Модуль упругости на диаграмме растяжения

Модуль упругости на диаграмме растяжения thumbnail

Испытание на растяжение

Испытание на растяжение производится на образцах двух типов:
цилиндрических и плоских.

Модуль упругости на диаграмме растяжения

Модуль упругости на диаграмме растяжения

Цилиндрические образцы могут быть нормальные (с расчетной
длиной lрасч=10d) и
укороченные (с lрасч=5d).
Для плоских образцов при вычислении расчетной длины образца используется
диаметр круга, равновеликого поперечному сечению рабочей части образца.

В процессе растяжения, реализуемого на специальных
испытательных машинах, автоматически записывается диаграмма испытания в
координатах сила – удлинение (рабочая, или индикаторная диаграмма). Для
малоуглеродистой стали эта диаграмма выглядит следующим образом:

Модуль упругости на диаграмме растяжения

Рассмотрим основные участки диаграммы.

OB – участок упругости.

После нагружения в пределах этого участка образец
возвращается в исходное состояние. Такая деформация, полностью исчезающая после
разгрузки, называется упругой. Механизм упругой деформации – изменение
расстояния между атомами.

BC – участок общей текучести (площадка текучести).

На этом участке на поверхности образца появляется сетка линий,
направленных под углом приблизительно 45° к оси растяжения – линии
Чернова-Людерса. Эти линии свидетельствуют о появлении нового механизма
деформации, заключающегося в сдвиге атомных слоев друг относительно друга.
Из-за этих сдвигов после разгрузки образец не возвращается в исходное
состояние, приобретая остаточную, или пластическую, деформацию. Пластическая
деформация сопровождается нагревом образца, изменением его электропроводности и
магнитных свойств, а также акустическим излучением.

CD – участок упрочнения.

Пластическая деформация изменяет внутреннюю структуру
материала, в результате чего образец снова проявляет сопротивление
деформированию, и растягивающая сила повышается.

DK – участок местной текучести.

Точка D диаграммы соответствует появлению на образце
локального сужения – шейки. Дальнейшая деформация локализуется в этой области,
и за счет уменьшения площади поперечного сечения необходимая для растяжения
сила снижается. Точка K соответствует разделению образца на части. Разрыв
происходит в самом тонком месте шейки.

Чтобы исключить влияние геометрических размеров образца,
рабочая диаграмма перестраивается в условную (в координатах напряжение –
деформация:

Модуль упругости на диаграмме растяжения

Полученная диаграмма называется условной потому, что при
вычислении напряжения и деформации сила и удлинение относятся не к
действительным, а к начальным значениям соответственно площади поперечного
сечения и длины образца.

На условной диаграмме выделяют следующие характерные точки:

sпц
– предел пропорциональности: максимальное напряжение, до которого справедлив
закон Гука (т.е. наблюдается прямая пропорциональная зависимость между
напряжением и деформацией);


– предел упругости: максимальное напряжение, до которого в материале не
возникает пластических деформаций;


– предел текучести: напряжение, при котором наблюдается рост деформации при
постоянном напряжении;


– предел прочности (или временное сопротивление разрыву): максимальное
напряжение, которое может выдержать образец без разрушения.

В момент разрыва истинное напряжение, отнесенное к
действительной площади сечения, существенно выше предела прочности.

За пределами участка упругости в любой точке диаграммы
полная деформация εполн состоит из упругой εупр
и пластической εпл составляющих:

Модуль упругости на диаграмме растяжения

Если прекратить нагружение в точке G и снять нагрузку, то
разгрузка произойдет по закону Гука, т.е. по линии, параллельной участку
упругости (отрезок GO1). Таким образом, отрезок OO1
определяет величину остаточной деформации образца, а отрезок O1O2 – величину
упругой деформации на момент разрыва.

Механические характеристики материалов

Механические характеристики материалов, определяемые при
растяжении, можно разделить на три группы.

1. Характеристики упругих свойств.

Модуль упругости первого рода (модуль Юнга).

Модуль Юнга характеризует жесткость материала (физический
смысл) и равен тангенсу угла наклона участка упругости OB условной диаграммы к
оси абсцисс E = tga
(геометрический смысл). Для основных марок стали E = 2·105 МПа, для
меди E = 1,2·105 МПа, для алюминия E = 0,7·105 МПа.

Коэффициент Пуассона.

Удлинению стержня при растяжении в продольном направлении
сопутствует сжатие в поперечном направлении:

Модуль упругости на диаграмме растяжения

При этом относительная линейная деформация определяется как

,

а относительная поперечная
деформация –

.

За коэффициент Пуассона принимают модуль отношения
поперечной деформации к продольной:

.

Коэффициент Пуассона изменяется от 0 (для пробки) до 0,5
(для резины). Для основных марок стали .

Иногда к характеристикам упругости относят также предел
пропорциональности sпц и
предел упругости sу.

2. Характеристики прочности:

– предел текучести sт,

– предел прочности sв.

Если диаграмма растяжения не имеет площадки текучести, то
определяют условный предел текучести s0,2
– напряжение, соответствующее величине остаточной деформации 0,2%.

Модуль упругости на диаграмме растяжения

Для некоторых материалов величину условного предела
текучести определяют при остаточной деформации 0,5% (s0,5). Используется также понятие условного предела
упругости s0,001 или s0,005 – напряжение,
соответствующее величине остаточной деформации 0,001 или 0,005%.

3. Характеристики пластичности.

Относительное остаточное удлинение при разрыве:

,

где l0 – начальная
длина образца (до испытания), – конечная длина образца
(после разрушения).

Относительное остаточное удлинение при разрыве можно
определить непосредственно по диаграмме растяжения, проведя из точки разрыва
линию, параллельную участку упругости, до пересечения с осью абсцисс (отрезок
OL):

Модуль упругости на диаграмме растяжения

Относительное остаточное сужение при разрыве:

,

где A0 и Aш –
площадь поперечного сечения рабочей части соответственно до и после испытания
(в месте образования шейки).

Испытание на сжатие

При испытании на сжатие металлов используются цилиндрические
образцы с отношением высоты к диаметру 1…3:

Модуль упругости на диаграмме растяжения

Для строительных материалов используются кубические образцы
с длиной грани 100 или 150 мм.

Модуль упругости на диаграмме растяжения

Испытание на сжатие используется редко в силу того, что
между плитами испытательной машины и торцевыми поверхностями образца возникает
сила трения, нарушающая одноосное напряженно-деформированное состояние, в
результате чего определяемые характеристики прочности не могут использоваться в
расчетах на прочность. Для устранения силы трения используются следующие
приемы:

  • нанесение парафинового слоя на
    торцевые поверхности образца;
  • использование плиты
    специальной конструкции.

Модуль упругости на диаграмме растяжения

Угол конуса рассчитывают таким, чтобы расклинивающая сила
компенсировала силу трения.

Пластичные и хрупкие материалы

По величине относительного остаточного удлинения при разрыве
принято различать:

пластичные материалы – способные получать без
разрушения большие остаточные деформации (d > 10%);

хрупкие материалы – способные разрушаться без
образования заметных остаточных деформаций (d < 5%).

При испытаниях на растяжение:

Модуль упругости на диаграмме растяжения

1 –
пластичный материал;

2 –
хрупкий материал.

Пластичные и хрупкие материалы отличаются также по характеру
разрушения. Пластичные материалы перед разрывом образуют заметную шейку, а
разрушение происходит под углом примерно 45° к оси растяжения (последнее хорошо
видно на плоских образцах). Хрупкие материалы разрушаются по плоскости,
нормальной оси растяжения, практически без образования шейки.

Сравним результаты испытаний на растяжение и сжатие для
пластичных материалов:

1 –
растяжение;

2 –
сжатие.

Считается, что для пластичных материалов пределы текучести
при растяжении и сжатии равны друг другу: sтр»sтс.

Другой особенностью испытания на сжатие пластичных
материалов является то, что их не удается довести до разрушения, т.к. они
сплющиваются в тонкий диск. По этим причинам пластичные материалы на сжатие
практически не испытывают.

Для хрупких материалов диаграммы испытаний на растяжение и
сжатие подобны друг другу:

1 –
растяжение;

2 –
сжатие.

Хрупкие материалы при испытании на сжатие разрушаются, при
этом оказывается, что предел прочности при растяжении меньше, чем при сжатии: sвр<sвс.

Существует также группа материалов, которые способны при
растяжении воспринимать большие нагрузки, чем при сжатии. Это в основном
волокнистые материалы, а из металлов – магний.

Для волокнистых материалов характерна анизотропия
механических свойств. Например, при испытаниях на сжатие дерева:

1 –
дерево вдоль волокон;

2 –
дерево поперек волокон.

Наклеп. Эффект Баушингера. Гистерезис

Если нагрузить образец до точки G, а затем произвести
разгрузку, то при повторном нагружении диаграмма растяжения пойдет по пути O1GK:

Модуль упругости на диаграмме растяжения

Явление повышения прочностных свойств материала (sпц, sу и sт)
и снижения пластических (d) в
результате предварительного нагружения выше предела текучести называется
наклепом (или деформационным упрочнением). Если после такого нагружения
выдержать образец в течение 100 и более часов, то при этом повышается и предел
прочности. Это явление называется естественным старением.

Наклеп может быть частично или полностью устранен
термической обработкой.

При сжатии нагружение выше предела текучести, так же, как и
при растяжении, вызывает явление наклепа. Однако наклеп, вызванный растяжением,
снижает sпц и sт при сжатии. Это явление
называется эффектом Баушингера.

Если рассмотреть диаграмму растяжения при большом разрешении
по оси деформаций, то станет заметно, что линии разгрузки GO1 и
нагрузки O1G образуют петлю – петлю гистерезиса:

Модуль упругости на диаграмме растяжения

Явление гистерезиса можно определить как необратимую потерю
энергии деформации в результате несовпадения кривой нагружения с кривой
разгрузки. При свободных колебаниях гистерезис является причиной постепенного
затухания колебательного процесса.

При анализе диаграмм растяжения и сжатия явлением
гистерезиса пренебрегают.

Источник

Диаграмма растяжения показывает зависимость удлинения образца от продольной растягивающей силы.

Ее построение является промежуточным этапом в процессе определения механических характеристик материалов (в основном металлов).

Диаграмму растяжения материалов получают экспериментально, при испытаниях образцов на растяжение.

Для этого образцы стандартных размеров закрепляют в специальных испытательных машинах (например УММ-20 или МИ-40КУ) и растягивают до их полного разрушения (разрыва). При этом специальные приборы фиксируют зависимость абсолютного удлинения образца от прикладываемой к нему продольной растягивающей нагрузки и самописец вычерчивает кривую характерную для данного материала.

На рис. 1 показана диаграмма для малоуглеродистой стали. Она построена в системе координат F-Δl, где:
F — продольная растягивающая сила, [Н];
Δl — абсолютное удлинение рабочей части образца, [мм]

Диаграмма растяжения

Рис. 1 Диаграмма растяжения стального образца

Как видно из рисунка, диаграмма имеет четыре характерных участка:
I — участок пропорциональности;
II — участок текучести;
III — участок самоупрочнения;
IV — участок разрушения.

Построение диаграммы

Рассмотрим подробнее процесс построения диаграммы.

В самом начале испытания на растяжение, растягивающая сила F, а следовательно, и деформация Δl стержня равны нулю, поэтому диаграмма начинается из точки пересечения соответствующих осей (точка О).

На участке I до точки A диаграмма вычерчивается в виде прямой линии. Это говорит о том, что на данном отрезке диаграммы, деформации стержня Δl растут пропорционально увеличивающейся нагрузке F.

После прохождения точки А диаграмма резко меняет свое направление и на участке II начинающемся в точке B линия какое-то время идет практически параллельно оси Δl, то есть деформации стержня увеличиваются при практически одном и том же значении нагрузки.

В этот момент в металле образца начинают происходить необратимые изменения. Перестраивается кристаллическая решетка металла. При этом наблюдается эффект его самоупрочнения.

После повышения прочности материала образца, диаграмма снова «идет вверх» (участок III) и в точке D растягивающее усилие достигает максимального значения. В этот момент в рабочей части испытуемого образца появляется локальное утоньшение (рис. 2), так называемая «шейка», вызванное нарушениями структуры материала (образованием пустот, микротрещин и т.д.).

Стальной образец с образовавшейся &quot;шейкой&quot;

Рис. 2 Стальной образец с «шейкой»

Вследствие утоньшения, и следовательно, уменьшения площади поперечного сечения образца, растягиваещее усилие необходимое для его растяжения уменьшается, и кривая диаграммы «идет вниз».

В точке E происходит разрыв образца. Разрывается образец конечно же в сечении, где была образована «шейка»

Работа затраченная на разрыв образца W равна площади фигуры образованной диаграммой. Ее приближенно можно вычислить по формуле:

W=0,8Fmax∙Δlmax

По диаграмме также можно определить величину упругих и остаточных деформаций в любой момент процесса испытания.

Для получения непосредственно механических характеристик металла образца диаграмму растяжения необходимо преобразовать в диаграмму напряжений.

Предел пропорциональности >
Примеры решения задач >
Лабораторные работы >

Источник

Физика
Учебник для 10 класса

   
   

  • Чтобы, строить надежные здания, мосты, станки, разнообразные машины, необходимо знать механические свойства используемых материалов: дерева, бетона, стали, железобетона, пластмасс и т. п. Конструктор должен заранее знать поведение материалов при значительных деформациях, условия, при которых материалы начнут разрушаться. Сведения о механических свойствах различных материалов получают в основном экспериментально.
  • В этом параграфе мы рассмотрим механические свойства твердых тел на примере исследования деформации растяжения, так как обычно испытание материалов проводят именно на растяжение и сжатие. Для этого нам необходимо ввести еще одно важное понятие.

Напряжение

В любом сечении деформируемого тела действуют силы упругости, препятствующие разрыву тела на части (рис. 9.15). Деформированное тело находится в напряженном состоянии, которое характеризуется особой величиной, называемой механическим напряжением или короче — напряжением.

Модуль упругости на диаграмме растяжения

Рис. 9.15

Напряжение — величина, равная отношению модуля силы упругости к площади поперечного сечения(1) тела:

Модуль упругости на диаграмме растяжения

где σ — напряжение, Fynp — модуль силы упругости и S — площадь поперечного сечения.

В СИ за единицу напряжения принимается паскаль (Па):

1 Па = 1 Н/м2.

Заметим, что в формуле (9.3.1) иногда удобно модуль силы упругости заменить на модуль F внешней деформирующей силы, уравновешивающей силу упругости.

Диаграмма растяжения

Для исследования деформации растяжения стержень из исследуемого материала при помощи специальных устройств (например, с помощью гидравлического пресса) подвергают растяжению и измеряют удлинение образца и возникающее в нем напряжение. По результатам опытов вычерчивают график зависимости напряжения с от относительного удлинения е. Этот график называют диаграммой растяжения (рис. 9.16).

Модуль упругости на диаграмме растяжения

Рис. 9.16

Закон Гука

Многочисленные опыты показывают, что при малых деформациях напряжение а прямо пропорционально относительному удлинению ε (участок ОА диаграммы). Эта зависимость называется законом Гука. Его можно записать так:

Модуль упругости на диаграмме растяжения

Относительное удлинение в формуле (9.3.2) взято по модулю, так как закон Гука справедлив как для деформации растяжения, так и для деформации сжатия, когда ε < 0 (рис. 9.17).

Модуль упругости на диаграмме растяжения

Рис. 9.17

Коэффициент пропорциональности Е, входящий в закон Гука, называется модулем упругости или модулем Юнга.

Если относительное удлинение ε = 1, то σ = Е. Следовательно, модуль Юнга равен напряжению, возникающему в стержне при его относительном удлинении, равном единице. Так как ε = Модуль упругости на диаграмме растяжения, то при ε = 1 Δl = l0. А это значит, что модуль Юнга равен напряжению, возникающему в стержне при удвоении длины образца. Практически любое тело (кроме резины) при упругой деформации не может удвоить свою длину: значительно раньше оно разорвется. Поэтому модуль Юнга определяют по формуле (9.3.2), измеряя напряжение о и относительное удлинение е при малых деформациях.

Из формулы (9.3.2) видно, что единица модуля Юнга в СИ такая же, как и единица напряжения, т. е. паскаль.

Чем больше модуль упругости Е, тем меньше деформируется стержень при прочих равных условиях (l0, S, F). Таким образом, модуль Юнга характеризует сопротивляемость материала упругой деформации растяжения или сжатия.

Закон Гука, записанный в форме (9.3.2), легко привести к виду (9.3.1).

Действительно, подставив в (9.3.2) Модуль упругости на диаграмме растяжения получим:

Модуль упругости на диаграмме растяжения

Откуда

Модуль упругости на диаграмме растяжения

Обозначим

Модуль упругости на диаграмме растяжения

тогда

Модуль упругости на диаграмме растяжения

Таким образом, согласно (9.3.4) жесткость k стержня прямо пропорциональна произведению модуля Юнга на площадь поперечного сечения стержня и обратно пропорциональна его длине.

Пределы пропорциональности и упругости

Эксперимент показывает, что малые деформации полностью исчезают после снятия нагрузки (упругая деформация). При малых деформациях выполняется закон Гука. Максимальное напряжение, при котором еще выполняется закон Гука, называется пределом пропорциональности.

Если продолжать увеличивать нагрузку при растяжении и превзойти предел пропорциональности, то деформация становится нелинейной (линия ABCDEK, рис. 9.16). Тем не менее при небольших нелинейных деформациях после снятия нагрузки форма и размеры тела практически восстанавливаются (участок АВ графика). Максимальное напряжение, при котором еще не возникают заметные остаточные деформации, называется пределом упругости σуп. Он соответствует точке В графика. Предел упругости превышает предел пропорциональности не более чем на 0,33%. В большинстве случаев их можно считать равными.

Предел и запас прочности

Если внешняя нагрузка такова, что в теле возникают напряжения, превышающие предел упругости, то характер деформации меняется (участок BCDEK графика, рис. 9.16). После снятия нагрузки образец не принимает прежние размеры, а остается деформированным, хотя и с меньшим удлинением, чем при нагрузке (пластическая деформация).

За пределом упругости при некотором значении напряжения, соответствующем точке С графика (см. рис. 9.16), удлинение возрастает практически без увеличения нагрузки (участок CD диаграммы почти горизонтален). Это явление называется текучестью материала.

При дальнейшем увеличении нагрузки напряжение повышается (от точки D), после чего в наименее прочной части образца появляется сужение («шейка»). Из-за уменьшения площади сечения (точка Е) для дальнейшего удлинения нужно меньшее напряжение, но в конце концов наступает разрушение образца (точка К). Наибольшее напряжение, которое выдерживает образец без разрушения, называется пределом прочности. Обозначим его σпч (оно соответствует точке Е диаграммы). Его значение сильно зависит от природы материала и его обработки.

Чтобы свести к минимуму возможность разрушения сооружения, инженер должен при расчетах допускать в его элементах такие напряжения, которые будут составлять лишь часть предела прочности материала. Их называют допустимыми напряжениями. Число, показывающее, во сколько раз предел прочности больше допустимого напряжения, называют коэффициентом запаса прочности.

Обозначив запас прочности через n, получим:

Модуль упругости на диаграмме растяжения

Запас прочности выбирается в зависимости от многих причин: качества материала, характера нагрузки (статическая или изменяющаяся со временем), степени опасности, возникающей при разрушении, и т. д. На практике запас прочности колеблется от 1,7 до 10. Выбрав правильно запас прочности, инженер может определить допустимое в конструкции напряжение.

Закон Гука для деформации сдвига

При деформации сдвига сила направлена по касательной к плоскости верхней грани тела (см. рис. 9.8J. Эта сила уравновешивается возникающей силой упругости: Модуль упругости на диаграмме растяжения = —Модуль упругости на диаграмме растяженияупр Отношение модуля силы упругости, возникающей при деформации сдвига, к площади верхней грани называется касательным напряжением и обозначается буквой τ:

Модуль упругости на диаграмме растяжения

Опыт показывает, что касательное напряжение х при малых деформациях прямо пропорционально углу сдвига а. Это и есть закон Гука для деформации сдвига. Он записывается так:

Модуль упругости на диаграмме растяжения

Коэффициент у называется модулем сдвига. Он численно равен касательному напряжению при угле сдвига в 1 рад. Очевидно, что для абсолютного большинства реальных материалов такое напряжение нельзя приложить к реальным телам, не разрушая их.

В СИ единицей модуля сдвига является 1 Па/рад.

Наиболее полную информацию об упругих свойствах материалов дает диаграмма растяжения, получаемая экспериментально. При малых деформациях напряжение в твердом теле прямо пропорционально относительной деформации (закон Гуна).

(1) Сечение тела производится плоскостью, перпендикулярной направлению силы упругости. При этом предполагается, что деформация тела во всех участках сечения одинакова.

Источник