Методика испытаний на растяжение деталей

Методика испытаний на растяжение деталей thumbnail

Лабораторная работа № 1

Цель работы – изучить поведение малоуглеродистой стали при растяжении и определить ее механические характеристики.

Основные сведения

Испытания на растяжение являются основным и наиболее распространенным методом лабораторного исследования и контроля механических свойств материалов.

Эти испытания проводятся и на производстве для установления марки поставленной заводом стали или для разрешения конфликтов при расследовании аварий.

В таких случаях, кроме металлографических исследований, определяются главные механические характеристики на образцах, взятых из зоны разрушения конструкции. Образцы изготавливаются по ГОСТ 1497-84 и могут иметь различные размеры и форму (рис. 1.1).

Образцы для испытания на растяжение

Рис. 1.1. Образцы для испытания на растяжение

Между расчетной длиной образца lо и размерами поперечного сечения Ао (или dо для круглых образцов) выдерживается определенное соотношение:

В испытательных машинах усилие создается либо вручную — механическим приводом, либо гидравлическим приводом, что присуще машинам с большей мощностью.

В данной работе используется универсальная испытательная машина УММ-20 с гидравлическим приводом и максимальным усилием 200 кН, либо учебная универсальная испытательная машина МИ-40КУ (усилие до 40 кН).

Порядок выполнения и обработка результатов

Образец, устанавливаемый в захватах машины, после включения насоса, создающего давление в рабочем цилиндре, будет испытывать деформацию растяжения. В измерительном блоке машины есть шкала с рабочей стрелкой, по которой мы наблюдаем рост передаваемого усилия F.

Зависимость удлинения рабочей части образца от действия растягивающей силы во время испытания отображается на миллиметровке диаграммного аппарата в осях F-Δl (рис. 1.2).

В начале нагружения деформации линейно зависят от сил, потому участок I диаграммы называют участком пропорциональности. После точки В начинается так называемый участок текучести II.

На этой стадии стрелка силоизмерителя как бы спотыкается, приостанавливается, от точки В на диаграмме вычерчивается либо прямая, параллельная горизонтальной оси, либо слегка извилистая линия — деформации растут без увеличения нагрузки. Происходит перестройка структуры материала, устраняются нерегулярности в атомных решетках.

Далее самописец рисует участок самоупрочнения III. При дальнейшем увеличении нагрузки в образце происходят необратимые, большие деформации, в основном концентрирующиеся в зоне с макронарушениями в структуре – там образуется местное сужение — «шейка».

На участке IV фиксируется максимальная нагрузка, затем идет снижение усилия, ибо в зоне «шейки» сечение резко уменьшается, образец разрывается.

При нагружении на участке I в образце возникают только упругие деформации, при дальнейшем нагружении появляются и пластические — остаточные деформации.

Если в стадии самоупрочнения начать разгружать образец (например, от т. С), то самописец будет вычерчивать прямую СО1. На диаграмме фиксируются как упругие деформации Δlу (О1О2), так и остаточные Δlост (ОО1). Теперь образец будет обладать иными характеристиками.

Так, при новом нагружении этого образца будет вычерчиваться диаграмма О1CDЕ, и практически это будет уже другой материал. Эту операцию, называемую наклеп, широко используют, например, в арматурных цехах для улучшения свойств проволоки или арматурных стержней.

Диаграмма растяжения (рис. 1.2) характеризует поведение конкретного образца, но отнюдь не обобщенные свойства материала. Для получения характеристик материала строится условная диаграмма напряжений, на которой откладываются относительные величины – напряжения σ=F/A0 и относительные деформации ε=Δl/l0 (рис. 1.3), где А0, l0 – начальные параметры образца.

Диаграмма растяжения образца из малоуглеродистой стали

Рис. 1.2. Диаграмма растяжения образца из малоуглеродистой стали

Условная диаграмма напряжений при растяжении

Рис. 1.3. Условная диаграмма напряжений при растяжении

Условная диаграмма напряжений при растяжении позволяет определить следующие характеристики материала (рис. 1.3):

σпц – предел пропорциональности – напряжение, превышение которого приводит к отклонению от закона Гука. После наклепа σпц может быть увеличен на 50-80%;

σу – предел упругости – напряжение, при котором остаточное удлинение достигает 0,05%. Напряжение σу очень близко к σпц и обнаруживается при более тонких испытаниях. В данной работе σу не устанавливается;

σт – предел текучести – напряжение, при котором происходит рост деформаций при постоянной нагрузке.

Иногда явной площадки текучести на диаграмме не наблюдается, тогда определяется условный предел текучести, при котором остаточные деформации составляют ≈0,2% (рис. 1.4);

Определение предела упругости и условного предела текучести

Рис. 1.4. Определение предела упругости и условного предела текучести

σпч (σв) – предел прочности (временное сопротивление) – напряжение, соответствующее максимальной нагрузке;

σр – напряжение разрыва. Определяется условное σур и истинное σир=Fр/Аш, где Аш – площадь сечения «шейки» в месте разрыва.

Определяются также характеристики пластичности – относительное остаточное удлинение

δ = (l1 – l0)∙100% / l0,

где l1 – расчетная длина образца после разрыва,
и относительное остаточное сужение

ψ = (А0 — Аш)∙100% / А0.

По диаграмме напряжений можно приближенно определить модуль упругости I рода

E=σпц/ε=tgα,

причем после операции наклепа σпц возрастает на 20-30%.

Работа, затраченная на разрушение образца W, графически изображается на рис. 1.2 площадью диаграммы OABDEO3. Приближенно эту площадь определяют по формуле:
W = 0,8∙Fmax∙Δlmax.

Удельная работа, затраченная на разрушение образца, говорит о мере сопротивляемости материала разрушению w = W/V, где V = A0∙l0 – объем рабочей части образца.

Читайте также:  Болит кисть руки в суставе при растяжении

По полученным прочностным и деформационным характеристикам и справочным таблицам делается вывод по испытуемому материалу о соответствующей марке стали

Контрольные вопросы

  1. Изобразите диаграмму растяжения образца из малоуглеродистой стали (Ст.3). Покажите полные, упругие и остаточные абсолютные деформации при нагружении силой, большей, чем Fт.
  2. На каком участке образца происходят основные деформации удлинения? Как это наблюдается на образце? Какие нагрузки фиксируются в этот момент?
  3. Объясните, почему после образования шейки дальнейшее растяжение происходит при все уменьшающейся нагрузке?
  4. Перечислите механические характеристики, определяемые в результате испытаний материала на растяжение. Укажите характеристики прочности и пластичности.
  5. Дайте определение предела пропорциональности.
  6. Дайте определение предела упругости.
  7. Дайте определение предела текучести.
  8. Дайте определение предела прочности.
  9. Как определить предел текучести при отсутствии площадки текучести? Покажите, как это сделать, по конкретной диаграмме.
  10. Какие деформации называются упругими, какие остаточными? Укажите их на полученной в лабораторной работе диаграмме растяжения стали.
  11. Как определяется остаточная деформация после разрушения образца?
  12. Выделите на диаграмме растяжения образца из мягкой стали упругую часть его полного удлинения для момента действия максимальной силы.
  13. Какое явление называется наклепом? До какого предела можно довести предел пропорциональности материалов с помощью наклепа?
  14. Как определяется работа, затраченная на разрушение образца? О каком свойстве материала можно судить по удельной работе, затраченной на разрушение образца?
  15. Как определить марку стали и допускаемые напряжения для нее после проведения лабораторных испытаний?
  16. Чем отличается диаграмма истинных напряжений при растяжении от условной диаграммы?
  17. Можно ли определить модуль упругости материала по диаграмме напряжений?
  18. Как определить работу, затрачиваемую на деформации текучести лабораторного образца?

Испытание материалов на сжатие >
Краткая теория >
Примеры решения задач >

Источник

МЕТОДИКА ПРОВЕДЕНИЯ ИСПЫТАНИЙ НА РАСТЯЖЕНИЕ
[c.107]

Мак-Грегори Н. Н. Давиденков ) широко использовали кривые истинных напряжений— натуральных деформаций в своих исследованиях по сравнительному изучению свойств пластичных материалов. Они обнаружили, что эти кривые с момента начала образования шейки делаются почти прямыми. Это привело обоих исследователей на путь дальнейших упрощений в методике проведения испытаний на растяжение. Мак-Грегор ) предложил для определения кривой напряжений — деформаций метод двух нагрузок , следуя которому измеряют до и после испытания диаметры в нескольких поперечных сечениях плавно сужающегося круглого стержня и регистрируют только максимальную и разрушающую нагрузки. Это можно выполнить, не прерывая испытания, так как части стержня, напряжения в которых меньше истинных напряжений, соответствующих максимальной нагрузке, перестают деформироваться, как только нагрузка начинает падать. В соответствии с данными других испытаний, остальная часть диаграммы принимается прямолинейной. Этот метод упрощает определение удлинений в испытаниях при высокой температуре, а также в ударных испытаниях.
[c.95]

Испытания на растяжение. Методика проведения испытаний на растяжение черных и цветных металлов — листов и лент толщиной до 3 мм регламентирована ГОСТ 11701—84, толщиной свыше 3 мм — ГОСТ 1497—84, сортового проката — ГОСТ 1467-77.
[c.21]

Испытания на водородное охрупчивание обычно проводят с целью исследования какого-либо одного из двух типов поведения. Поведение I типа связано с кратковременными или мгновенными процессами, когда проникновение водорода в металл посредством диффузии невелико или отсутствует. Такие процессы исследуют с помощью испытаний на растяжение или методами механики разрушения при высоком или низком давлении газа. Поведение II типа характерно для тех случаев, когда водород попадает в решетку металла, что может произойти, например, при длительной эксплуатации конструкции в водородсодержащей среде. Такие условия моделируются путем проведения испытаний на образцах, предварительно наводороженных до перенасыщения в газовой фазе или электролитически. Используемые методики могут включать растяжение, разрушение, выращивание усталостных трещин или рост трещин при постоянной нагрузке.
[c.49]

Во второй главе приведены стандартные и оригинальные методики проведения исследований. К ним относятся методы определения основных механических свойств металлов при испытаниях на растяжение и ударный изгиб
[c.9]

Методы испытания на растяжение стандартизованы. Имеются отдельные стандарты на испытания при комнатной температуре (ГОСТ 1497—61), при повышенных— до 1473°К (ГОСТ 9651—61) и пониженных — от 273 до 173°К (ГОСТ 11150—65) температурах. В них сформулированы определения характеристик, оцениваемых в результате испытания, даны типовые формы и размеры образцов, основные требования к испытательному оборудованию, методика проведения испытания и подсчета результатов.
[c.92]

Методика проведения испытания аналогична изложенной выще методике испытания на растяжение плоских образцов. Точно также на образец наносится сетка, а усилие Р -, соответствующее условному пределу текучести, устанавливается путем последовательных нагружений и замеров под микроскопом. При этом остаточное удлинение доводится до значения несколько меньшего 0,2% (примерно до значения 0,17%).
[c.224]

Механические характеристики предел прочности при растяжении 0 , предел текучести Os, относительное удлинение б, относительное сужение площади поперечного сечения гр, твердость Н, ударная вязкость а , предел выносливости а 1 и другие являются основными механическими характеристиками, величина которых приводится в государственных стандартах (ГОСТ) и Технических условиях (ТУ) на металлы и сплавы. Условия, в которых производится определение этих характеристик (методика проведения испытаний), также обусловлены ГОСТ и ТУ.
[c.22]

Читайте также:  Расчет двутавра на растяжение

Для испытания при повышенной температуре применяют образцы типов IV и V. Подробная методика проведения испытаний металла на статическое растяжение при нормальной температуре предусмотрена ГОСТ 1497-73.
[c.134]

Контроль качества сварного соединения с помощью образцов-свидетелей. Для контроля качества сварных соединений применяют периодические испытания контрольных технологических образцов-свидетелей. Эти образцы удобны для проведения испытаний и измерений, и их легко изготовить. При обеспечении одинаковых условий сварки образцов и сварных изделий (однородность материала, подготовка свариваемых поверхностей, режим сварки и др.) можно по измеренным характеристикам сварного соединения образцов судить о качестве сварного соединения готовых изделий. Качество сварки на контрольных образцах оценивают по результатам испытаний и измерений, проводимых соответственно требованиям, предъявляемым к сварным соединениям. Кроме механической прочности, нередко предъявляются требования особых свойств. Например, сохранение электрических свойств одного из металлов без изменения их в зоне сварного соединения или сохранение оптических свойств в сварной зоне и геометрических размеров изделий, получаемых способом ДС кварцевых элементов, и т. д. В ряде случаев к сварным соединениям не предъявляются повышенные требования по прочности. Например, для элементов электродов электролизеров, изготовленных способом ДС из пористых и сетчатых материалов, основной является электрохимическая характеристика, полученная при различных плотностях тока. Имея указанные выше данные, необходимо провести статистическую обработку результатов испытаний и измерений, используя математические методы. Основной задачей такой обработки является оценка среднего значения характеристики того или иного свойства и ошибки в определении этого среднего, а также выбор минимально необходимого количества образцов (или замеров) для оценки среднего с требуемой точностью. Эта задача является стандартной для любых измерений и подробно рассматривается во многих руководствах [8]. Следует иметь в виду, что, несмотря на одинаковые условия сварки образцов и изделий, качество соединения может быть различным по следующим причинам. При сварке деталей, имеющих значительно большие размеры по сравнению с контрольными образцами, возможны неравномерность нагрева вдоль поверхности соединения, а также неравномерность передачи давления. Образцы и изделия вообще имеют различную кривизну свариваемых поверхностей, что не обеспечивает идентичности условий формирования соединения. В ряде случаев, особенно для соединений ответственного назначения, перед разрушающими испытаниями образцов и изделий целесообразно, если это возможно, проводить неразрушающий контроль качества сварного соединения, а также другие возможные исследования для установления корреляции между различными измеряемыми характеристиками. Основные методы определения механических свойств сварного соединения и его отдельных зон устанавливает ГОСТ 6996—66. Имеются стандарты для испытаний на растяжение, ударную вязкость, коррозионную стойкость и т. д. [18]. В этих ГОСТах даны определения характеристик, оцениваемых в результате испытания, типовые формы и размеры образцов, основные требования к испытательному оборудованию, методика проведения испытания и подсчета результатов.
[c.249]

Величина определялась экспериментально по методике определения прочности при растяжении плоских разрывных образцов и на том же оборудовании. Для каждого образца, содержащего 250 волокон диаметром 140 мкм, волокна отбирались с десяти произвольно выбранных шпуль. Концы пучков волокон закреплялись смолой для облегчения проведения испытаний, рабочая же часть оставаясь обнаженной.
[c.108]

Созданы методики и оборудование для усталостных испытаний высокомодульных материалов. Расчеты на прочность при переменных нагрузках как по коэффициентам запаса прочности, так и при помощи вероятностных методов расчета требуют знания характеристик сопротивления усталости материала. Для этого разработаны оборудование и методики проведения усталостных испытаний композитов при растяжении, изгибе, межслойном сдвиге и смятии в мало- и многоцикловой областях. Установлено, в частности, что современные углепластики обладают высоким сопротивлением усталости по сравнению с металлическими материалами, что позволяет эффективно применять их при значительных амплитудах переменных нагрузок. Были выявлены статистические закономерности подобия усталостного разрушения углепластиков и разработаны предпосылки создания инженерной методики оценки усталостной долговечности элементов конструкций из углепластиков.
[c.17]

К методике проведения испытаний на растяжение при повышенных и отрицательных температурах предъявляют ряд специфических требований. При высокотемпературных испытаниях нагревательные устройства (термостаты и печи самых разнообразных конструкций) должны обеспечивать равномерный нагрев образца в пределах расчетной длины и поддержание заданной температуры в установленных пределах в течение всего времени испытания. Рекомендуется, чтобы длина рабочего пространства печи была как мииимум в пять раз больше начальной расчетной длины образца. При высокотемпературных испытаниях следует особое внимание уделять надежности крепления головок образцов в захватах, иначе возможно сильное искажение результатов из-за деформа-
[c.108]

Основное условие получения достоверных результатов в ква-зистатических испытаниях — поддержание с заданной точностью однородности напряженного и деформационного состояния материала в объеме рабочей части образца. Это позволяет принимать регистрируемые зависимости между напряжением и деформацией за характеристики поведения локального объема материала. Таким методом определены характеристики сопротивления материалов деформированию в большинстве проведенных до настоящего времени исследований, в основном при испытаниях на растяжение или сжатие со скоростями до 10 м/с [69, 167, 208, 210, 305, 406, 409]. Область более высоких скоростей деформирования, особенно при испытаниях на растяжение, обеспечивающих получение наиболее полной информации о поведении материала под нагрузкой, практически не исследована. Такое ограничение исследований обусловлено тем, что с ростом скорости деформации возрастает влияние волновых процессов и радиальной инерции в образце и цепи нагружения, ведущих к нарушению однородности деформации и одноосности напряженного состояния в объеме рабочей части образца и затрудняющих приведение усилий и деформаций в материале. Уменьшение влияния этих эффектов требует разработки специальных методик для испытаний с высокими скоростями деформации.
[c.13]

Читайте также:  Растяжение сетчатки при беременности

Методика проведения испытания близка к методике испытаний на ползучесть. Используются те же схемы нагружения (обычно растяжение) и те же испытательные машины. Основные цилиндрические образцы. стандартизованы. Они должны иметь рабочую часть диаметром 0=5 7 или 10 мм и расчетную длину to 5do или 10 do. Допускается использовать другие пропорциональные образцы, но их диаметр должен ыть не меньше 3 мм. У плоских о1бразцов /о=5,65у Fo, где Fo — начальная площадь поперечното сечения. Конструкция головок и способ их крепления в захватах аналогичны тем, которые применяются при испытании на ползучесть.
[c.267]

Работы А. С. Михайлова и Б. С. Крылова [216, 402] были выполнены по методике, которая исключает установление связи между напряжениями и временем до разрушения. Более совершенны в этом отношении работы М. X. Шоршорова с сотрудниками [210, 220], экспериментальная часть которых была выполнена на листовых образцах с надрезом при проведении испытаний на статическое растяжение иа машинах с рычажным нагружением. С каждой стороны надреза образцы проплавляли при помощи аргоно-дуговой горелки так, чтобы околошовная зона располагалась в месте надреза. Надрез не только фиксировал место разрушения, но и создавал двухосное напрялченное состояиие.
[c.464]

Испытание на двухосное растяжение проводили с использованием тех же охлаждающих сред, такой же методики измерения температуры и схемы компенсации, как и при испытании на одноосное растяжение. Схема криостата приведена на рис. 2. Нагрузку измеряли с помощью месдоз, а деформацию — тензодатчиками длиной 13 мм. Нагрузку и деформацию для каждого из двух направлений векторов главных напряжений регистрировали с помощью двухкоор-дннатного самописца. Рис. 3 и 4 иллюстрируют методику построения кривых напряжение — деформация на основании кривых нагрузка—деформации. По рис. 3 1. Из уравнения oi = 161/(1—fi,i) определяют напряжения в упругой области. 2. Продолжают петли разгрузки на кривой нагрузка— деформация до нулевого напряжения. 3. Из точек В, С, D, Е проводят прямые, параллельные ОА (модуль упругости определяют из уравнения, приведенного выше деформацию получают из диаграммы нагрузка — деформация). 4. Из точек F, G, Н, I вверх или вниз проводят ординаты до пересечения с прямыми,проведенными ранее, и получают точки в пластической области диаграммы напряжение— деформация. 5. Ординаты полученных точек являются напряжением (например, точка F отвечает напряжению 378 МПа). 6. Строят полную диаграмму деформации. 7. Определяют предел текучести сго,2. Процедура состоит из следующих этапов (см. рис. 4) 1. Из уравнения a2=eiE2l
[c.60]

Для исследования анизотрбйий прочностй (кратковременной и длительной) следует использовать комбинированное нагружение, например, цилиндрических оболочек [19]. Варьируя соотношения между компонентами действующего тензора напряжений, т. е. комбинируя по-разному величины осевой сжимающей или растягивающей нагрузки, внутреннего давления и скручивающего момента, можно получать напряженное состояние одноосного растяжения по любому направлению, определяемому углом анизотропии упругих и прочностных свойств (при кратковременных нагрузках), проведенные В. Д. Протасовым и В. П. Георгиевским, показали отсутствие экстремума на кривых Од (ф) при Ф = 45°, как это следует, например, из рис. 71. Вместе с тем существует мнение, что и анизотропия, исследованная на плоских образцах, имеет значение в ряде прикладных задач (например, в задаче о концентрации напряжений у отверстий в анизотропных пластинах и оболочках).
[c.140]

При испытаниях образцов из сплава ЭИ826 с электроннолучевым покрытием o- r-Al-Y, проведенных по разным методикам (на установке резонансного типа с электромагнитным возбуждением при растяжении — сжатии и методом Локати в условиях знакопеременного изгиба), получены совершенно разные результаты (рис. 5.19, б и табл. 5.27). Испытания методом Локати осуществляли при нагружении образца диаметром 4 мм до различных напряжений, в том числе таких, при которых в по-
[c.393]

Смотреть страницы где упоминается термин Методика проведения испытаний на растяжение
:

[c.30]   

[c.49]   

Источник