Межмолекулярного взаимодействия при растяжении тела

Межмолекулярное взаимодействие — взаимодействие между молекулами и/или атомами, не приводящее к образованию ковалентных (химических) связей.

Межмолекулярное взаимодействие имеет электростатическую природу. Предположение о его существовании было впервые использовано Я. Д. Ван-дер-Ваальсом в 1873 году для объяснения свойств реальных газов и жидкостей. В наиболее широком смысле под ним можно понимать такие взаимодействия между любыми частицами (молекулами, атомами, ионами), при которых не происходит образования химических, то есть ионных, ковалентных или металлических связей. Иными словами, эти взаимодействия существенно слабее ковалентных и не приводят к существенной перестройке электронного строения взаимодействующих частиц.

На больших расстояниях преобладают силы притяжения, которые могут иметь ориентационную, поляризационную (индукционную) и дисперсионную природу (см. подробнее в статьях Силы Ван-дер-Ваальса и Дисперсионные силы). При усреднении по вращению частиц, происходящему вследствие теплового движения, потенциал межмолекулярных сил обратно пропорционален шестой степени расстояния, а ион-дипольных (как с постоянным, так и с наведенным диполем) — четвёртой степени. На малых расстояниях начинают преобладать силы отталкивания электронных оболочек частиц. Особым случаем является водородная связь — возникающее на малом расстоянии взаимодействие между атомом водорода одной молекулы и электроотрицательным атомом другой, когда эти атомы несут достаточно большой эффективный заряд.

Упаковку частиц и расстояние между ними в конденсированной фазе, определяющиеся равновесием между притяжением и отталкиванием, можно предсказать, исходя из ван-дер-ваальсовых радиусов составляющих молекулы атомов (ионных в случае ионов): расстояния между атомами разных молекул не должны превышать суммы радиусов этих атомов. Для моделирования межмолекулярных взаимодействий используют эмпирические потенциалы, среди которых наиболее известны потенциалы Леннард-Джонса (отталкивание описывается двенадцатой степенью обратного расстояния, притяжение — шестой) и Бакингема (с более физически обоснованным экспоненциальным отталкиванием), из которых первый более удобен для расчетов. В конденсированной фазе, где мультипольное разложение для молекул плохо применимо из-за близости молекул друг к другу, может применяться метод атом-атомных потенциалов, основанный на тех же потенциалах, но уже для парных взаимодействий атомов и с добавкой кулоновских членов, описывающих взаимодействие их эффективных зарядов.

Межмолекулярное взаимодействие, водородная связь[править | править код]

Дипольная молекула создает вокруг себя электростатическое поле и ориентирует остальные диполи системы, что приводит к снижению энергии. Рассчитанная П.Кизомом средняя энергия ориентационного диполь-дипольного взаимодействия между полярными молекулами составляет:

(формула 1) где — дипольный момент молекулы; r — расстояние между центрами молекул; k — константа Больцмана; T — температура по Кельвину.

Множитель (kT) в знаменателе отражает влияние флуктуации на ориентацию диполей вследствие теплового движения, которое возрастает с увеличением температуры. Кроме ориентационного, следует учитывать индукционный эффект (), то есть взаимодействие диполя с приведенным диполем, который, соответственно с П.Дебаем, равен:

(формула 2)

Ориентационные и индукционные силы возникают между полярными молекулами и не могут объяснить межмолекулярное взаимодействие между неполярными. Учитывание так сказать слабой квадруполь-квадруполь взаимодействия не решает проблему, тем более, что молекула типа и атомы инертных газов не имеют вообще квадрупольного момента (отметим, что квадрупольный момент (без дипольного) имеют молекулы типа квадруполями можно считать двухатомные гомоядерные молекулы — и т.д.).

Природа межмолекулярных сил в неполярных системах была определена Ф.Лондоном с помощью квантовой механики. Можно сказать лишь, что учитывание корреляции во время движения атомных электронов приводит к снижению энергии. Если движение электронов в разных атомах скоррелировано, то это также способствует снижению энергии. Атомы с подвижными электронами можно считать диполями, которые осциллируют с некоторой частотой . При синхронном движении электронов мгновенные диполи ориентируются всегда так, что это приводит к снижению энергии:

(формула 3)

Заменив на , где — энергия ионизации молекулы (атома), получим:

(формула 4) Эту формулу можно получить более последовательно (не применяя модель осциллирующих диполей) на основе теории возмущений.

Дж.Слетер и Дж.Кирквуд для взаимодействия многоэлектронных атомов вывели следующую формулу:

(формула 5) где N — количество электронов на внешней оболочке; m — масса электрона; е — его заряд.

Формулы (3) и (5) совпадают при N=1, если вместо подставить его выражение: Из приведенных формул можно сделать вывод о том, что основная характеристика, которая определяет величину сил Лондона, — это поляризованность () атомов (молекул). В связи с тем, что поляризованность тесно связана с коэффициентом преломления света и характеризует способность вещества к рассеиванию энергии (дисперсии) света, силы Лондона часто называют дисперсионными ().

Поляризованность зависит от размера частички, поэтому прочность молекулярных решеток должна возрастать с увеличением размеров атомов и молекул, которые взаимодействуют. Эта закономерность хорошо иллюстрируется увеличением температур кипения (аналогические зависимости наблюдаются для теплот и температур плавления, сублимации, испарения и т.д., то есть для величин, которые зависят от прочности молекулярных связей) в группе инертных газов в гомологическом ряду парафинов.

Читайте также:  При растяжении стержня длиной 70 см среднее расстояние между атомами

Атом Гелия настолько мал и дисперсионные силы при взаимодействии атомов Гелия такие слабые, что Гелий не может существовать в кристаллическом состоянии даже при обычном давлении и 0К. Причина этого — существование нулевой кинетической энергии, которая для гелия больше, чем энергия связи. Наличие кинетической энергии ядер в связанных атомах (при 0К) является следствием соотношения неопределенностей Гейзенберга.

Энергия связи для гелия кДж/моль, где m — масса атома Гелия.

Поэтому, и кристаллическое состояние не может реализоваться даже при 0К. Лишь при большом внешнем давлении гелий может перейти в кристаллическое состояние.

Все межмолекулярные взаимодействия (их часто объединяют общим названием — взаимодействие Ван дер Вальса) можно выразить в таком виде:

Ориентационное, индукционное и дисперсионное взаимодействия делают разный вклад в энергию связи. Для атомов и неполярных молекул и равны нулю и остается только дисперсионное взаимодействие. Вклад ориентационных и индукционных сил увеличивается с ростом дипольного момента молекул. В молекуле (1D-дебай= Кл * м) вносит 0,005%, а — 14,4%, — 4,2%; В — 3,3%, — 2,2%; — 14,4%, — 4,2%.

Благодаря приведенным формулам можно сделать вывод, что даже для очень полярных молекул дисперсионное взаимодействие делает огромный вклад.

См. также[править | править код]

  • Силы Ван-дер-Ваальса
  • Межатомное взаимодействие

Литература[править | править код]

  • [www.xumuk.ru/encyklopedia/2477.html Межмолекулярные взаимодействия] // Химическая энциклопедия. Т. 3. — М.: Большая Российская энциклопедия, 1992. С. 12-15.
  • Маррел Дж., Кеттл С., Теддер Дж. Химическая связь / Пер. с англ. С. В. Христенко. Под ред. И. В. Александрова. — М.: Мир, 1980.— 382 с.
  • Бараш Ю. С. «Силы Ван-дер-Ваальса» М.: Наука, 1988. 344с.
  • Каплан И. Г. «Введение в теорию межмолекулярных взаимодействий» М.: Наука, 1982. 312с.
  • Каплан И. Г. Межмолекулярные взаимодействия. Физическая интерпретация, компьютерные расчеты и модельные потенциал М.: БИНОМ. Лаборатория знаний, 2012. — 400 с. ISBN 978-5-94774-939-7
  • «Межмолекулярные взаимодействия; от двухатомных молекул до биополимеров» Пюльман Б. (ред) Пер. с англ., М.: Мир, 1981. — 592с.
  • Израелашвили Дж. Межмолекулярные и поверхностные силы. М.: Научный мир, 2011. — 456 с. ISBN 978-5-91522-222-8

Ссылки[править | править код]

  • Межмолекулярное взаимодействие в ФЭ
  • [www.xumuk.ru/bse/1603.html Межмолекулярное взаимодействие] в БСЭ

Некоторые внешние ссылки в этой статье ведут на сайты, занесённые в спам-лист.

Эти сайты могут нарушать авторские права, быть признаны неавторитетными источниками или по другим причинам быть запрещены в Википедии. Редакторам следует заменить такие ссылки ссылками на соответствующие правилам сайты или библиографическими ссылками на печатные источники либо удалить их (возможно, вместе с подтверждаемым ими содержимым).

Список проблемных доменов

Источник

Сила упругости

Взаимодействие тел

Почему тела, находящиеся на земле (дома, деревья, мы с вами), не проваливаются сквозь нее, хотя на них действует сила тяжести? Почему растянутая пружина или тетива лука стремятся восстановить свою форму? Ответы на эти и многие вопросы вы сможете дать, познакомившись на этом уроке с еще одним видом сил – силой упругости.

Вы уже знаете, что все тела на поверхности Земли испытывают ее притяжение. На любое тело, находящееся на поверхности Земли или вблизи ее, действует сила тяжести. Снежинка, падающая с неба, движется к Земле. Но, упав на крышу, она прекращает свое движение. Значит, что-то мешает снежинке двигаться вниз.

Рис. 1. Снежинка, падающая с неба, упав на крышу, прекращает свое движение

Что же мешает снежинке и всей толще снега, находящегося на крыше, двигаться к центру Земли под действием силы тяжести? Ответ: снегу мешает продолжать движение сила, действующая на него со стороны крыши. Эта сила направлена в сторону, противоположную направлению силы тяжести, и численно равна ей. Она компенсирует силу тяжести, и снег ведет себя так, как если бы на него не действовали никакие тела. В соответствии с уже знакомым нам законом инерции он находится в состоянии покоя.

Рис. 2. Сила упругости компенсирует силу тяжести

Рассмотрим еще один пример компенсации силы тяжести. Горизонтально расположенная стальная лента закреплена с двух сторон в штативах. Если поставить груз на эту ленту, лента начнет прогибаться по мере движения груза вниз. Лента деформируется. И при определенной величине деформации ленты груз останавливается. Груз движется вниз до тех пор, пока сила, действующая на него со стороны стальной ленты, не уравновесит силу тяжести.

Читайте также:  Растяжение в локтевом сгибе

Рис. 3. Изогнутая лента действует на груз силой, которая уравновешивает силу тяжести груза

Сила, возникающая при деформации тела, называется силой упругости.

Деформации различают по характеру изменения формы тела. Это изгиб, растяжение, сжатие, кручение и др.

Рис. 4. Классификация деформаций по характеру изменения формы тела

Кроме того, деформация делится на два типа – упругая и пластическая. После упругой деформации тело полностью восстанавливает свою первоначальную форму и размеры.

Рис. 5. Пример упругой деформации

После пластической деформации тело полностью сохраняет вновь приобретенную форму и размеры.

Так происходит, например, при лепке из глины или пластилина. Пластическая деформация используется в технике в таких процессах, как ковка и штамповка.

Рис. 6. Пример пластической деформации

Причина возникновения силы упругости – изменение расстояний между молекулами при деформации и, соответственно, изменение сил межмолекулярного взаимодействия.

«Взаимодействие молекул при растяжении»

При увеличении межмолекулярного расстояния силы межмолекулярного притяжения и отталкивания уменьшаются – только силы притяжения уменьшаются медленнее, чем силы отталкивания, поэтому возникают суммарные силы  и , которые направлены в сторону межмолекулярных сил притяжения.

Рис. 7. Взаимодействие молекул при растяжении

«Взаимодействие молекул при сжатии»

При уменьшении межмолекулярного расстояния силы межмолекулярного притяжения и отталкивания увеличиваются – только силы притяжения увеличиваются медленнее, чем силы отталкивания, поэтому возникают суммарные силы  и , которые направлены в сторону межмолекулярных сил отталкивания.

Рис. 8. Взаимодействие молекул при сжатии

Если мы растягиваем тело, то расстояние между его молекулами увеличивается, а значит, возрастает сила межмолекулярного притяжения. Если же мы пытается сжать тело, но этим самым мы пытаемся уменьшить расстояние между молекулами, и тогда возрастают силы межмолекулярного отталкивания.

Рис. 9. При растяжении расстояние между молекулами тела увеличивается

Рис. 10. При сжатии расстояние между молекулами тела уменьшается

Деформация тела чаще всего очень мала и непосредственно визуально не заметна. Так, когда тело стоит на опоре (например, на столе), деформация стола не видна, но именно она является причиной того, что тело неподвижно, хотя на него действует сила тяжести.

Гораздо проще исследовать силу упругости, когда деформация хорошо заметна и легко поддается измерению. Так, например, происходит при растяжении пружин. Если к пружине, верхний конец которой закреплен, подвешивать последовательно один, два, три груза, то можно заметить, что деформация пружины увеличивается, а следовательно, увеличивается и сила упругости.

Рис. 11. Деформация пружины увеличивается, увеличивается и сила упругости

Английский физик Роберт Гук впервые установил зависимость величины силы упругости от вызвавшей ее появление деформации.

Рис. 12. Роберт Гук (1635–1703)

Гук установил, что между удлинением тела (увеличением его длины l на величину ∆l) и вызванным этим удлинением появлением силы упругости существует простая связь. Здесь греческая буква ∆(дельта) используется для обозначения изменения величины l.

При малых деформациях сила упругости прямо пропорциональна удлинению тела:

Это утверждение получило название закона Гука. Он справедлив только для упругой деформации. Коэффициент k называется коэффициентом жесткости тела. Он измеряется в Н/м (ньютонах на метр).

Рис. 13. Две пружины с различным коэффициентом жесткости

На рисунке изображены две пружины, которые до подвешивания грузов имели одинаковую длину. Но правая пружина под действием грузов удлинилась больше, чем левая под действием таких же грузов. Это означает, что коэффициент жесткости этих пружин различный.

В обеих пружинах сила упругости одинакова. И если правая пружина удлинилась больше левой, то в соответствии с законом Гука ее коэффициент жесткости меньше.

Коэффициент жесткости описывает упругие свойства тела. Он зависит от формы и размеров тела, а также от материала, из которого оно изготовлено.

Мы выяснили, что при внешнем воздействии на тело в нем на межмолекулярном уровне возникают изменения: деформация приводит к изменению расстояния между молекулами. Существуют различные виды деформаций. Сила, которая возникает при деформации, называется силой упругости. При малых деформациях растяжения (сжатия) сила упругости прямо пропорциональна удлинению тела.

Список рекомендованной литературы

  1. Перышкин А.В. Физика. 7 кл. – 14-е изд., стереотип. – М.: Дрофа, 2010.
  2. Перышкин А.В. Сборник задач по физике, 7 – 9 кл.: 5-е изд., стереотип. – М: Издательство «Экзамен», 2010.
  3. Лукашик В.И., Иванова Е.В. Сборник задач по физике для 7 – 9 классов общеобразовательных учреждений. – 17-е изд. – М.: Просвещение, 2004.

Рекомендованные ссылки на ресурсы сети Интернет

  1. Интернет-портал «files.school-collection.edu.ru» (Источник)
  2. Интернет-портал «files.school-collection.edu.ru» (Источник)
  3. Интернет-портал «files.school-collection.edu.ru» (Источник)
Читайте также:  Формула закон гука при деформации растяжения

Домашнее задание

Лукашик В.И., Иванова Е.В. Сборник задач по физике для 7 – 9 классов №326 – 332.

Источник

Коллоидная химия

Силы межмолекулярного взаимодействия.

Когда вещество находится в газообразном состоянии, тогда образующие его частицы – молекулы или атомы –
хаотически движутся и при этом преобладающую часть времени находятся на больших расстояниях
(в сравнении с их собственными размерами) расстояниях друг от друга. Вследствии этого силы взаимодействия между ними пренебрежимо малы.

Иначе обстоит дело, когда вещество находится в конденсированном состоянии – в жидком или твёрдом.
Здесь расстояния между частицами вещества малы и силы взаимодействия между ними велики.
Эти силы удерживают частицы жидкости или твёрдого тела друг около друга. Поэтому вещества в конденсированном состоянии имеют,
в отличии от газов, постоянный при данной температуре объём.

Все силы, удерживающие частицы жидкости или твёрдого тела друг около друга, имеют электрическую природу.
Но в зависимости от того, что представляют собой частицы – являются ли они атомами металического или неметалического элемента,
ионами или молекулами – эти силы существенно различны.

Неметалы с атомным строением

Если вещество состоит из атомов, но не является металлом, то его атомы обычно связаны друг с другом ковалентной связью.

Металлы

Если вещество – металл, то часть электронов его атомов становится общими для всех атомов. Эти электроны свободно
движутся между атомами, связывая их друг с другом.

Вещества с ионным строением

Если вещество имеет ионное строение, то образующие его ионы удерживаются друг около друга силами электростатического притяжения.

Вещества с молекулярным строением

В веществах с молекулярным строением имеет место межмолекулярное взаимодействие.

Силы межмолекулярного взаимодействия, называемые также силами Ван-дер-Ваальса, слабее ковалентных сил, но проявляются
на больших расстояниях. В основе их лежит электростатическое взаимодействие диполей, но в различных веществах
механизм возникновения диполей различен.

1. Ориентационное взаимодействие.

Если вещество состоит из полярных молекул, например, Н2О, НCl, то в конденсированном состоянии молекулы
ориентируются друг по отношению к другу своими разноимённо заряженными концами, вследствии чего наблюдается их взаимное притяжение.

Такой вид межмолекулярного взаимодействия называется ориентационным взаимодействием. Тепловое движение молекул
препятствует их взаимной ориентации, поэтому с ростом температуры ориентационный эффект ослабевает.

2. Индукционное взаимодействие.

В случае веществ, состоящих из неполярных, но способных к поляризации молекул, например СО2,
наблюдается возникновение наведённых или индуцированных диполей.

Причина их появления обычно состоит в том, что каждый атом создаёт вблизи себя электрическое поле,
оказывающее поляризующее действие на ближайший атом соседней молекулы. Молекула поляризуется и образовавшийся
индуцированный диполь в свою очередь поляризует соседние молекулы.

В результате происходит взаимное притяжение молекул друг к другу. Это индукционное взаимодействие наблюдается
также и у веществ с полярными молекулами, но при этом оно обычно значительно слабее ориентационного.

3. Дисперсионное взаимодействие.

Дисперсионные силы (Лондоновские силы) — силы электростатического притяжения мгновенного и индуцированного
(наведённого) диполей электрически нейтральных атомов или молекул.

В атомах и молекулах электроны сложным образом движутся вокруг ядер. В среднем по времени дипольные моменты
неполярных молекул оказываются равными нулю. Но в каждый момент электроны занимают какое-то положение.
Поэтому мгновенное значение дипольного момента (например, у атома водорода) отлично от нуля.
Мгновенный диполь создаёт электрическое поле, поляризующее соседние молекулы. В результате возникает взаимодействие мгновенных диполей.

Считается, что дисперсионная энергия не имеет классического аналога и определяется квантовомеханическими флуктуациями электронной плотности.

Как показывает квантовая механика, мгновенные диполи возникают в твёрдых телах и жидкостях согласованно, причём концы
соседних молекул оказываются заряженными электричеством противоположного знака, что приводит к их притяжению.

Это явление, называемое дисперсионным взаимодействием, имеет место во всех веществах, находящихся в конденсированном состоянии.
В частности, оно обуславливает переход благородных газов при низких температурах в жидкое состояние.

Соотношение молекулярных сил.

Относительная величина рассмотренных видов межмолекулярных сил зависит от полярности и от поляризуемости молекул вещества.

Чем больше полярность молекул, тем больше ориентационные силы.

Чем крупнее атомы, чем слабее связаны внешние электроны атомов, чем больше деформируется электронное облако,
тем значительнее дисперсионные силы.

Таким образом, в ряду однотипных веществ дисперсионное взаимодействие возрастает с увеличением размеров атомов,
составляющих размеры этих веществ.

Например:

  • в случае HCl на долю дисперсионных сил приходится 81% всего
       межмолекулярного взаимодействия,
  • для НBr эта величина составляет 95%,
  • для HI99,5%.
    • Индукционные силы почти всегда малы.

Источник