 раза меньше, чем максимально возможные), то значения прочности и напряжения при изгибе необходимо уменьшить в 2 раза и полученные цифры сравнивать со значениями таблицы 2. Таким образом можно составить сравнительную таблицу.
Таблица 3 Сравнение физико-механических показателей различных материалов
Показатель | Материал | ||||
Ст 3 | Ст 45 | Д16 | АМг6 | Композит | |
Плотность материала, г/см3 | 7,8 | 7,8 | 2,8 | 2,6 | 1,72 |
Допускаемое напряжение при растяжении, МПа | 125 | 200 | 270 | 147 | 138,5 |
Модуль нормальной упругости, МПа | 210*103 | 200*103 | 6,8*103 | 6,9*103 | 5,1*103 |
Допускаемое напряжение при изгибе, МПа | 140 | 240 | 270 | 147 | 77,5 |
Ударная вязкость, кДж/м2 | 784 | 882 | 230 | 392 | 172 |
По величине допускаемого напряжения при растяжении композит близок к показателям стали 3 и алюминиевого сплава АМг6, при этом легче в 4,5 и 1,5 раза соответственно. Но чистое растяжение характерно для канатов, а для корпусных конструкций наиболее характерной нагрузкой является изгиб.При изгибе в любом сечении конструкции возникают одновременно растяжение и сжатие. Для пластичных материалов (алюминиевые, медные сплавы и пр.) допускаемое напряжение при обоих видах воздействий одинаково, поэтому допускаемые напряжение при изгибе и растяжении равны для этих материалов. По величине допускаемого напряжения при изгибе композит почти в 2 раза проигрывает стали 3 и сплаву АМг6. Если взять равнопрочные балки из этих трех материалов, то стальная балка будет тяжелее композитной в 2,5 раза, но композитная будет тяжелее, чем балка из АМг6 в 1,25 раза. Модуль упругости это величина характеризующая жесткость материала. Значение для композита близко к значениям для алюминиевых сплавов, но практически в 40 раз проигрывают сталям. Ударная вязкость характеризует устойчивость материала к воздействию ударной нагрузки, по сути, хрупкость материала. Ударная вязкость композита в 0,5 меньше, чем у Д16 и в 2 раза меньше чем у АМг6. Для сталей этот показатель гораздо больше. Таким образом, можно сказать, что в качестве конструкционного материала для судостроения представленный композит близок по своим характеристикам к алюминиевым конструкционным сплавам. По жесткости и сопротивлению удару композит значительно проигрывает сталям, но гораздо легче.
[1] – сведения из справочника в 9 томах «Авиационные материалы», изд. МАП. ВИАМ – 1975 г.
Источник
Так как модуль упругости стеклопластика при сжатии мал, то даже при нагрузках, значительно меньших эйлеровых, прогибы существенно увеличиваются из-за неизбежных начальных несовершенств. Поэтому расчет стержней из стеклопластиков из конструктивных соображений следует проводить на жесткость по допускаемым прогибам. [c.186]
Ех, Еу — модули упругости стеклопластика в главных направлениях анизотропии Лху, У ух — коэффициенты Пуассона Е — модуль упругости и со — параметы пластичности для среднего слоя гр = 2гр/к — безразмерная граница зоны разгрузки о е — интенсивности напряжений и деформаций [c.231]
Структура нити и жгута мало влияет на модуль упругости стеклопластика. Значения реализуемого модуля упругости волокон при чистом изгибе стеклопластиков (на эпоксифенольном связующем) на основе первичной нити, стекложгута в 10 сложений и крученых стеклонитей находятся в пределах 7900—8400 кгс/мм — . Колебания этой характеристики в пределах 6% при испытании стекловолокнитов на растяжение (табл. 1У.7) скорее обусловлены [c.140]
Следовательно, модуль упругости при изгибе Е= 20 = = 6473 Н/мм по сравнению с модулем упругости стеклопластика без гелевого слоя, равного 7381 Н/мм [c.204]
Результаты определения модулей упругости стеклопластиков приведены в табл. 52. [c.189]
Удельная жесткость стеклопластиков ниже, чем металлических материалов, поэтому при одинаковых напряжениях деформации конструкций из стеклопластиков значительно больше, чем деформации металлических конструкций. Однако благодаря меньшему модулю упругости стеклопластики лучше противостоят вибрации и обладают большей демпфирующей способностью. [c.26]
Неоднородность механических свойств. Неоднородность макроструктуры стеклопластиков приводит к значительному разбросу показателей прочностных и упругих свойств. Коэффициент вариации пределов прочности и модулей упругости стеклопластиков составляет обычно 10—30%, в то время как для металлов он редко превышает 5%. [c.201]
Модули упругости стеклопластика в частном случае, когда отклонения волокон заданы детерминированной функцией (волокна имеют синусоидальные отклонения), приводятся в работе [171, с. 39]. В этой же книге даны приближенные значения модулей упругости при малых искривлениях волокон. [c.216]
В рамках методов, развиваемых в статистической механике материалов, имеется возможность учесть анизотропию компонентов, форму и неоднородность свойств волокон. Однако влияние перечисленных факторов на упругие свойства стеклопластиков несущественно. Так, при коэффициенте вариации упругих свойств стеклянных волокон до 10% поправка к модулям упругости стеклопластика, обусловленная неоднородностью арматуры, не превышает 2%. В то же время эти факторы могут в значительной мере влиять на прочность материала. [c.219]
Относительно низкий модуль упругости стеклопластиков приводит к тому, что несущая способность тонкостенных конструкций лимитируется не прочностью, а деформативностью и устойчивостью. Для более полного использования высоких прочностных характеристик стеклопластиков в ряде случаев целесообразно изделия делать трехслойными или ставить ребра жесткости. Там, где это возможно, следует конструировать изделия таким образом, чтобы стеклопластик работал не на сжатие, а на растяжение. Следует отметить, что иногда невысокий модуль упругости является преимуществом стеклопластика. Например, трубопроводы из этого материала могут выполняться без компенсаторов температурных деформаций. Листы из стеклопластика легко огибают криволинейные поверхности небольшого радиуса. [c.20]
Примерно аналогичные результаты получены при экспонировании полиэфирных и фенольных стеклопластиков в течение 935 суток в атмосферных условиях Москвы, Тбилиси и Поти [29, 66]. Наблюдалось снижение прочности и модуля упругости стеклопластиков до 16%. [c.220]
Модуль упругости стеклопластика, армированного стеклянной тканью, может быть вычислен по формуле [14] [c.249]
Трубы из стеклопластиков значительно легче труб из стали и других материалов. В то же время модуль упругости стеклопластика в несколько раз ниже модуля упругости стали. Эти факторы необходимо учитывать при проектировании трубопроводов. На рис. 8.1 [c.111]
Г е р ш б е р г М. В. Исследование изменения модуля упругости стеклопластиков в произвольном направлении. Технология судостроения , 1964, № 7. [c.326]
Ниже приведены значения предела прочности и модуля упругости стеклопластиков на основе волокон различного химического состава (результаты получены при исследованиях, выполнявшихся на кольцевых стеклопластиковых образцах по методике, подробно изложенной в гл.II) [c.129]
Модуль упругости стеклопластика тах Ю . МПа Е р 10- МПа. [c.129]
Для определенных сосудов, изготовленных методом намотки, низкий модуль упругости стеклопластика является серьезным недостатком. Небольшое увеличение модуля упругости может быть достигнуто посредством модификации стеклянной композиции или технологического процесса. Любое значительное увеличение модуля упругости потребует изменений в составе стекла. Такие изменения поставят новые проблемы перед производством стекла и его переработкой в изделия. Наиболее эффективной добавкой [c.19]
Рпс. 151. Зависимость модуля упругости стеклопластиков от температуры при разном направлении растягивающих усилий [c.298]
С повышением температуры модуль упругости стеклопластиков обоих типов уменьшается (следует отметить, что особенно значительно это сказывается нри приложении растяжения под углом 45° к направлению армирующих волокон). [c.298]
На рис. 154 приведена зависимость механических свойств (прочности и модуля упругости при растяжении и прочности при изгибе) стеклотекстолита на полиэфирной смоле марки веронал-110 от температуры [76]. Из рисунка видно, что при отрицательных температурах прочность и модуль упругости стеклопластиков имеют наибольшие значения. По мере повышения температуры механические характеристики стеклопластиков ухудшаются, и при 100° С прочность при растяжении и изгибе составляет около 7—12 кгс/мм На основании этих исследовании автор [76] приходит к выводу, что использование стеклопластиков, полученных на основе полиэфирных смол обычного типа, в конструкциях, работающих при температурах выше 100° С, не оправдано. В то же время механические свойства стеклопластиков, изготовленных на основе фенольных и модифицированных фенольных смол, сравнительно мало изменяются от нагревания при 200° С даже в течение длительного времени, как это иллюстрирует рис. 155 [57]. [c.300]
Хотя стеклопластики имеют сравнительно со сталью небольшую жесткость (величина модуля упругости стеклопластиков на порядок меньше, чем у сталей), но удельная жесткость стеклопластиков (модуль упругости, отнесенный к удельному весу), особенно стеклопластиков с ориентированной волокнистой структурой, не уступает по своей величине удельной жесткости высокопрочной стали, дюралюминия и титана. [c.360]
Однако абсолютные значения модулей упругости стеклопластиков значительно ниже, чем у металлов. Поэтому в последнее время стремления конструкторов и архитекторов направлены на то, чтобы компенсировать недостаточную жесткость стеклопластиков путем выбора рациональных конструкций. [c.360]
Вид армирующего материала существенно влияет на модуль упругости стеклопластика. Например, у стеклопластика, армированного однонаправленной стеклотканью, модуль упругости вдвое больше, чем у армированного стекломатом и составляет примерно 3-10 кг см . [c.152]
Модули упругости стеклопластика слоистой структуры с текстурой вращения (при равномерном распределении слоев по направлениям в плоскости армирования Х2Х3) могут быть вычислены также на основе статистической модели слоистой среды [82] по формулам [c.223]
В ряде работ [20—22] отмечалось, что максимально достижимое содержание волокон для однонаправленного стеклопластика составляет 75% (об.). Между тем на примере стеклопластика однонаправленной структуры с диаметром волокна 9— 11 мкм было показано [23], что с увеличением содержания волокна упругопрочностные характеристики композита при растяжении непрерывно растут и какого-либо максимума, после которого прочность начала бы падать, не наблюдается (рис. 3.9). При этом было достигнуто содержание наполнителя, близкое к теоретическому пределу. В исследованном диапазоне прочность и модуль упругости стеклопластика при растяжении подчинялись закону смеси [c.125]
Модуль упругости стеклопластика в 15—20 раз ниже модуля упругости стали, поэтому, несмотря на более высокие значения термического коэффициента расширения стеклопластика по сравнению со сталью, трубопроводы из этого материала, как правилОг не требуют устройства специальных компенсаторов температурных деформаций. Напряжения, вызванные температурными деформациями, не превышают 5—10% от разрушающего напряжения в температурном интервале 270—370 К- Эти напряжения обычно явля-ются сжимающими, и необходимо правильно размещать неподвижные и направляющие опоры трубопровода, чтобы избежать выпучивания трубы. Направляющие опоры должны обеспечивать возможность свободного перемещения трубы в продольном направлении. [c.307]
Если в качестве примера принять, что основание консоли находится на высоте Я=100 м, приведениый модуль упругости стеклопластика прив = 6-10 МПа, радиус ствола Н=1 м и толщина стенки кк=0,02 м, то предельная высота консоли /к 6 м. [c.323]
Модуль упругости стеклопластиков в 8—42 раз ниже, чем у металлов. С точки зрения конструктора это и хорошо, и плохо. С одной стороны, благодаря низкому модулю упругости стеклопластика трубопроводы из этого материала могут не иметь компенсаторов температурных удлинений, а с другой стороны, при конструировании труб и резервуаров больших диаметров из стеклопластиков низкий модуль упругости ограничивает допустимое внешнее давление (вакуум), при котором можно эксплуатировать эти изделия. Правда, благодаря конструктивным мероприятиям, например установке ребер и колец жесткости или обмотке наружной поверхности пзде- [c.17]
ЛИЯ металлической проволокой, можно исключить влияние низкого модуля упругости стеклопластика на работоспособность изделия в вакзгуме. [c.18]
Пример 1. Рассмотрим газоход диаметром В, равным 1050 мм, транспортирующий 780 м /мин воздуха, насыщенного парами кислоты. Максимально возможный вакуум 17,5 см вод. ст. Ветровая нагрузка 100 кгс/см. Толщина стенки газохода (в соответствии с табл. 11.1) 4 = 6,2 мм. Модуль упругости стеклопластика = 56 ООО кгс/см. Расстояние между кольцами жесткости Ь — 3 м. Требуется определить Кзап и размеры колец жесткости в виде бандажей. Критическое внепшее давление Ркр ( кгс/см ) определяем по формуле [c.142]
Пример 3. Рассмотрим газоход диаметром 200 мм, расположенный внутри помещения (ветровая нагрузка отсутствует). Толщина стенки 3 мм. Модуль упругости стеклопластика Е = 50 000 кгс/см. Расстояние между кольца1ш жесткости 3 м. Определить допустимый вакуум при коэффициенте запаса устойчивости /Сзап 5. [c.144]
На рис. 156 ириводены кривые, иллюстрирующие ухудшение механических характеристик (прочности и модуля упругости при изгибе) стеклотекстолитов на основе различных полимерных связующих под влиянием высоких температур. При получении образцов в работе [78] применялись стеклоткань полотняного переплетения и фенольные, кремнийорганп-ческие, полиэфирные смолы. Из рисунка видно, что хотя значения прочности и модуля упругости стеклопластиков на основе кремнийорганиче-ской смолы сравнительно невелики, но их величина мало изменяется под [c.300]
Попытки рассчитать прочность и модуль упругости стеклопластиков на основании известных свойств компонентов армированной системы предпринимались рядом авторов, нанример, Дж. Аутуотером [179], Ф. Биром [45], К. Рейнхартом [13] и другими [21]. [c.347]
Химическое оборудование в коррозийно-стойком исполнении (1970) — [
c.393
]
Источник
Дата введения 1982-07-01
Постановлением государственного комитета СССР по стандартам от 26 августа 1981 г. N 4058 дата введения установлена 01.07.82
Ограничение срока действия снято по протоколу N 5-94 Межгосударственного совета по стандартизации, метрологии и сертификации (ИУС 11-12-94)
ВЗАМЕН ГОСТ 9550-71
ИЗДАНИЕ (май 2004 г.) с Поправкой (ИУС 11-89).
Настоящий стандарт распространяется на пластмассы и устанавливает методы определения модуля упругости при растяжении, сжатии и изгибе.
Стандарт не распространяется на ячеистые пластмассы и пленки из пластмасс.
Стандарт полностью соответствует СТ СЭВ 2345-80.
Термины, применяемые в настоящем стандарте, и их пояснения приведены в приложении.
1. МЕТОД ОПРЕДЕЛЕНИЯ МОДУЛЯ УПРУГОСТИ ПРИ РАСТЯЖЕНИИ
1.1. Сущность метода
Сущность метода заключается в определении модуля упругости при растяжении как отношения приращения напряжения к соответствующему приращению относительного удлинения, установленному настоящим стандартом.
1.2. Отбор образцов
1.2.1. Для испытания применяют образцы по ГОСТ 11262-80.
1.2.2. Количество образцов, взятых для испытания одной партии материала, а для анизотропных материалов в каждом из выбранных направлений, должно быть не менее 3.
1.3. Аппаратура
Для проведения испытания применяют аппаратуру по ГОСТ 11262-80, при этом испытательная машина должна обеспечивать скорость раздвижения зажимов (1,0±0,5)% в минуту, а прибор для измерения удлинения должен обеспечивать измерение с погрешностью не более 0,002 мм.
1.4. Подготовка к испытанию
1.4.1. Перед испытанием образцы кондиционируют в стандартной атмосфере по ГОСТ 12423-66 не менее 16 ч, если в нормативно-технической документации на конкретную продукцию нет других указаний.
1.4.2. Перед испытанием измеряют толщину и ширину образца по ГОСТ 11262-80.
1.5. Проведение испытания
1.5.1. Испытание проводят при температуре и относительной влажности, указанных в нормативно-технической документации на конкретную продукцию.
Если в нормативно-технической документации на конкретную продукцию нет других указаний, то испытание проводят в соответствии с ГОСТ 12423-66 при температуре (23±2) °С и относительной влажности (50±5)%.
1.5.2. Образец закрепляют в машину так, чтобы продольные оси зажимов и ось образца совпадали с линией, соединяющей точки крепления зажимов на испытательной машине.
1.5.3. На образце, закрепленном в зажимах, проводят установку и настройку прибора для измерения удлинения.
1.5.4. Образец нагружают при скорости раздвижения зажимов испытательной машины, обеспечивающей скорость деформации образца (1,0±0,5)% в минуту. Нагружение осуществляют до величины относительного удлинения 0,5%.
Если образцы разрушаются до достижения относительного удлинения 0,5%, нагружение проводят до меньшей величины деформации, установленной в нормативно-технической документации на конкретную продукцию.
1.5.5. Графическую запись нагрузки и деформации проводят в следующем масштабе:
100-150 мм на диаграмме должно соответствовать 0,4% относительного удлинения;
не менее 100 мм на диаграмме должно соответствовать приращению нагрузки, соответствующему увеличению относительного удлинения на 0,4%.
1.6. Обработка результатов
1.6.1. По диаграмме определяют значения нагрузки, соответствующие величинам относительного удлинения 0,1 и 0,3%. Допускаются меньшие значения относительного удлинения для образцов, предусмотренных в п.1.5.4.
1.6.2. Модуль упругости при растяжении () в МПа вычисляют по формуле
,
где — нагрузка, соответствующая относительному удлинению 0,3%, Н;
— нагрузка, соответствующая относительному удлинению 0,1%, Н;
— расчетная длина образца, мм;
— площадь начального поперечного сечения образца, мм;
— удлинение, соответствующее нагрузке , мм;
— удлинение, соответствующее нагрузке ,
мм.
1.6.3. За результат испытания принимают среднеарифметическое значение всех параллельных определений.
1.6.4. Величину стандартного отклонения вычисляют по ГОСТ 14359-69.
1.6.5. Результаты испытания записывают в протокол, который должен содержать следующие данные:
наименование и марку пластмассы и номер партии;
метод испытания;
наименование испытательной машины;
тип и марку прибора для измерения деформации;
условия проведения испытания (скорость нагружения, температура, графическая запись и т.д.);
тип испытуемого образца (форма, размеры);
условия подготовки испытуемого образца;
количество образцов, взятых для испытания;
среднеарифметическое определяемого показателя и стандартное отклонение;
дату испытания;
обозначение настоящего стандарта.
2. МЕТОД ОПРЕДЕЛЕНИЯ МОДУЛЯ УПРУГОСТИ ПРИ СЖАТИИ
2.1. Сущность метода
Сущность метода заключается в определении модуля упругости при сжатии как отношения приращения напряжения к соответствующему приращению относительной деформации сжатия, установленному настоящим стандартом.
2.2. Отбор образцов
2.2.1. Для испытания применяют образцы по ГОСТ 4651-82. База измерения деформации должна составлять не менее 10 мм и не более высоты образца при измерении деформации прибором, установленным на образце.
При изготовлении образцов из изделий толщиной менее 5 мм используют образцы в форме прямоугольных пластин размерами (80±2)х(10,0±0,5) мм, а толщина образца равна толщине изделия. Для армированных пластмасс ширина образцов равна (15,0±0,5) мм. Для предотвращения потери устойчивости при испытании таких образцов применяют приспособление (черт.1).
Черт.1. Приспособление для испытания на сжатие образцов толщиной менее 5 мм
Приспособление для испытания на сжатие образцов толщиной менее 5 мм
Черт.1
2.2.2. Количество образцов должно соответствовать п.1.2.2.
2.3. Аппаратура
Для проведения испытания применяют аппаратуру по ГОСТ 4651-82, при этом испытательная машина должна обеспечивать скорость сближения опорных площадок со скоростью деформации образца (1,0±0,5)% в минуту, а прибор для измерения деформации сжатия должен обеспечивать измерение с погрешностью не более 0,002 мм.
2.4. Подготовка к испытанию
2.4.1. Перед испытанием образцы кондиционируют в стандартной атмосфере по ГОСТ 12423-66 не менее 16 ч, если в нормативно-технической документации на конфетную продукцию нет других указаний.
2.4.2. Перед испытанием измеряют размеры образцов по ГОСТ 4651-82.
2.5. Проведение испытания
2.5.1. Испытания проводят при температуре и относительной влажности, указанных в п.1.5.1.
2.5.2. Образец устанавливают на опорных плитах испытательной машины так, чтобы продольная ось образца совпадала с направлением действия силы.
2.5.3. Устанавливают прибор для измерения деформации. Деформацию при сжатии определяют измерением расстояния между площадками или по изменению базы на образце (см. п.2.2.1).
2.5.4. Образец нагружают при скорости сближения площадок испытательной машины, обеспечивающей скорость деформации образца (1,0±0,5)% в минуту. Нагружение осуществляют до величины деформации 0,5%.
Если образцы разрушаются до достижения относительной деформации 0,5%, нагружение осуществляют до меньшей величины деформации, установленной в нормативно-технической документации на конкретную продукцию.
2.5.5. Графическую запись нагрузки и деформации проводят в соответствии с п.1.5.5 при значениях относительной деформации сжатия, равных значениям относительного удлинения, указанных в п.1.5.5.
2.6. Обработка результатов
2.6.1. По диаграмме определяют значения нагрузки, соответствующие величинам относительной деформации 0,1 и 0,3%.
Допускаются меньшие значения относительной деформации при сжатии для образцов, предусмотренных в п.2.5.4.
2.6.2. Модуль упругости при сжатии () в МПа вычисляют по формуле
,
где — нагрузка, соответствующая относительной деформации 0,3%, Н;
— нагрузка, соответствующая относительной деформации 0,1%, Н;
— начальная высота образца или базы, мм;
— площадь начального поперечного сечения образца, мм;
— изменение высоты или базы, соответствующее нагрузке , мм;
— изменение высоты или базы, соответствующее нагрузке, ,
мм.
2.6.3. За результат испытания принимают среднеарифметическое значение всех параллельных определений.
2.6.4. Величину стандартного отклонения вычисляют, как указано в п.1.6.4.
2.6.5. Результаты испытания оформляют протоколом, как указано в п.1.6.5.
3. МЕТОД ОПРЕДЕЛЕНИЯ МОДУЛЯ УПРУГОСТИ ПРИ ИЗГИБЕ
3.1. Сущность метода
Сущность метода заключается в определении модуля упругости при изгибе как отношения приращения напряжения к соответствующему приращению относительной деформации, установленному настоящим стандартом.
3.2. Отбор образцов
3.2.1. Для испытания применяют образцы по ГОСТ 4648-71.
3.2.2. Количество образцов должно соответствовать п.1.2.2.
3.3. Аппаратура
Для проведения испытания применяют аппаратуру по ГОСТ 4648-71, при этом испытательная машина должна обеспечивать скорость сближения нагружающего наконечника и опор, соответствующую скорости деформации образца (1,0±0,5)% в минуту, а прибор для измерения деформации образца должен обеспечивать измерение с погрешностью не более 0,01 мм.
3.4. Подготовка к испытанию
3.4.1. Перед испытанием образцы кондиционируют в стандартной атмосфере по ГОСТ 12423-66 не менее 16 ч, если в нормативно-технической документации на конкретную продукцию нет других указаний.
3.4.2. Перед испытанием измеряют размеры образцов по ГОСТ 4648-71.
3.5. Проведение испытания
3.5.1. Испытания на изгиб проводят двумя методами:
А — при нагружении по трехточечной схеме (черт.2);
Б — при нагружении по четырехточечной схеме (черт.3).
Черт.2. Трехточечная схема нагружения при изгибе
Трехточечная схема нагружения при изгибе
Метод А
Черт.2
Черт.3. Четырехточечная схема нагружения при изгибе
Четырехточечная схема нагружения при изгибе
Метод Б
— нагрузка; — расстояние между опорами; — прогиб; — эпюра момента
Черт.3
При методе А испытуемый образец нагружают наконечником в середине расстояния между опорами.
При методе Б испытуемый образец нагружают парой наконечников, расположенных в средней трети расстояния между опорами.
Выбор метода предусматривается в нормативно-технической документации на конкретную продукцию.
Прогиб измеряют:
в методе А — в середине расстояния между опорами (черт.2). Величину прогиба оценивают по величине перемещения подвижной части нагружающего устройства;
в методе Б — в соответствии с черт.3.
3.5.2. Испытания проводят при температуре и относительной влажности, указанных в п.1.5.1.
3.5.3. Расстояние между опорами () устанавливают в зависимости от толщины образца () от 15 до 17 мм и измеряют с погрешностью не более 0,5%.
3.5.4. На образце, лежащем на опорах, осуществляют установку и настройку прибора для измерения прогиба.
3.5.5. Образцы нагружают при скорости сближения нагружающего наконечника и опор, обеспечивающей скорость деформации образца (1,0±0,5)% в минуту.
Нагружение осуществляют до величины относительной деформации крайних волокон 0,5%.
Относительную деформацию крайних волокон () вычисляют по формуле
для метода А
;
для метода Б
,
где — значение прогиба, мм;
— толщина образца, мм;
— расстояние между опорами, мм.
Если образцы разрушаются до достижения относительной деформации крайних волокон 0,5%, нагружение осуществляют до меньшей величины деформации, установленной в нормативно-технической документации на конкретную продукцию.
3.5.6. Графическую запись нагрузки и деформации проводят в соответствии с п.1.5.5 при значениях прогиба, соответствующих значениям относительной деформации крайних волокон, указанных в п.1.5.5.
3.6. Обработка результатов
3.6.1. По диаграмме определяют значения нагрузки и прогиба, соответствующие значениям относительной деформации крайних волокон 0,1 и 0,3%.
Допускаются меньшие значения относительной деформации при изгибе для образцов, предусмотренных в п.3.5.5.
3.6.2. Модуль упругости при изгибе () в МПа вычисляют по формуле
для метода А
;
для метода Б
,
где — расстояние между опорами, мм;
— нагрузка при величине относительной деформации крайних волокон 0,3%, Н;
— нагрузка при величине относительной деформации крайних волокон 0,1%, Н;
— ширина образца, мм;
— толщина образца, мм;
— прогиб образца, соответствующий относительной деформации крайних волокон 0,3%, мм;
— прогиб образца, соответствующий относительной деформации крайних волокон 0,1%, мм
.
3.6.3. За результат испытания принимают среднеарифметическое значение всех параллельных определений.
3.6.4. Величину стандартного отклонения вычисляют, как указано в п.1.6.4.
3.6.5. Результаты испытания оформляют протоколом, как указано в п.1.6.5.
ПРИЛОЖЕНИЕ (справочное). Термины, применяемые в настоящем стандарте, и их пояснения
ПРИЛОЖЕНИЕ
Справочное
Понятие | Обозначение | Единица измерения | Определение |
Модуль упругости | МПа | Мера жесткости материала, характеризующаяся сопротивлением развитию упругих деформаций. | |
при растяжении | МПа | Модуль упругости определяют как отношение приращения напряжения к соответствующему приращению деформации | |
при сжатии | МПа | ||
при изгибе | МПа | ||
2. Скорость деформации | мин | Изменение относительной деформации растяжения или сжатия в единицу времени. Скорость деформации при растяжении и сжатии определяют как отношение скорости перемещения подвижного элемента испытательной машины () к длине образца между кромками зажимов или сжимающими площадками. При изгибе вычисляют по формуле для метода А ; для метода Б , где — скорость относительной деформации крайних волокон образца, равная 0,01 мин; — расстояние между опорами, мм; — толщина образца, мм. |
ПРИЛОЖЕНИЕ. (Поправка).
Текст документа сверен по:
официальное издание
М.: ИПК Издательство стандартов, 2004
Источник