Материалы для изготовления пружин растяжения
Пружины изготовляют из специальных углеродистых и легированных сталей, а также из специальных цветных сплавов.
Исходным материалом для изготовления пружин служат проволока, лента, прутки, полоса.
Для изготовления витых пружин очень распространено применение высокоуглеродистой пружинной проволоки диаметром до 8 мм (ГОСТ 9389—75)
Материал пружины после соответствующей термообработки должен иметь устойчивые во времени упругие свойства, значительную прочность и большое сопротивление ударным нагрузкам. Кроме того, иногда при выборе материала пружины приходится принимать во внимание его электропроводность, коэффициент температурного расширения и другие специфические условия, в которых должна работать пружина.
В приборостроении применяют пружины, изготовленные из стали и других металлов, например, из фосфористой и бериллиевой бронзы, нейзильбера, латуни и т. п. В зависимости от конструкции, способа изготовления и условий работы пружины можно изготовлять из твердого термически обработанного или отожженного материала с последующей термообработкой.
Характеристика пружинных материалов приведена в таблице:
Наименование материала и марка | Характеристика и применение материала |
---|---|
Проволока I-класса | Высокая разрывная прочность и большие остаточные напряжения после волочения и навивки. |
Проволока классов II и IIА | Отличается от проволоки I класса уменьшенной прочностью при разрыве и повышенной пластичностью. Применяют для пружин, работающих при низких температурах, а также для пружин растяжения со сложными конструкциями зацепов. Проволока класса IIА отличается от проволоки II класса более высокой точностью размеров |
Марганцовистая сталь 65Г | Усталостная прочность обычная. После термической обработки имеет пружинящие свойства и высокую прочность, плохо сопротивляется ударным нагрузкам, имеет повышенную склонность к образованию закалочных трещин. Применяют для пружин любого типа. Предел рабочих температур от —40 до +120° С |
Хромоваиадиевая сталь 60ХФА | Теплоустойчивость повышенная (до температуры 400° С). Накаливается до твердости не более HRC 52. Очень плохо воспринимает ударные нагрузки, может работать без покрытий в атмосфере нормальной влажности, имеет высокие упругие и вязкие свойства, является лучшим материалом для пружин I класса |
Кремнистая сталь 60С2А | Высокий предел усталости, очень хорошо воспринимает резкие ударные нагрузки, имеет высокие упругие и вязкие свойетва, склонна к обезуглероживанию при нагреве, может работать без покрытия в среде нормальной влажности. Устойчива до температуры 250°С. Применяют для пружин I и II классов |
Кремнистая сталь 70СЗА | После термической обработки имеет высокие упругие и пружинящие свойства при достаточной пластичности, склонна к обезуглероживанию поверхностного слоя |
Бериллиевая бронза Бр. Б2 | Имеет усталостную прочность; предназначена специально для работы в магнитных полях и агрессивных средах при нормальной температуре и без резких ударов. Применяют для пружин любого типа |
Кремнисто-марганцевая бронза Бр. КМцЗ-1 | Имеет усталочную прочность; предназначена специально для работы в магнитных полях и агрессивных средах при нормальной температуре без реаких ударов. Применяют для пружин любого типа |
Для пружин, изготовляемых из ленточной стали по ГОСТ 2614—65, применяют сталь марок У8А, У10А, У12А, 65Г, а для особо ответственных пружин—сталь марок 60С2А и 70СЗА. Для токопроводящих пружин или пружин, работающих в магнитном поле, можно применять проволоку из кремнисто-марганцевой бронзы Бр.КМцЗ-1 и для особо ответственных пружин бронзу Бр-Б2.
Источник
Подробности
Категория: Пружины
Просмотров: 6448
Материалы. Изготовление пружин
Пружины изготовляют из углеродистых и легированных сталей с содержанием углерода 0,5—1,1%. Из углеродистых сталей изготовляют пружины с диаметром проволоки до 10 мм; из легированных сталей — пружины, работающие при высоких напряжениях или повышенных температурах, а также пружины с большими сечениями проволоки (диаметром 20—30 мм) дли обеспечения закалки на полное сечение.
Присадка кремния (до 2%) повышает упругие качества стали и сопротивление повторным ударным нагрузкам. Ванадий (0,1—0,2%) и вольфрам (до 1,2%) вводят для повышения механических свойств и термостойкости. Для пружин ответственного назначения применяют вольфрамокремнистые и хромокремневанадиевые стали, обладающие наиболее высокими механическими свойствами.
Пружины, работающие при повышенных температурах, изготовляют из хромованадиевых сталей типа 50ХФА (термостойкость до 300°С), вольфрамокремниевых сталей типа 65С2ВА (до 350°С) и стали 40X13 (до 450°С).
Для пружин, работающих при температурах свыше 500°С, применяют специальные стали с повышенным содержанием Cr, V, Mo, W.
В табл. 57 приведены основные материалы, применяемые для изготовления пружин, и их механические свойства после термообработки. Модуль упругости пружинных сталей Е = (2,1—2,2)· 105 МПа, модуль сдвига G = (7,6—8,2)·104 МПа.
Сопротивление усталости пружинных сталей мало зависит от химического состава и в гораздо большей степени определяется состоянием поверхностного слоя. Обезуглероживание поверхностного слоя при термообработке, местные дефекты (коррозия, забоины, царапины, истирание при износе) резко снижают предел выносливости. Значительного повышения сопротивления усталости можно добиться полированием и особенно нагартовкой поверхностного слоя (волочением, дробеструйной обработкой).
Предел выносливости при отнулевом циклическом нагружении составляет в среднем 400—600 МПа.
Прочность пружинных сталей очень зависит от диаметра проволоки, резко возрастая с уменьшением диаметра. В качестве примера на рис. 856 приведены показатели прочности холоднокатаной проволоки в функции диаметра. Прочность проволоки малого диаметра (0,2—1 мм) примерно в два раза превышает прочность проволоки большого диаметра (8 мм). Диаметр проволоки следует учитывать при выборе допускаемых напряжений при расчете пружин.
Для изготовления пружин, работающих в условиях повышенной влажности или соприкасающихся с химически агрессивными средами, применяют коррозионностойкую сталь 40X13 или сплавы на основе меди. В табл. 58 приведены наиболее употребительные медные сплавы и их механические свойства.
Модуль упругости сплавов на медной основе Е = (1,2—1,3)·105, модуль сдвига G = (4,5—5)·104 МПа.
Наиболее высокими антикоррозионными свойствами и наибольшим сопротивлением усталости обладают бериллиевые бронзы. Сочетание этих свойств с высокой электропроводимостью обусловливает широкое применение бериллиевых бронз для изготовления пружин в электромашиностроении. Кроме того, бериллиевые бронзы отличаются высоким постоянством упругих свойств и почти полным отсутствием гистерезиса и по этой причине часто применяются для изготовления упругих элементов точных приборов.
Пружины из сплавов на медной основе парамагнитны и применяются в тех случаях, когда необходимо исключить влияние магнитных полей.
Спиральные пружины из проволоки малого диаметра (до 10 мм) с отношением D/d>4 (D — средний диаметр пружины; d — диаметр проволоки) изготовляют навивкой в холодном состоянии. Пружины с отношением D/d<4, а также пружины из проволоки больших сечений навивают вгорячую.
При холодной навивке возможны два варианта:
1) проволоку навивают в термообработанном состоянии или после холодного волочения и после навивки подвергают невысокому отпуску (200—300°С) для снятия напряжений, возникающих при навивке;
2) проволоку навивают в отожженном состоянии и после навивки подвергают закалке и отпуску.
По первому способу изготовляют пружины из углеродистых сталей, например, из рояльной проволоки и холоднокатаной проволоки диаметром в пределах 0,2—8 мм, а также из кремневольфрамовых и хромованадиевых сталей.
Рояльную (патентированную) проволоку изготовляют из качественной высокоуглеродистой стали (~ 1 % С) и подвергают изотермической закалке (нагрев до 870—950°С) с последующей выдержкой в расплавленном свинце до 500°С (патентирование). После термообработки проволоку подвергают калибровочному волочению; в результате нагартовки проволока приобретает исключительно высокую прочность (до σв = 3000 МПа).
Аналогично изготовляют пружины из холоднокатаной проволоки, которая выпускается трех классов прочности: нормальной Н, повышенной П и высокой В с подразделением на группы I—II (для классов Н и В) и I—III (для класса П), в зависимости от вязкости.
Легированные стали (за исключением кремневольфрамовых и хромованадиевых сталей) подвергают после навивки термообработке: закалке в масле при 800—850°С и последующему среднему отпуску при 400—500°С.
Во избежание обезуглероживания поверхностного слоя нагрев под закалку ведут под слоем древесноугольного порошка или чугунных опилок. Режимы термообработки подробно разработаны для каждой марки стали и подлежат строгому соблюдению с целью получения наиболее высоких показателей прочности.
Пружины, навиваемые в горячем состоянии, подвергают после навивки обязательной термообработке. Навивку производят при 800—1000°C.
Пружины из бронз БрО4ЦЗ и БрКЗМц1 навивают в состоянии поставки и после навивки подвергают нагреву до 100—150°С для снятия напряжений. Пружины из бериллиевых бронз закаливают в воде с 800°С, после чего подвергают отпуску при 250—350°С.
Стальные пружины ответственного назначения, работающие в условиях циклических нагрузок, после термообработки подвергают дробеструйной обработке.
Заключительной операцией изготовления пружины является нанесение покрытия с целью предупреждения коррозии. Стальные пружины обычно подвергают цинкованию, кадмированию, никелированию, хромированию, фосфатированию и т. д.
Источник
Как известно, существуют различные виды пружин, которые отличаются не только по конструкции, но еще и по способу взаимодействия с остальными механизмами в узлах. Так, например, пружины сжатия работают на сжатие, пружины растяжения — на растяжение, ну а пружины кручения, соответственно, на изгиб и скручивание. При этом данные виды пружин имеют витую форму, в отличии от той же тарельчатой пружины или от любого типа пружин-рессор. Само собой, технология изготовления пружин витого типа будет отличаться от того как происходит производство пружин с другой конструкцией.
В целом, технология изготовления пружин подразумевает под собой совокупность последовательного использования специальных технологических инструментов, например, станочного оборудования и каких-либо сырьевых материалов. При этом, само производство пружин может происходить за разное число этапов и с использованием различных способов, которые выбирает непосредственно сам завод-производитель, в зависимости от назначения конкретной пружины. Соответственно, технология меняется исходя из всех характеристик и конструкционных параметров у этого металлического изделия.
Пожалуй, наиболее распространенными в промышленности и быту считаются как раз таки витые виды пружин, а именно, кручения, сжатия, растяжения. По этой причине нами сегодня будет рассмотрено, что представляет технология изготовления пружин из данной классификации. Вообще, наличие специальной навивки в конструкции позволяет подобным пружинам многократно воспринимать повторяющиеся нагрузки, проявляя высокую степень устойчивости к разным механическим воздействиям без потери своих характеристик, в числе которых имеются следующие физико-химические свойства:
- Коэффициент упругости
- Предел воспринимаемой нагрузки
- Усталостная прочность
Именно эти параметры влияют на продолжительность, а главное, на качество работы пружин. Собственно, для того, чтобы обеспечить данным изделиям максимально возможную долгосрочность эксплуатации, производство пружин должно осуществляться из надежного сырьевого материала, посредством поэтапного применения разных технически процессов на специальном оборудовании. Как правило, навивка осуществляется оператором из стальной проволоки на токарных станках либо вручную, либо через автомат одним из двух основных способов: горячим методом или же холодным методом.
Холодная технология изготовления пружин
Производство пружин холодным способом в Российской Федерации выполняют чуть чаще, нежели горячим, ввиду наиболее низкой себестоимости производства. Для таких работ не требуются дополнительные дорогостоящие станки, кроме навивочного. Собственно, такой метод предполагает использование оборудования, оснащенного двумя основными валиками, через которые и происходит навивка. Верхний из валиков позволяет регулировать натяжение, а также задавать направление завивки, используя для этого специально установленный винт. Сам процесс изготовления выполняется примерно так:
- Подготавливается специальная сталь для изготовления пружин (стальная проволока).
- Проволока просовывается через планку в суппорте.
- Ее конец прочно закрепляется на оправке при помощи зажима.
- Через верхний валик устанавливается необходимое натяжение.
- В зависимости от диаметра проволоки выбирается скорость вращения.
- Запускается в работу валик, наматывающий пружину.
- По мере достижения необходимого числа витков, проволока обрезается.
- В завершении деталь обрабатывается механически и термически.
Несмотря на то, что форма изготавливаемого изделия может быть как бочкообразной, так и цилиндрической, или даже конической, холодная технология изготовления пружин не позволяет использовать для изготовления пружин сталь диаметром более 16 миллиметров. Механическая обработка проводится для устранения зазубрин, сколов или же любых других дефектов на поверхности метиза, полученных в результате предыдущего проката проволоки, либо во время непосредственного процесса навивки с целью обеспечения наиболее лучшего качества изделия и повышения срока его эксплуатации.
Кроме того, немаловажным этапом является последующая термическая обработка, за счет проведения которой заготовка сможет избавиться от всех полученных во время навивки внутренних напряжений. При этом сам метод обработки выбираю исходя из того, какая была использована сталь для изготовления пружин. В некоторых случаях используют и отпуск и закалку, в некоторых, например, в бронзе, только лишь низкотемпературный отпуск. Так или иначе, каждый из данных процессов позволяет изделию достичь основных своих критериев, в числе которых состоит их великолепная упругость.
Горячая технология изготовления пружин
В отличии от холодного способа, горячее производство пружин подразумевает лишь изготовление изделий с диаметром от 10 миллиметров. То есть метизы меньших габаритов не получится сделать таким способом априори. Горячая технология изготовления пружин для создания заготовок требует проводить процедуру равномерного нагрева. При этом сам нагрев производится очень быстро на специальном станке. После чего разогретый до красна пруток необходимо просунуть через фиксирующую планку в навивочный станок и закрепить концы заготовки в зажимах и выполнять следующие этапы:
- Задать необходимое натяжение через верхний валик.
- Выбрать скорость вращения, в зависимости от диаметра.
- Включить станок, начав процесс навивки проволоки.
- По окончании работ снять цельную заготовку.
- Отправить изделие на термическую обработку.
- Максимально охладить спираль в масле.
- Провести механическую обработку поверхности.
- Нанести защитный антикоррозийный слой.
Обратите внимание, что горячая технология изготовления пружин для экономичного расходования сырьевых материалов не предусматривает разрезание пружины по мере того, как будет достигнут необходимый размер изделия. Это значит, что навивка происходит сразу на всю длину заготовки, а уже потом от нее отрезают куски необходимой длины. Повторная термическая обработка изделия необходима для снятия внутреннего напряжения. Охлаждать заготовку в масле, а не в воде рекомендуется по причине того, что во время долгой закалки в воде горячая сталь может попросту пустить трещину.
Тем не менее, если технология изготовления пружин требует проводить закалку как раз в воде, то необходимо соблюдать временной диапазон от 1 до 3 секунд, после чего так же опустить заготовку в масло. После этого пружину вынимают и очищают от масла. Далее уже идет аналогичный холодному методу навивки этап механической обработки изделия: заточка, шлифовка и другие технологические операции. Кроме того, для улучшения износостойкости изготовленных обеими способами пружин довольно часто производители применяют так же антикоррозионную обработку поверхностей изделия.
Сталь для изготовления пружин
Поскольку пружины зачастую используются для гашения каких-либо типов нагрузок, сталь для изготовления пружин должна иметь очень высокие технические характеристики. В зависимости от предназначения итоговых изделий, для их создания могут использоваться самые различные марки стали. Однако, наиболее часто, производство пружин выполняется из углеродистой и высоколегированной стали. Как правило, заводы-изготовители используют такие марки, как 50ХФА, 50ХГФА, 55ХГР, 55С2, 60С2, 60С2А, 60С2Н2А, 65Г, 70СЗА, У12А, 70Г, а также ещё множество других стальных сплавов.
Среднеуглеродистые и высокоуглеродистые марки стали, а также низколегированные стальные сплавы, которые задействует любое производство пружин, называются рессорно-пружинными. Зачастую, сталь для изготовления пружин обозначается еще как пружинная сталь. Стандартом для ее производства считают ГОСТ 14959-79, который предписывает все допуски и требования к техническим характеристикам. По госстандарту, пружинная сталь должна иметь очень качественную поверхность без наличия каких-либо дефектов, способных привести к частичному или же полному разрушению.
Дело в том, что при наличии, например, трещин на поверхности изделий, в процессе их эксплуатации при тяжелых различных тяжелых условиях, все усталостные явления будут концентрироваться как раз в наименее устойчивых дефектных местах. Именно поэтому вся пружинная сталь до того, как началось непосредственное производство пружин, должна пройти процедуру проверки на соответствие установленным требованиям ГОСТ 14959-79. Кроме того, сталь для изготовления пружин должна иметь хорошую упругость и проявлять высокую устойчивость к агрессивным воздействиям.
Достичь этого помогает, во-первых, химический состав того или иного сплава, так как под конкретные рабочие условия подбирается конкретная сталь для изготовления пружин. Во-вторых, противостоять напряжению и разрушению позволяют процесс закалки и отпуска изделий. Проведение данных технологических процессов подразумевает любая технология изготовления пружин, однако для каждой марки стали есть свои нюансы. В частности, этим нюансом является среда закаливания, в роли которой выступают масло или вода, а также еще и сама температура, при которой идет закаливание.
Собственно, температура при которой закаливается сталь для изготовления пружин, варьируется в пределах от +800°С до +900°, в зависимости от конкретного сплава. А отпуск проводится уже при диапазоне от +300°С до +480°С. Это обусловлено тем, что именно при подобных температурах возможно достичь одного из самых важных параметров пружинной стали — наибольшего предела упругости стали. Твердость получаемой продукции равняется 35 — 45 единицам твердости по Шору, что равнозначно значению от 1300 до 1600 килограмм на один квадратный миллиметр поверхности.
Характеристики стали для изготовления пружин
Марка сплава | Термический режим | Характеристики | |||||
σ т | σ в | δ5 | φ | ||||
Температура закалки | Среда закалки | Температура отпуска | |||||
Не менее | |||||||
65 | 840°С | Масло | 480°С | 80кгс/мм2 | 100кгс/мм2 | 10% | 35% |
70 | 830°С | 85кгс/мм2 | 105кгс/мм2 | 9% | 30% | ||
75 | 820°С | 90кгс/мм2 | 110кгс/мм2 | ||||
85 | 100кгс/мм2 | 115кгс/мм2 | 8% | ||||
60Г | 840°С | 80кгс/мм2 | 100кгс/мм2 | ||||
65Г | 830°С | 80кгс/мм2 | 100кгс/мм2 | ||||
70Г | 85кгс/мм2 | 105кгс/мм2 | 7% | 25% | |||
55ГС | 820°С | 80кгс/мм2 | 100кгс/мм2 | 8% | 30% | ||
50С2 | 870°С | Масло или вода | 460°С | 110кгс/мм2 | 120кгс/мм2 | 6% | 30% |
55С2 | 120кгс/мм2 | 130кгс/мм2 | |||||
55С2А | |||||||
60С2 | Масло | 25% | |||||
60С2А | 420°С | 140кгс/мм2 | 160кгс/мм2 | 20% | |||
70С3А | 860°С | 460°С | 160кгс/мм2 | 180кгс/мм2 | 25% | ||
50ХГ | 840°С | 440°С | 110кгс/мм2 | 130кгс/мм2 | 7% | 35% | |
50ХГА | 120кгс/мм2 | ||||||
55ХГР | 830°С | 450°С | 125кгс/мм2 | 140кгс/мм2 | 5% | 30% | |
50ХФА | 850°С | 520°С | 110кгс/мм2 | 130кгс/мм2 | 8% | 35% | |
50ХГФА | 120кгс/мм2 | 6% | |||||
60С2ХФА | 410°С | 170кгс/мм2 | 190кгс/мм2 | 5% | 20% | ||
50ХСА | 520°С | 120кгс/мм2 | 135кгс/мм2 | 6% | 30% | ||
65С2ВА | 420°С | 170кгс/мм2 | 190кгс/мм2 | 5% | 20% | ||
60С2Н2А | 880°С | 160кгс/мм2 | 175кгс/мм2 | 6% | |||
60С2ХА | 870°С | 180кгс/мм2 | 5% | ||||
60СГА | 860°С | 460°С | 140кгс/мм2 | 160кгс/мм2 | 6% | 25% |
Условные обозначения:
σ т — предел текучести
σ в — предел кратковременной прочности
δ5 — относительное удлинение при разрыве
φ — относительное сужение
Источник