Конспект по теме растяжение и сжатие

Внутренние усилия при растяжении-сжатии.
Осевое (центральное) растяжение или сжатие прямого бруса вызывается внешними силами, вектор равнодействующей которых совпадает с осью бруса. При растяжении или сжатии в поперечных сечениях бруса возникают только продольные силы N. Продольная сила N в некотором сечении равна алгебраической сумме проекции на ось стержня всех внешних сил, действующих по одну сторону от рассматриваемого сечения. По правилу знаков продольной силы N принято считать, что от растягивающих внешних нагрузок возникают положительные продольные силы N, а от сжимающих — продольные силы N отрицательны (рис. 5).
Чтобы выявить участки стержня или его сечения, где продольная сила имеет наибольшее значение, строят эпюру продольных сил, применяя метод сечений, подробно рассмотренный в статье:
Анализ внутренних силовых факторов в статистически определимых системах
Ещё настоятельно рекомендую взглянуть на статью:
Расчёт статистически определимого бруса
Если разберёте теорию в данной статье и задачи по ссылкам, то станете гуру в теме «Растяжение-сжатие» =)
Напряжения при растяжении-сжатии.
Определенная методом сечений продольная сила N, является равнодействующей внутренних усилий распределенных по поперечному сечению стержня (рис. 2, б). Исходя из определения напряжений, согласно выражению (1), можно записать для продольной силы:
где σ — нормальное напряжение в произвольной точке поперечного сечения стержня.
Чтобы определить нормальные напряжения в любой точке бруса необходимо знать закон их распределения по поперечному сечению бруса. Экспериментальные исследования показывают: если нанести на поверхность стержня ряд взаимно перпендикулярных линий, то после приложения внешней растягивающей нагрузки поперечные линии не искривляются и остаются параллельными друг другу (рис.6, а). Об этом явлении говорит гипотеза плоских сечений (гипотеза Бернулли): сечения, плоские до деформации, остаются плоскими и после деформации.
Так как все продольные волокна стержня деформируются одинаково, то и напряжения в поперечном сечении одинаковы, а эпюра напряжений σ по высоте поперечного сечения стержня выглядит, как показано на рис.6, б. Видно, что напряжения равномерно распределены по поперечному сечению стержня, т.е. во всех точках сечения σ = const. Выражение для определения величины напряжения имеет вид:
Таким образом, нормальные напряжения, возникающие в поперечных сечениях растянутого или сжатого бруса, равны отношению продольной силы к площади его поперечного сечения. Нормальные напряжения принято считать положительными при растяжении и отрицательными при сжатии.
Деформации при растяжении-сжатии.
Рассмотрим деформации, возникающие при растяжении (сжатии) стержня (рис.6, а). Под действием силы F брус удлиняется на некоторую величину Δl называемую абсолютным удлинением, или абсолютной продольной деформацией, которая численно равна разности длины бруса после деформации l1 и его длины до деформации l
Отношение абсолютной продольной деформации бруса Δl к его первоначальной длине l называют относительным удлинением, или относительной продольной деформацией:
При растяжении продольная деформация положительна, а при сжатии – отрицательна. Для большинства конструкционных материалов на стадии упругой деформации выполняется закон Гука (4), устанавливающий линейную зависимость между напряжениями и деформациями:
где модуль продольной упругости Е, называемый еще модулем упругости первого рода является коэффициентом пропорциональности, между напряжениями и деформациями. Он характеризует жесткость материала при растяжении или сжатии (табл. 1).
Таблица 1
Модуль продольной упругости для различных материалов
Абсолютная поперечная деформация бруса равна разности размеров поперечного сечения после и до деформации:
Соответственно, относительную поперечную деформацию определяют по формуле:
При растяжении размеры поперечного сечения бруса уменьшаются, и ε’ имеет отрицательное значение. Опытом установлено, что в пределах действия закона Гука при растяжении бруса поперечная деформация прямо пропорциональна продольной. Отношение поперечной деформации ε’ к продольной деформации ε называется коэффициентом поперечной деформации, или коэффициентом Пуассона μ:
Экспериментально установлено, что на упругой стадии нагружения любого материала значение μ = const и для различных материалов значения коэффициента Пуассона находятся в пределах от 0 до 0,5 (табл. 2).
Таблица 2
Коэффициент Пуассона.
Абсолютное удлинение стержня Δl прямо пропорционально продольной силе N:
Данной формулой можно пользоваться для вычисления абсолютного удлинения участка стержня длиной l при условии, что в пределах этого участка значение продольной силы постоянно. В случае, когда продольная сила N изменяется в пределах участка стержня, Δl определяют интегрированием в пределах этого участка:
Произведение (Е·А) называют жесткостью сечения стержня при растяжении (сжатии).
Механические свойства материалов.
Основными механическими свойствами материалов при их деформации являются прочность, пластичность, хрупкость, упругость и твердость.
Прочность — способность материала сопротивляться воздействию внешних сил, не разрушаясь и без появления остаточных деформаций.
Пластичность – свойство материала выдерживать без разрушения большие остаточные деформации. Неисчезающие после снятия внешних нагрузок деформации называются пластическими.
Хрупкость – свойство материала разрушаться при очень малых остаточных деформациях (например, чугун, бетон, стекло).
Идеальная упругость – свойство материала (тела) полностью восстанавливать свою форму и размеры после устранения причин, вызвавших деформацию.
Твердость – свойство материала сопротивляться проникновению в него других тел.
Рассмотрим диаграмму растяжения стержня из малоуглеродистой стали. Пусть круглый стержень длинной l0 и начальным постоянным поперечным сечением площади A0 статически растягивается с обоих торцов силой F.
Диаграмма сжатия стержня имеет вид (рис. 10, а)
где Δl = l — l0 абсолютное удлинение стержня; ε = Δl / l0 — относительное продольное удлинение стержня; σ = F / A0 — нормальное напряжение; E — модуль Юнга; σп — предел пропорциональности; σуп — предел упругости; σт — предел текучести; σв — предел прочности (временное сопротивление); εост — остаточная деформация после снятия внешних нагрузок. Для материалов, не имеющих ярко выраженную площадку текучести, вводят условный предел текучести σ0,2 — напряжение, при котором достигается 0,2% остаточной деформации. При достижении предела прочности в центре стержня возникает локальное утончение его диаметра («шейка»). Дальнейшее абсолютное удлинение стержня идет в зоне шейки ( зона местной текучести). При достижении напряжением предела текучести σт глянцевая поверхность стержня становится немного матовой – на его поверхности появляются микротрещины (линии Людерса-Чернова), направленные под углом 45° к оси стержня.
Расчеты на прочность и жесткость при растяжении и сжатии.
Опасным сечением при растяжении и сжатии называется поперечное сечение бруса, в котором возникает максимальное нормальное напряжение. Допускаемые напряжения вычисляются по формуле:
где σпред — предельное напряжение (σпред = σт — для пластических материалов и σпред = σв — для хрупких материалов); [n] — коэффициент запаса прочности. Для пластических материалов [n] = [nт] = 1,2 … 2,5; для хрупких материалов [n] = [nв] = 2 … 5, а для древесины [n] = 8 ÷ 12.
Расчеты на прочность при растяжении и сжатии.
Целью расчета любой конструкции является использование полученных результатов для оценки пригодности этой конструкции к эксплуатации при минимальном расходе материала, что находит отражение в методах расчета на прочность и жесткость.
Условие прочности стержня при его растяжении (сжатии):
При проектном расчете определяется площадь опасного сечения стержня:
При определении допускаемой нагрузки рассчитывается допускаемая нормальная сила:
Расчет на жесткость при растяжении и сжатии.
Работоспособность стержня определяется его предельной деформацией [ l ]. Абсолютное удлинение стержня должно удовлетворять условию:
Часто дополнительно делают расчет на жесткость отдельных участков стержня.
Следующая важная статья теории:
Изгиб балки
Источник
Инфоурок
›
Другое
›Презентации›Открытый урок по технической механике на тему «Растяжение — сжатие»
Описание презентации по отдельным слайдам:
1 слайд
Описание слайда:
Занятие 30 Растяжение и сжатие Продольные и поперечные деформации Коэффициент Пуассона Закон Гука Определение осевых перемещений поперечных сечений бруса
2 слайд
Описание слайда:
Продольные и поперечные деформации
3 слайд
Описание слайда:
Рассмотрим деформацию бруса под действием продольной силы F. Начальные размеры бруса: l0 – начальная длина; a0 – начальная ширина; l – абсолютное удлинение.
4 слайд
Описание слайда:
В сопротивлении материалов принято рассчитывать деформации в относительных единицах: =l / l0, ‑ относительное удлинение (продольная деформация) / =а /а0, /‑ относительное сужение (поперечная деформация) Относительные деформации
5 слайд
Описание слайда:
Между продольной и поперечной деформацией существует зависимость / = , где ‑ коэффициент поперечной деформации (коэффициент Пуассона) – характеристика пластичности материала. Относительные деформации
6 слайд
Описание слайда:
ПУАССОН (Poisson) Симеон Дени Дата рождения:21 июня 1781 Дата смерти: 25 апреля 1840
7 слайд
Описание слайда:
Закон Гука Гук (Хук) (Hooke) Роберт , 1635 – 1703 гг.
8 слайд
Описание слайда:
Формулировка закона Гуком
9 слайд
Описание слайда:
Модуль упругости k (коэффициент жесткости) зависит как от свойств материала, так и от размеров стержня. Можно выделить зависимость от размеров стержня (площади поперечного сечения А и длины l) явно, записав коэффициент упругости как , откуда Величина Е называется модулем упругости первого рода или модулем Юнга и является механической характеристикой материала.
10 слайд
Описание слайда:
Томас Юнг Thomas Young Дата рождения: 13 июня 1773 Дата смерти: 10 мая 1829 (55 лет)
11 слайд
Описание слайда:
В пределах упругости нормальные напряжения пропорциональны относительному удлинению. Значение Е для сталей в пределах (2÷2,1)×105 МПа Вывод закона Гука в современной форме
12 слайд
Описание слайда:
Закон Гука σ = Е, откуда = σ/Е Относительное удлинение = ∆l / l0 Приравняем правые части выражений (учтем, что σ=N/А) и получим σ/Е = ∆l / l0 ∆l = σl0/Е или ∆l = Nl0 /АЕ, где ∆l – абсолютное удлинение, мм; σ – нормальное напряжение, МПа; l0 – начальная длина, мм; Е – модуль упругости материала, МПа; А – площадь поперечного сечения, мм2. Произведение АЕ называют жесткостью сечения. Формулы для расчета перемещений при растяжении и сжатии
13 слайд
Описание слайда:
1. Абсолютное удлинение бруса прямо пропорционально величине продольной силы в сечении, длине бруса и обратно пропорционально площади поперечного сечения и модулю упругости ∆l = Nl /АЕ 2. Связь между продольной и поперечной деформациями зависит от свойств материала и определяется коэффициентом Пуассона, называемым коэффициентом поперечной деформации. / = Коэффициент Пуассона у стали 0,25-0,3; у пробки 0; у резины 0,5 3. Поперечные деформации меньше продольных и редко влияют на работоспособность детали; при необходимости поперечная деформация рассчитывается через продольную. / = ; = ∆а/а0; откуда ∆а=/а0. 4. Закон Гука выполняется в зоне упругих деформаций, которая определяется при испытаниях на растяжение по диаграмме растяжения. 5. Определение деформации бруса под нагрузкой и сравнение ее с допускаемой (не разрушающей работоспособность бруса) называют расчетом на прочность. ВЫВОДЫ
14 слайд
Описание слайда:
Дана схема нагружения и размеры бруса до деформации. Брус защемлен. Определить перемещение свободного конца. Решение задачи
15 слайд
Описание слайда:
1. Брус ступенчатый, поэтому следует построить эпюры продольных сил и нормальных напряжений. Делим брус на участки нагружения, определяем продольные силы и строим эпюру продольных сил Два участка нагружения: Участок 1: N1=+25 кН (растянут) Участок 2: 25-60+N2 = 0; N2 =-35 кН (сжат)
16 слайд
Описание слайда:
2. Определяем величины нормальных напряжений по сечениям с учетом изменений площади поперечного сечения. Строим эпюру нормальных напряжений
17 слайд
Описание слайда:
3. На каждом участке определяем абсолютное удлинение. Результаты алгебраически суммируем.
18 слайд
Описание слайда:
Контрольные вопросы 1. Стальной стержень длиной 1,5 м вытянулся под нагрузкой на 3 мм. Чему равно относительное удлинение? Чему равно относительное сужение? 2. Что характеризует коэффициент поперечной деформации? 3. Сформулируйте закон Гука в современной форме при растяжении и сжатии. 4. Что характеризует модуль упругости материала? Какова единица измерения модуля упругости? 5. Как определяется абсолютное удлинение ступенчатого бруса, нагруженного несколькими силами?
Выберите книгу со скидкой:
БОЛЕЕ 58 000 КНИГ И ШИРОКИЙ ВЫБОР КАНЦТОВАРОВ! ИНФОЛАВКА
Инфолавка — книжный магазин для педагогов и родителей от проекта «Инфоурок»
Курс профессиональной переподготовки
Педагог-библиотекарь
Курс профессиональной переподготовки
Специалист в области охраны труда
Курс профессиональной переподготовки
Библиотекарь
Найдите материал к любому уроку,
указав свой предмет (категорию), класс, учебник и тему:
также Вы можете выбрать тип материала:
Общая информация
Номер материала:
ДБ-214318
Вам будут интересны эти курсы:
Оставьте свой комментарий
Источник
Многие элементы машин, сооружений, канаты, тросы, ремни, цепи и т.д., испытывают деформацию растяжения (сжатия).
Элемент конструкции, длина которого гораздо больше его поперечных размеров, называется брусом.
Растяжением или сжатием называют такой вид деформации, при котором в поперечном сечении бруса возникает один ВСФ – продольная сила N.
Продольная сила в любом сечении бруса равна алгебраической сумме проекций на его продольную ось всех внешних сил, действующих на отсеченную часть:
.
Правило знаков для продольных сил: при растяжении продольная сила положительна, при сжатии – отрицательна.
Условие прочности при растяжении (сжатии):
,
где А – площадь поперечного сечения бруса, мм2;
— допускаемое нормальное напряжение, МПа.
Расчетное напряжение зависит от нагрузки и размеров поперечного сечения, допускаемое только от материала детали и условий работы.
Изменение длины бруса (удлинение или укорочение) равно алгебраической сумме удлинений (укорочений) его отдельных участков и вычисляется по формуле Гука:
,
где Ni, li и Аi – соответственно продольная сила, длина и площадь сечения в пределах каждого участка бруса;
Е – модуль продольной упругости материала (для стали Е=2·105 МПа);
АЕ – жесткость сечения.
Тема 2.3. Практические расчеты на срез и смятие.
Детали соединений (болты, штифты, шпонки, заклепки) работают так, что можно учитывать только один внутренний силовой фактор — поперечную силу. Такие детали рассчитываются на сдвиг.
Сдвиг (срез)
Сдвигом называется нагружение, при котором в поперечном сечении бруса возникает только один внутренний силовой фактор — поперечная сила рис. 23.1).
При сдвиге выполняется закон Гука, который в данном случав записывается следующим образом:
где — напряжение;
G — модуль упругости сдвига;
— угол сдвига.
При отсутствии специальных испытаний G можно рассчитать по формуле,
гдеЕ — модуль упругости при растяжении, [G] = МПа.
Расчет деталей на сдвиг носит условный характер. Для упрощения расчетов принимается ряд допущений:
— при расчете на сдвиг изгиб деталей не учитывается, хотя силы, действующие на деталь, образуют пару;
— при расчете считаем, что силы упругости распределены по сечению равномерно;
— если для передачи нагрузки используют несколько деталей, считаем, что внешняя сила распределяется между ними равномерно.
Условие прочности при сдвиге (срезе)
где [ ] — допускаемое напряжение сдвига, обычно его определяют по формуле
При разрушении деталь перерезается поперек. Разрушение детали под действием поперечной силы называют срезом.
Смятие
Довольно часто одновременно со сдвигом происходит смятие боковой поверхности в месте контакта в результате передачи нагрузки одной поверхности к другой. При этом на поверхности возникают сжимающие напряжения, называемые напряжениями смятия, .
Расчет также носит условный характер. Допущения подобны принятым при расчете на сдвиг, однако при расчете боковой цилиндрической поверхности напряжения по поверхности распределены не равномерно, поэтому расчет проводят для наиболее нагруженной точки. Для этого вместо боковой поверхности цилиндра в расчете используют плоскую поверхность, проходящую через диаметр.
Условие прочности при смятии
гдеАсм—расчетная площадь смятия
Асм =
d — диаметр окружности сечения;
— наименьшая высота соединяемых пластин;
F — сила взаимодействия между деталями
[ ]-допускаемое напряжение смятия
[ ] = (0,35 + 0,4)
Тема 2.5. Кручение
Кручение – вид нагружения бруса, при котором в его поперечных сечениях возникает один внутренний силовой фактор – крутящий момент Мкр.
Крутящий момент Мкр в произвольном поперечном сечении бруса равен алгебраической сумме моментов, действующих на отсеченную часть бруса.
Крутящий момент считается положительным, если кручение происходит против часовой стрелки и отрицательны – по часовой стрелке.
При расчете валов на прочность при кручении используется условие прочности:
,
где — полярный момент сопротивления сечения, мм3;
[ ] – допускаемое касательное напряжение.
Крутящий момент определяется по формуле:
,
где Р – мощность на валу, Вт;
ω – угловая скорость вращения вала, рад/с.
Полярный момент сопротивления сечения определяется по формулам:
— для круга
— для кольца
.
При кручении бруса его ось испытывает скручивание на некоторый угол φ, который называется углом закручивания. Его величина определяется по формуле:
,
где l – длина бруса;
G – модуль сдвига, МПа (для стали G=0,8·105МПа);
— полярный момент инерции сечения, мм4.
Полярный момент инерции сечения определяется по формулам:
— для круга
— для кольца
.
Тема 2.6. Изгиб
Многие элементы конструкций (балки, рельсы, оси всех колес и т.д.) испытывают деформацию изгиба.
Изгибом называется деформация от момента внешних сил, действующих в плоскости, проходящей через геометрическую ось балки.
В зависимости от места приложения действующих сил различают прямой и косой изгиб.
Прямой изгиб– внешние силы, действующие на балку, лежат в главной плоскости сечения.
Главная плоскость сечения – плоскость, проходящая через ось балки и одну из главных центральных осей сечения.
Косой изгиб — внешние силы, действующие на балку, не лежат в главной плоскости сечения.
В зависимости от характера ВСФ, возникающих в поперечных сечениях балки, изгиб может быть чистым и поперечным.
Изгиб называется поперечным, если в поперечном сечении балки возникают два ВСФ – изгибающий момент Мх и поперечная сила Qy.
Изгиб называется чистым, если в поперечном сечении балки возникает один ВСФ – изгибающий момент Мх.
Изгибающий момент в произвольном сечении равен алгебраической сумме моментов внешних сил, действующих на отсеченную часть балки:
Поперечная сила Q равна алгебраической сумме проекций внешних сил, действующих на отсеченную часть балки:
.
При определении знаков поперечных сил используют правило «Часовой стрелки»: поперечная сила считается положительной, если «вращение» внешних сил происходит по часовой стрелке; отрицательной – против часовой стрелки.
При определении знаков изгибающих моментов используют правило «Сжатых волокон» (правило «ЧАШИ»): изгибающий момент считается положительным, если сжимаются верхние волокна балки («вода не выливается»); отрицательным, если сжимаются нижние волокна балки («вода выливается»).
Условие прочности при изгибе:рабочее напряжение должно быть меньше или равно допускаемому напряжению, т.е.
где Wх – осевой момент сопротивления (величина, характеризующая способность элементов конструкции сопротивляться деформации изгиба), мм3.
Осевой момент сопротивления определяется по формулам:
— для круга
;
— для кольца
;
— для прямоугольника
.
При прямом поперечном изгибе изгибающий момент обуславливает возникновение нормального напряжения, а поперечная сила – касательного напряжения, которое определяется по формуле:
,
где А – площадь поперечного сечения, мм2.
Раздел 3. ДЕТАЛИ МАШИН
Источник