Модуль упругости бетона на растяжение и сжатие
При проектировании строительной конструкции стоит задача спрогнозировать ее поведение при заданных нагрузках и внешних условиях. Бетон воспринимает значительные усилия, поэтому важный этап расчета — определение деформаций и прогибов при статическом нагружении.
В расчете железобетонных конструкций по второй группе предельных состояний применяют физическую величину, называемую модулем упругости бетона, или модулем Юнга. Он характеризует свойства твердого вещества в зоне упругих деформаций.
Понятие модуля упругости
Все твердые тела при возрастании нагрузки подвержены деформациям. Причем сначала изменения носят обратимый характер, а их зависимость от приложенных усилий — линейная.
Тело восстанавливает размеры и форму после прекращения внешнего воздействия. Здесь применяется закон Гука, где абсолютное сжатие или удлинение прямо пропорционально приложенной силе с коэффициентом пропорциональности, равным модулю упругости.
С ростом нагрузки тело вступает в фазу необратимых изменений, где деформации носят неупругий пластичный характер. В этой зоне удлинение или сжатие образцов при испытаниях происходят без значительного увеличения внешней силы.
В дальнейшем бетонный образец реагирует на усилия нелинейно — деформации растут без увеличения нагрузки. Это — зона ползучести. Связи внутри материала разрушаются, конструкция теряет прочность.
В рыхлых непрочных смесях присутствует стадия псевдопластических деформаций, когда с уменьшением нагрузки изменения размеров нарастают. Появляются отслоения, трещины и другие деструкции тела бетона.
Последующее увеличение усилий растяжения или сжатия приводят к полному разрушению образца.
Линейная зависимость между напряжением и деформациями в фазе упругости выражается формулой:
σ=E*εпред,
где E — модуль упругости (Па);
εпред — относительная деформация, т.е. отношение абсолютного удлинения к начальному размеру (∆l/l0).
Модуль упругости определяют опытным путем. При испытаниях строят диаграмму зависимости деформаций от усилий, прикладываемых к образцу. Тангенс угла кривизны на участке упругих изменений размеров и есть искомая величина. Значения для разных классов и марок бетона занесены в таблицы.
График зависимости деформаций от напряжений при постепенном загружении
Зная E и действующие усилия, рассчитывают упругие абсолютные деформации бетона в конструкции по формуле:
∆l= σ* l0/EА,
где σ — напряжение, равное отношению внешней силы к площади сжатой или растянутой зоны сечения (P/F).
Чем больше модуль упругости, тем меньшие деформации при нагрузках испытывает материал. Значения E варьируются от 19 до 40 МПа*10-3.
От чего зависит модуль упругости бетона?
Упругие свойства бетона зависят от факторов:
- качества и объемного содержания заполнителей;
- класса материала;
- температуры воздуха и интенсивности радиоактивного излучения;
- влажности среды;
- времени воздействия нагрузки;
- условий твердения смеси;
- возраста бетона;
- армирования.
Заполнители
Бетон представляет собой конгломерат из двух составляющих — цементного камня и заполнителей. В неоднородной структуре возникает сложное напряженное состояние. Более жесткие частицы воспринимают основную часть нагрузки, а вокруг пор и пустот образуются участки с поперечными растягивающими усилиями.
Крупный заполнитель, обладая высоким модулем Юнга, увеличивает упругие свойства бетона. Мелкие пылеватые частицы, поры и пустоты снижают их.
Класс бетона
Чем выше класс материала, т.е. больше его прочность на сжатие и плотность, тем лучше он сопротивляется деформирующим нагрузкам. Наиболее высоким модулем упругости обладает бетон В60 — 39,5 МПа*10-3, минимальный показатель у композита класса В10- 19 МПа*10-3.
Температура и радиация
Повышение температуры окружающей среды, интенсивности солнечной радиации приводят к уменьшению упругих свойств и росту деформаций. Связано это с увеличением внутренней энергии бетона, изменению траекторий движения молекул в твердом теле, линейному расширению материала, и, как следствию, усилению пластичности.
Разницу не учитывают при колебаниях в пределах 20°С. Большие температурные изменения существенно влияют на деформацию бетонных конструкций. В таблице СП 63.13330.2012 указаны величины модулей упругости в зависимости от температуры.
Влажность
Колебания влажности воздуха приводят к изменению упругих свойств материала. В расчетах применяют коэффициент ползучести φ. Чем больше содержание водяных паров в окружающей среде, тем ниже показатель и соответственно меньше пластические деформации конструкции.
Примечание: Относительную влажность воздуха принимают по СП 131.13330.2012 как среднемесячную влажность самого теплого месяца года в регионе строительства.
Время приложения нагрузки
Модуль упругости зависит от времени действия нагрузки. При мгновенном нагружении конструкции деформации пропорциональны величине внешних сил. При длительных напряжениях величина E уменьшается, изменения развиваются по нелинейной зависимости и суммируются из упругих и пластичных деформаций.
Условия набора прочности
При проведении испытаний замечено, что у бетона естественного твердения модуль упругости выше, чем при обработке материала пропариванием при атмосферном давлении или в автоклавных установках.
Это объясняется тем, что изменение условий набора прочности приводит к образованию большего количества пор и пустот из-за неравномерного температурного расширения объема, ухудшения качества гидратации цементных зерен. Такой бетон обладает более низкими упругими свойствами по сравнению с затвердевшим в нормальных условиях.
Возраст бетона
Свежеуложенный бетон набирает прочность в течение 28 суток. Но даже по истечении этого времени материал при нагрузке обладает одновременно упругими и пластическими свойствами. Наибольшей твердости он достигает примерно через 200-250 суток. Показатель E в этом возрасте максимальный, соответствующий марочной прочности.
Армирование конструкций
Для восприятия растягивающих и сжимающих усилий в железобетон помещают каркасы или сетки из арматуры классов АI, AIII, А500С, Ат800, а также из композитов или древесины.
Применение армирования увеличивает упругость, прочность конструкции на сжатие и на растяжение при изгибе, препятствует образованию усадочных и деформационных трещин.
Способы определения
Модуль упругости бетона определяют:
- механическим испытанием образцов;
- неразрушающим ультразвуковым методом, основанным на сравнении скорости распространения волн в существующей конструкции и испытанном образце с заданными характеристиками.
Механический способ
Исследование первым методом проводят согласно ГОСТ 24452-80. Изготавливают образцы с сечением в виде квадрата или круга с соотношением высоты к диаметру (ширине), равным 4.
Образцы сериями по три штуки выбуривают, высверливают или выпиливают из готовых изделий, либо набивают формы согласно ГОСТ 10180-78. До начала испытаний призмы или цилиндры выдерживают под влажной тканью.
Для определения модуля упругости бетона используют прессы со специальными базами для измерения деформаций. Они состоят из приборов, расположенных под разными углами к граням образца. Индикаторы крепят к стальным рамкам или приклеенным опорным вставкам.
Если испытания проводят для конструкций, работающих при повышенной влажности или высокой температуре, выполняют специальную подготовку по ГОСТ 24452-80.
Испытания проводят по схеме:
- Образцы с индикаторами помещают под пресс, совмещая ось заготовки с центром плиты оборудования. Величину разрушающей нагрузки назначают, исходя из марочной прочности бетона.
- Нагрузку увеличивают постепенно, ступенями по 10% от разрушающей. Выдерживают интервалы 4-5 минут.
- Доводят усилие до 40-45% от максимального. Если программа не предусматривает другие требования, приборы снимают. Дальнейшее нагружение проводят с постоянной скоростью.
- Производят обработку результатов для каждого образца при нагрузке, равной 30% от разрушающей. Все данные заносят в журнал испытаний.
На основе исследований можно судить о начальном модуле упругости бетона. Эта величина характеризует свойства материала при нагрузке, в пределах которой в образцах возникают обратимые изменения. Показатель обозначается как Eb, его значение для каждого класса бетона внесено в таблицы строительных норм и маркировку изделий.
Так, модуль упругости бетона В15 естественного твердения составляет 23, а подвергнутого тепловой обработке 25 МПа*10-3.
Величина модуля упругости бетона для классов В20, В25, В30, В35 и В40 равна 27, 30, 32,5, 34,5 и 36 МПа*10-3. В пропаренных конструкциях она соответствует 24,5, 27, 29, 31 и 32,5 МПа*10-3.
Ультразвуковой способ
Применяется для исследования конструкций без их локального разрушения. При повышенной влажности такой метод определяет модуль упругости с погрешностью 15-75%, так как скорость распространения ультразвуковых колебаний в водной среде возрастает.
Чтобы избежать ошибок при измерениях, разработан метод определения модуля Юнга с учетом влажности бетона. Он основан на опытных испытаниях серий образцов с различной водонасыщенностью.
Нормативные и расчетные значения сопротивления бетона получают, используя корректирующие коэффициенты с учетом условий работы конструкции. Методика расчета описана в СП 63.13330.2012.
( 1 оценка, среднее 5 из 5 )
Источник
Cодержание:
1. Модули упругости основных строительных материалов.
2. Начальные модули упругости бетона.
3. Нормативные сопротивления бетона.
4. Расчетные сопротивления бетона.
5. Расчетные сопротивления бетона растяжению.
6. Нормативные сопротивления арматуры.
7. Расчетные сопротивления арматуры.
8. Нормативные и расчетные сопротивления стали.
9. Заменяемые марки стали.
10. Список использованной литературы.
Таблица 1. Модули упругости для основных строительных материалов.
(вернуться к списку таблиц)
Материал | Модуль упругости Е, МПа |
Чугун белый, серый | (1,15…1,60) • 105 |
» ковкий | 1,55 • 105 |
Сталь углеродистая | (2,0…2,1) • 105 |
» легированная | (2,1…2,2) • 105 |
Медь прокатная | 1,1 • 105 |
» холоднотянутая | 1,3 • 103 |
» литая | 0,84 • 105 |
Бронза фосфористая катанная | 1,15 • 105 |
Бронза марганцевая катанная | 1,1 • 105 |
Бронза алюминиевая литая | 1,05 • 105 |
Латунь холоднотянутая | (0,91…0,99) • 105 |
Латунь корабельная катанная | 1,0 • 105 |
Алюминий катанный | 0,69 • 105 |
Проволока алюминиевая тянутая | 0,7 • 105 |
Дюралюминий катанный | 0,71 • 105 |
Цинк катанный | 0,84 • 105 |
Свинец | 0,17 • 105 |
Лед | 0,1 • 105 |
Стекло | 0,56 • 105 |
Гранит | 0,49 • 105 |
Известь | 0,42 • 105 |
Мрамор | 0,56 • 105 |
Песчаник | 0,18 • 105 |
Каменная кладка из гранита | (0,09…0,1) • 105 |
» из кирпича | (0,027…0,030) • 105 |
Бетон (см. таблицу 2) | |
Древесина вдоль волокон | (0,1…0,12) • 105 |
» поперек волокон | (0,005…0,01) • 105 |
Каучук | 0,00008 • 105 |
Текстолит | (0,06…0,1) • 105 |
Гетинакс | (0,1…0,17) • 105 |
Бакелит | (2…3) • 103 |
Целлулоид | (14,3…27,5) • 102 |
Примечание: 1. Для определения модуля упругости в кгс/см2 табличное значение умножается на 10 (более точно на 10.1937)
2. Значения модулей упругости Е для металлов, древесины, каменной кладки следует уточнять по соответствующим СНиПам.
Нормативные данные для расчетов железобетонных конструкций:
(вернуться к списку таблиц)
Таблица 2. Начальные модули упругости бетона (согласно СП 52-101-2003)
(вернуться к списку таблиц)
Таблица 2.1. Начальные модули упругости бетона согласно СНиП 2.03.01-84*(1996)
Примечания: 1. Над чертой указаны значения в МПа, под чертой — в кгс/см2.
2. Для легкого, ячеистого и поризованного бетонов при промежуточных значениях плотности бетона начальные модули упругости принимают по линейной интерполяции.
3. Для ячеистого бетона неавтоклавного твердения значения Еb принимают как для бетона автоклавного твердения с умножением на коэффициент 0,8.
4. Для напрягающего бетона значения Еb принимают как для тяжелого бетона с умножением на коэффициент a = 0,56 + 0,006В.
5. Приведенные в скобках марки бетона не точно соответствуют указанным классам бетона.
Таблица 3. Нормативные значения сопротивления бетона (согласно СП 52-101-2003)
(вернуться к списку таблиц)
Таблица 4. Расчетные значения сопротивления бетона (согласно СП 52-101-2003)
(вернуться к списку таблиц)
Таблица 4.1. Расчетные значения сопротивления бетона сжатию согласно СНиП 2.03.01-84*(1996)
Таблица 5. Расчетные значения сопротивления бетона растяжению (согласно СП 52-101-2003)
(вернуться к списку таблиц)
Таблица 6. Нормативные сопротивления для арматуры (согласно СП 52-101-2003)
(вернуться к списку таблиц)
Таблица 6.1 Нормативные сопротивления для арматуры класса А согласно СНиП 2.03.01-84* (1996)
Таблица 6.2. Нормативные сопротивления для арматуры классов В и К согласно СНиП 2.03.01-84* (1996)
Таблица 7. Расчетные сопротивления для арматуры(согласно СП 52-101-2003)
(вернуться к списку таблиц)
Таблица 7.1. Расчетные сопротивления для арматуры класса А согласно СНиП 2.03.01-84* (1996)
Таблица 7.2. Расчетные сопротивления для арматуры классов В и К согласно СНиП 2.03.01-84* (1996)
Нормативные данные для расчетов металлических конструкций:
Таблица 8. Нормативные и расчетные сопротивления при растяжении, сжатии и изгибе (согласно СНиП II-23-81 (1990))
(вернуться к списку таблиц)
листового, широкополосного универсального и фасонного проката по ГОСТ 27772-88 для стальных конструкций зданий и сооружений
Примечания:
1. За толщину фасонного проката следует принимать толщину полки (минимальная его толщина 4 мм).
2. За нормативное сопротивление приняты нормативные значения предела текучести и временного сопротивления по ГОСТ 27772-88.
3. Значения расчетных сопротивлений получены делением нормативных сопротивлений на коэффициенты надежности по материалу, с округлением до 5 МПа (50 кгс/см2).
Таблица 9. Марки стали, заменяемые сталями по ГОСТ 27772-88 (согласно СНиП II-23-81 (1990))
(вернуться к списку таблиц)
Примечания: 1. Стали С345 и С375 категорий 1, 2, 3, 4 по ГОСТ 27772-88 заменяют стали категорий соответственно 6, 7 и 9, 12, 13 и 15 по ГОСТ 19281-73* и ГОСТ 19282-73*.
2. Стали С345К, С390, С390К, С440, С590, С590К по ГОСТ 27772-88 заменяют соответствующие марки стали категорий 1-15 по ГОСТ 19281-73* и ГОСТ 19282-73*, указанные в настоящей таблице.
3. Замена сталей по ГОСТ 27772-88 сталями, поставляемыми по другим государственным общесоюзным стандартам и техническим условиям, не предусмотрена.
Расчетные сопротивления для стали, используемой для производства профилированных листов, приводятся отдельно.
Список использованной литературы:
1. СНиП 2.03.01-84 «Бетонные и железобетонные конструкции»
2. СП 52-101-2003
3. СНиП II-23-81 (1990) «Стальные конструкции»
4. Александров А.В. Сопротивление материалов. Москва: Высшая школа. — 2003.
5. Фесик С.П. Справочник по сопротивлению материалов. Киев: Будiвельник. — 1982.
21-11-2013: Badyoruy
Отличная подборка
03-10-2015: мухаммад
спасибо вам всеесть то что надо
26-04-2016: Василий
Почему значения начального модуля упругости бетона при сжатии и растяжении умножаются на 10^-3? Должна ведь быть положительная степень. Выходит, что модуль упругости для бетона В25 составляет 30 кПа, но он равен 30 ГПа!
26-04-2016: Доктор Лом
Потому, что при составлении разного рода таблиц нет необходимости писать в каждой ячейке по 3 дополнительных нуля, достаточно просто указать, что табличные значения занижены в 1000 раз. Соответственно, чтобы определить расчетное значение, нужно табличное значение не разделить, а умножить на 1000. Такая практика используется при составлении многих нормативных документов (именно в таком виде там даются таблицы) и я не вижу смысла от нее отказываться.
26-04-2016: Владимир
Тогда получается, что модуль упругости арматуры необходимо разделить на 10 в пятой степени. Или я что-то не понимаю? В рекомендациях по расчету и конструированию сплошных плит перекрытий крупнопанельных зданий 1989г. и модуль бетона и модуль арматуры умножают на 10 в третьей и на 10 в пятой степени соответственно
26-04-2016: Доктор Лом
Попробую объяснить еще раз. Посмотрите внимательно на таблицу 1. Если бы в заглавной строке вместо «Модуль упругости Е, МПа» я бы прописал «Модуль упругости Е, МПа•10^-5», то это избавило бы меня от необходимости в каждой строке к значению модуля упругости добавлять «•10^5». Вот только значения модулей упругости для различных материалов различаются в сотни и даже тысячи раз, потому такая форма записи для таблицы 1 не совсем удобна. В таблицах 2 и 2.1 значения начальных модулей упругости различаются незначительно и потому использовалась такая форма записи. Более того, если вы откроете указанные нормативные документы, то лично в этом убедитесь. Традиция эта сформировалась в ту далекую пору, когда ПК и в помине не было и наборщик вручную набирал литеры в пресс для книгопечатания, так что в данном случае все вопросы не ко мне, а к Гутенбергу и его последователям.
05-08-2016: Александр
Возможно, модуль упругости легче бы запоминался и воспринимался в ГПа, ведь тогда у стали примерно 200 единиц, а у древесины 10…12.
05-08-2016: Доктор Лом
Вполне возможно, вот только и ГигаПаскали — не самая наглядная и простая для восприятия размерность.
Источник
Бетонные строительные конструкции постоянно испытывают большие нагрузки. Это необходимо учитывать еще на этапе их планирования. Поэтому технологами была разработана система придания бетону способности упруго деформироваться под воздействием таких факторов, как давление и сила. Величина, характеризующая данный показатель, получила название модуль упругости бетона.
Рассчитывая строительную конструкцию, специалисты с помощью формулы вычисляют соотношение напряжения и модуль деформации бетона B25 или материала другого класса. Для удобства данные, полученные лабораторным путем, занесены в таблицы, которые соответствуют СНиП. Ими всегда можно воспользоваться при проектировании любой конструкции.
Определение упругости и единицы измерения
Значение модуля любого вида бетона определяется согласно действующему СП 52-101-2003. Это нормативный документ, таблицы которого содержат все необходимые коэффициенты для определения упругости материала на м2.
Выполняя специальные расчеты с учетом того, какова деформация используемого материала, специалисты могут точно определить величину запаса прочности сооружения арочного типа, любого перекрытия здания, автомобильного или железнодорожного моста.
В литературе для профессионалов параметр упругости принято обозначать буквой Е. На его величину влияет действующая нагрузка и структура бетона. За единицу измерения взят паскаль, поскольку напряжение, вызванное в опытном образце действующей на него силой, измеряется в паскалях.
На модуль упругости В20 и других видов влияет технология производства, в частности способ твердения: естественный, автоклавный или тепловой обработки. Важную роль играют эксплуатационные характеристики материала.
Поэтому такой показатель, как упругость не одинаковый у одного класса. Например, если рассматривать ячеистые или тяжелые материалы, имеющие одно и то же значение прочности на м2, то величины их модулей будут разные.
Табличные данные помогают определить значение сопротивления и в соответствии с ним выбрать нужный тип бетона для проведения тех или иных видов строительных работ.
Для того чтобы повысить модуль упругости бетона В15, специалисты рекомендуют использовать различные методы его изготовления. Так, при автоклавной обработке появляются более высокие упругие свойства, достигающие цифры 17. Применяя тепловую обработку с использованием атмосферного давления, можно увеличить значение до 20,5. Наибольшая величина модуля достигается при естественном твердении.
Подобным образом можно поднять модуль упругости В25 — самого популярного у строителей. При этом важно помнить, что при увеличении показателя класса материала растет и показатель его сопротивляемости упругим деформациям.
От чего зависит упругость бетона
Главной характеристикой, определяющей прочность бетона, является коэффициент его упругости. Он важен для профессиональных проектировщиков, которые проводят расчеты нагрузочных способностей бетонных конструкций.
В число факторов, воздействующих на величину модуля, входят такие:
- наполнитель (его плотность непосредственно отражается на удельном весе бетона; если это гравий или щебень, показатель выше);
- класс (так, у В10 величина упругости равна 19, а у В30 она составляет 32,5);
- возраст монолита (с увеличением этого показателя возрастает и прочность бетонной структуры).
Фактором воздействия является время, в течение которого материал испытывает нагрузку, и влажность воздуха. Влагосодержание окружающей среды оказывает воздействие на такой показатель, как ползучесть бетона. В этом случае во внимание принимается температура окружающей среды и показатель интенсивности радиоактивного излучения.
В соответствующих таблицах при необходимости всегда можно узнать точные значения для разных видов, например, каким будет модуль упругости B30.
Такая характеристика, как деформация, во многом зависит от наличия металлического каркаса, используемого при армировании строительной конструкции. Металл отличается гораздо меньшей степенью разрушения. Поэтому для сооружений, которые будут регулярно испытывать большие нагрузки, пространственная металлическая решетка необходима.
Существует специальная таблица, разработанная согласно СП. По ней определяется начальный модуль упругости бетона.
Расчет модуля упругости в лабораторных условиях
Алгоритм определения деформации предусматривает экспериментальные исследования в лабораторных условиях с использованием стандартных образцов.
Стандартный образец исследуется с целью установить начальный и приведенный показатель. Проведя пробы, выясняют степень способности материала выдерживать сжатие или растяжение. Если материал не имеет армировочного каркаса, то он не способен к растяжению. С учетом результатов экспериментов строится график, отражающий показатели зависимости прикладываемого воздействия и разрушения опытного образца.
При расчетах учитывается равнозначность показателей упругости материала на растяжение и сжатие.
В ходе лабораторных исследований образец подвергается непрерывной возрастающей нагрузке до полного его разрушения. В диаграмму вносят данные, отражающие воздействие нагрузок на степень деформации опытного образца. На завершающем этапе рассчитывается средний показатель всех исследуемых образцов.
Методика расчета бетонных конструкций содержится в Своде правил 52-101-2003, распространяющихся на все строительные бетонные и железобетонные конструкции.
Источник