Модуль упругости при растяжении стали мпа
|
Источник
Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 10 января 2018;
проверки требуют 8 правок.
Модуль упругости — общее название нескольких физических величин, характеризующих способность твёрдого тела (материала, вещества) упруго деформироваться (то есть не постоянно) при приложении к нему силы. В области упругой деформации модуль упругости тела в общем случае зависит от напряжения и определяется производной (градиентом) зависимости напряжения от деформации, то есть тангенсом угла наклона начального линейного участка диаграммы напряжений-деформаций:
где:
В наиболее распространенном случае зависимость напряжения и деформации линейная (закон Гука):
.
Если напряжение измеряется в паскалях, то, поскольку деформация является безразмерной величиной, единицей измерения Е также будет паскаль. Альтернативным определением является определение, что модуль упругости — это напряжение, достаточное для того, чтобы вызвать увеличение длины образца в два раза. Такое определение не является точным для большинства материалов, потому что это значение намного больше чем предел текучести материала или значения, при котором удлинение становится нелинейным, однако оно может оказаться более интуитивным.
Разнообразие способов, которыми могут быть изменены напряжения и деформации, включая различные направления действия силы, позволяют определить множество типов модулей упругости. Здесь даны три основных модуля:
- Модуль Юнга (E) характеризует сопротивление материала растяжению/сжатию при упругой деформации, или свойство объекта деформироваться вдоль оси при воздействии силы вдоль этой оси; определяется как отношение напряжения к деформации сжатия (удлинения). Часто модуль Юнга называют просто модулем упругости.
- Модуль сдвига или модуль жесткости (G или ) характеризует способность материала сопротивляться изменению формы при сохранении его объёма; он определяется как отношение напряжения сдвига к деформации сдвига, определяемой как изменение прямого угла между плоскостями, по которым действуют касательные напряжения. Модуль сдвига является одной из составляющих явления вязкости.
- Модуль объёмной упругости или Модуль объёмного сжатия (K) характеризует способность объекта изменять свой объём под воздействием всестороннего нормального напряжения (объёмного напряжения), одинакового по всем направлениям (возникающего, например, при гидростатическом давлении). Он равен отношению величины объёмного напряжения к величине относительного объёмного сжатия. В отличие от двух предыдущих величин, модуль объёмной упругости невязкой жидкости отличен от нуля (для несжимаемой жидкости — бесконечен).
Существуют и другие модули упругости: коэффициент Пуассона, параметры Ламе.
Гомогенные и изотропные материалы (твердые), обладающие линейными упругими свойствами, полностью описываются двумя модулями упругости, представляющими собой пару любых модулей. Если дана пара модулей упругости, все другие модули могут быть получены по формулам, представленным в таблице ниже.
В невязких течениях не существует сдвигового напряжения, поэтому сдвиговый модуль всегда равен нулю. Это влечёт также и равенство нулю модуля Юнга.
Модули упругости (Е) для некоторых веществ:
Материал | Е, МПа | Е, кгс/см² |
---|---|---|
Алюминий | 70000 | 713 800 |
Вода | 2030 | 20300 |
Дерево | 10000 | 102 000 |
Кость | 30000 | 305 900 |
Медь | 100000 | 1 020 000 |
Резина | 5 | 50 |
Сталь | 200000 | 2 039 400 |
Стекло | 70000 | 713 800 |
См. также[править | править код]
- Модуль Юнга
- Модуль сдвига G
- Жёсткость
- Предел текучести
- Упругость
- Предел прочности
- Упругие волны
- Уравнение Гассмана
- en:Dynamic modulus
Ссылки[править | править код]
- Free database of engineering properties for over 63,000 materials
- Расчёт модуля упругости по ПНАЭ Г-7-002-86
- Иомдина Е. Н. Механические свойства тканей глаза человека. (недоступная ссылка)
Литература[править | править код]
- Модули упругости // Большая Советская энциклопедия (в 30 т.) / А. М. Прохоров (гл. ред.). — 3-е изд. — М.: Сов. энциклопедия, 1974. — Т. XVI. — С. 406. — 616 с.
- G. Mavko, T. Mukerji, J. Dvorkin. The Rock Physics Handbook. Cambridge University Press 2003 (paperback). ISBN 0-521-54344-4
Источник
Cодержание:
1. Модули упругости основных строительных материалов.
2. Начальные модули упругости бетона.
3. Нормативные сопротивления бетона.
4. Расчетные сопротивления бетона.
5. Расчетные сопротивления бетона растяжению.
6. Нормативные сопротивления арматуры.
7. Расчетные сопротивления арматуры.
8. Нормативные и расчетные сопротивления стали.
9. Заменяемые марки стали.
10. Список использованной литературы.
Таблица 1. Модули упругости для основных строительных материалов.
(вернуться к списку таблиц)
Материал | Модуль упругости Е, МПа |
Чугун белый, серый | (1,15…1,60) • 105 |
» ковкий | 1,55 • 105 |
Сталь углеродистая | (2,0…2,1) • 105 |
» легированная | (2,1…2,2) • 105 |
Медь прокатная | 1,1 • 105 |
» холоднотянутая | 1,3 • 103 |
» литая | 0,84 • 105 |
Бронза фосфористая катанная | 1,15 • 105 |
Бронза марганцевая катанная | 1,1 • 105 |
Бронза алюминиевая литая | 1,05 • 105 |
Латунь холоднотянутая | (0,91…0,99) • 105 |
Латунь корабельная катанная | 1,0 • 105 |
Алюминий катанный | 0,69 • 105 |
Проволока алюминиевая тянутая | 0,7 • 105 |
Дюралюминий катанный | 0,71 • 105 |
Цинк катанный | 0,84 • 105 |
Свинец | 0,17 • 105 |
Лед | 0,1 • 105 |
Стекло | 0,56 • 105 |
Гранит | 0,49 • 105 |
Известь | 0,42 • 105 |
Мрамор | 0,56 • 105 |
Песчаник | 0,18 • 105 |
Каменная кладка из гранита | (0,09…0,1) • 105 |
» из кирпича | (0,027…0,030) • 105 |
Бетон (см. таблицу 2) | |
Древесина вдоль волокон | (0,1…0,12) • 105 |
» поперек волокон | (0,005…0,01) • 105 |
Каучук | 0,00008 • 105 |
Текстолит | (0,06…0,1) • 105 |
Гетинакс | (0,1…0,17) • 105 |
Бакелит | (2…3) • 103 |
Целлулоид | (14,3…27,5) • 102 |
Примечание: 1. Для определения модуля упругости в кгс/см2 табличное значение умножается на 10 (более точно на 10.1937)
2. Значения модулей упругости Е для металлов, древесины, каменной кладки следует уточнять по соответствующим СНиПам.
Нормативные данные для расчетов железобетонных конструкций:
(вернуться к списку таблиц)
Таблица 2. Начальные модули упругости бетона (согласно СП 52-101-2003)
(вернуться к списку таблиц)
Таблица 2.1. Начальные модули упругости бетона согласно СНиП 2.03.01-84*(1996)
Примечания: 1. Над чертой указаны значения в МПа, под чертой — в кгс/см2.
2. Для легкого, ячеистого и поризованного бетонов при промежуточных значениях плотности бетона начальные модули упругости принимают по линейной интерполяции.
3. Для ячеистого бетона неавтоклавного твердения значения Еb принимают как для бетона автоклавного твердения с умножением на коэффициент 0,8.
4. Для напрягающего бетона значения Еb принимают как для тяжелого бетона с умножением на коэффициент a = 0,56 + 0,006В.
5. Приведенные в скобках марки бетона не точно соответствуют указанным классам бетона.
Таблица 3. Нормативные значения сопротивления бетона (согласно СП 52-101-2003)
(вернуться к списку таблиц)
Таблица 4. Расчетные значения сопротивления бетона (согласно СП 52-101-2003)
(вернуться к списку таблиц)
Таблица 4.1. Расчетные значения сопротивления бетона сжатию согласно СНиП 2.03.01-84*(1996)
Таблица 5. Расчетные значения сопротивления бетона растяжению (согласно СП 52-101-2003)
(вернуться к списку таблиц)
Таблица 6. Нормативные сопротивления для арматуры (согласно СП 52-101-2003)
(вернуться к списку таблиц)
Таблица 6.1 Нормативные сопротивления для арматуры класса А согласно СНиП 2.03.01-84* (1996)
Таблица 6.2. Нормативные сопротивления для арматуры классов В и К согласно СНиП 2.03.01-84* (1996)
Таблица 7. Расчетные сопротивления для арматуры(согласно СП 52-101-2003)
(вернуться к списку таблиц)
Таблица 7.1. Расчетные сопротивления для арматуры класса А согласно СНиП 2.03.01-84* (1996)
Таблица 7.2. Расчетные сопротивления для арматуры классов В и К согласно СНиП 2.03.01-84* (1996)
Нормативные данные для расчетов металлических конструкций:
Таблица 8. Нормативные и расчетные сопротивления при растяжении, сжатии и изгибе (согласно СНиП II-23-81 (1990))
(вернуться к списку таблиц)
листового, широкополосного универсального и фасонного проката по ГОСТ 27772-88 для стальных конструкций зданий и сооружений
Примечания:
1. За толщину фасонного проката следует принимать толщину полки (минимальная его толщина 4 мм).
2. За нормативное сопротивление приняты нормативные значения предела текучести и временного сопротивления по ГОСТ 27772-88.
3. Значения расчетных сопротивлений получены делением нормативных сопротивлений на коэффициенты надежности по материалу, с округлением до 5 МПа (50 кгс/см2).
Таблица 9. Марки стали, заменяемые сталями по ГОСТ 27772-88 (согласно СНиП II-23-81 (1990))
(вернуться к списку таблиц)
Примечания: 1. Стали С345 и С375 категорий 1, 2, 3, 4 по ГОСТ 27772-88 заменяют стали категорий соответственно 6, 7 и 9, 12, 13 и 15 по ГОСТ 19281-73* и ГОСТ 19282-73*.
2. Стали С345К, С390, С390К, С440, С590, С590К по ГОСТ 27772-88 заменяют соответствующие марки стали категорий 1-15 по ГОСТ 19281-73* и ГОСТ 19282-73*, указанные в настоящей таблице.
3. Замена сталей по ГОСТ 27772-88 сталями, поставляемыми по другим государственным общесоюзным стандартам и техническим условиям, не предусмотрена.
Расчетные сопротивления для стали, используемой для производства профилированных листов, приводятся отдельно.
Список использованной литературы:
1. СНиП 2.03.01-84 «Бетонные и железобетонные конструкции»
2. СП 52-101-2003
3. СНиП II-23-81 (1990) «Стальные конструкции»
4. Александров А.В. Сопротивление материалов. Москва: Высшая школа. — 2003.
5. Фесик С.П. Справочник по сопротивлению материалов. Киев: Будiвельник. — 1982.
21-11-2013: Badyoruy
Отличная подборка
03-10-2015: мухаммад
спасибо вам всеесть то что надо
26-04-2016: Василий
Почему значения начального модуля упругости бетона при сжатии и растяжении умножаются на 10^-3? Должна ведь быть положительная степень. Выходит, что модуль упругости для бетона В25 составляет 30 кПа, но он равен 30 ГПа!
26-04-2016: Доктор Лом
Потому, что при составлении разного рода таблиц нет необходимости писать в каждой ячейке по 3 дополнительных нуля, достаточно просто указать, что табличные значения занижены в 1000 раз. Соответственно, чтобы определить расчетное значение, нужно табличное значение не разделить, а умножить на 1000. Такая практика используется при составлении многих нормативных документов (именно в таком виде там даются таблицы) и я не вижу смысла от нее отказываться.
26-04-2016: Владимир
Тогда получается, что модуль упругости арматуры необходимо разделить на 10 в пятой степени. Или я что-то не понимаю? В рекомендациях по расчету и конструированию сплошных плит перекрытий крупнопанельных зданий 1989г. и модуль бетона и модуль арматуры умножают на 10 в третьей и на 10 в пятой степени соответственно
26-04-2016: Доктор Лом
Попробую объяснить еще раз. Посмотрите внимательно на таблицу 1. Если бы в заглавной строке вместо «Модуль упругости Е, МПа» я бы прописал «Модуль упругости Е, МПа•10^-5», то это избавило бы меня от необходимости в каждой строке к значению модуля упругости добавлять «•10^5». Вот только значения модулей упругости для различных материалов различаются в сотни и даже тысячи раз, потому такая форма записи для таблицы 1 не совсем удобна. В таблицах 2 и 2.1 значения начальных модулей упругости различаются незначительно и потому использовалась такая форма записи. Более того, если вы откроете указанные нормативные документы, то лично в этом убедитесь. Традиция эта сформировалась в ту далекую пору, когда ПК и в помине не было и наборщик вручную набирал литеры в пресс для книгопечатания, так что в данном случае все вопросы не ко мне, а к Гутенбергу и его последователям.
05-08-2016: Александр
Возможно, модуль упругости легче бы запоминался и воспринимался в ГПа, ведь тогда у стали примерно 200 единиц, а у древесины 10…12.
05-08-2016: Доктор Лом
Вполне возможно, вот только и ГигаПаскали — не самая наглядная и простая для восприятия размерность.
Источник
Перед тем, как использовать какой-либо материал в строительных работах, следует ознакомиться с его физическими характеристиками для того, чтобы знать как с ним обращаться, какое механическое воздействие будет для него приемлемым, и так далее. Одной из важных характеристик, на которые очень часто обращают внимание, является модуль упругости.
Ниже рассмотрим само понятие, а также эту величину по отношению к одному из самых популярных в строительстве и ремонтных работах материалу — стали. Также будут рассмотрены эти показатели у других материалов, ради примера.
Модуль упругости — что это?
Модулем упругости какого-либо материала называют совокупность физических величин, которые характеризуют способность какого-либо твёрдого тела упруго деформироваться в условиях приложения к нему силы. Выражается она буквой Е. Так она будет упомянута во всех таблицах, которые будут идти далее в статье.
Невозможно утверждать, что существует только один способ выявления значения упругости. Различные подходы к изучению этой величины привели к тому, что существует сразу несколько разных подходов. Ниже будут приведены три основных способа расчёта показателей этой характеристики для разных материалов:
- Модуль Юнга (Е) описывает сопротивление материала любому растяжению или сжатию при упругой деформации. Определяется вариант Юнга отношением напряжения к деформации сжатия. Обычно именно его называют просто модулем упругости.
- Модуль сдвига (G), называемый также модулем жёсткости. Этот способ выявляет способность материала оказывать сопротивление любому изменению формы, но в условиях сохранения им своей нормы. Модуль сдвига выражается отношением напряжения сдвига к деформации сдвига, которая определяется в виде изменения прямого угла между имеющимися плоскостями, подвергающимися воздействию касательных напряжений. Модуль сдвига, кстати, является одной из составляющих такого явления, как вязкость.
- Модуль объёмной упругости (К), которые также именуется модулем объёмного сжатия. Данный вариант обозначает способность объекта из какого-либо материала изменять свой объём в случае воздействия на него всестороннего нормального напряжения, являющимся одинаковым по всем своим направлениям. Выражается этот вариант отношением величины объёмного напряжения к величине относительного объёмного сжатия.
- Существуют также и другие показатели упругости, которые измеряются в других величинах и выражаются другими отношениями. Другими ещё очень известными и популярными вариантами показателей упругости являются параметры Ламе или же коэффициент Пуассона.
Таблица показателей упругости материалов
Перед тем, как перейти непосредственно к этой характеристике стали, рассмотрим для начала, в качестве примера и дополнительной информации, таблицу, содержащую данные об этой величине по отношению к другим материалам. Данные измеряются в МПа.
Модуль упругости различных материалов
Как можно заметить из представленной выше таблицы, это значение является разным для разных материалов, к тому же показателя разнятся, если учитывать тот или иной вариант вычисления этого показателя. Каждый волен выбирать именно тот вариант изучения показателей, который больше подойдёт ему. Предпочтительнее, возможно, считать модуль Юнга, так как он чаще применяется именно для характеристики того или иного материала в этом отношении.
После того как мы кратко ознакомились с данными этой характеристики других материалов, перейдём непосредственно к характеристике отдельно стали.
Для начала обратимся к сухим цифрам и выведем различные показатели этой характеристики для разных видов сталей и стальных конструкций:
- Модуль упругости (Е) для литья, горячекатанной арматуры из сталей марок, именуемых Ст.3 и Ст. 5 равняется 2,1*106 кг/см^2.
- Для таких сталей как 25Г2С и 30ХГ2С это значение равно 2*106 кг/см^2.
- Для проволоки периодического профиля и холоднотянутой круглой проволоки, существует такое значение упругости, равняющееся 1,8*106 кг/см^2. Для холодно-сплющенной арматуры показатели аналогичны.
- Для прядей и пучков высокопрочной проволоки значение равняется 2·10 6 кГ/см^2
- Для стальных спиральных канатов и канатов с металлическим сердечником значение равняется 1,5·10 4 кГ/см^2, в то время как для тросов с сердечником органическим это значение не превышает1,3·10 6 кГ/см^2 .
- Модуль сдвига (G) для прокатной стали равен 8,4·10 6 кГ/см^2 .
- И напоследок коэффициент Пуассона для стали равен значению 0,3
Это общие данные, приведённые для видов стали и стальных изделий. Каждая величина была высчитано согласно всем физическим правилам и с учётом всех имеющихся отношений, которые используются для выведения величин этой характеристики.
Ниже будет приведена вся общая информация об этой характеристике стали. Значения будут даваться как по модулю Юнга, так и по модулю сдвига, как в одних единицах измерения (МПа), так и в других (кг/см2, ньютон*м2).
Сталь и несколько разных её марок
Материал | Показатели модуля упругости (Е, G; Н*м2, кг/см^2, МПа) |
Сталь | 20,6*10^10 ньютон*метр^2 |
Сталь углеродистая | Е=(2,0…2,1)*10^5 МПа; G=(8,0…8,1)*10^4 МПа |
Сталь 45 | Е=2,0*10^5 МПа; G=0,8*10^5 МПа |
Сталь 3 | Е=2,1*10^5 МПа; G=0,8*10^5 МПа |
Сталь легированная | Е=(2,1…2,2)*10^5 МПа; G=(8,0…8,1)*10^4 МПа |
Значения показателей упругости стали разнятся, так как существуют сразу несколько модулей, которые исчисляются и высчитываются по-разному. Можно заметить тот факт, что в принципе сильно показатели не разнятся, что свидетельствует в пользу разных исследований упругости различных материалов. Но сильно углубляться во все вычисления, формулы и значения не стоит, так как достаточно выбрать определённое значение упругости, чтобы уже в дальнейшем ориентироваться на него.
Кстати, если не выражать все значения числовыми отношениями, а взять сразу и посчитать полностью, то эта характеристика стали будет равна: Е=200000 МПа или Е=2 039 000 кг/см^2.
Данная информация поможет разобраться с самим понятием модуля упругости, а также ознакомиться с основными значения данной характеристики для стали, стальных изделий, а также для нескольких других материалов.
Следует помнить, что показатели модуля упругости разные для различных сплавов стали и для различных стальных конструкций, которые содержат в своём составе и другие соединения. Но даже в таких условиях, можно заметить тот факт, что различаются показатели ненамного. Величина модуля упругости стали практически зависит от структуры. а также от содержания углерода. Способ горячей или холодной обработки стали также не может сильно повлиять на этот показатель.
- Автор: Николай Иванович Матвеев
- Распечатать
Оцените статью:
Источник