Какой вид нагружения называют растяжением

Какой вид нагружения называют растяжением thumbnail

Внутренние усилия при растяжении-сжатии.

Осевое (центральное) растяжение или сжатие прямого бруса вызывается внешними силами, вектор равнодействующей которых совпадает с осью бруса. При растяжении или сжатии в поперечных сечениях бруса возникают только продольные силы N. Продольная сила N в некотором сечении равна алгебраической сумме проекции на ось стержня всех внешних сил, действующих по одну сторону от рассматриваемого сечения. По правилу знаков продольной силы N принято считать, что от растягивающих внешних нагрузок возникают положительные продольные силы N, а от сжимающих — продольные силы N отрицательны (рис. 5).

правило знаков для продольных сил

Чтобы выявить участки стержня или его сечения, где продольная сила имеет наибольшее значение, строят эпюру продольных сил, применяя метод сечений, подробно рассмотренный в статье:
Анализ внутренних силовых факторов в статистически определимых системах
Ещё настоятельно рекомендую взглянуть на статью:
Расчёт статистически определимого бруса
Если разберёте теорию в данной статье и задачи по ссылкам, то станете гуру в теме «Растяжение-сжатие» =)

Напряжения при растяжении-сжатии.

Определенная методом сечений продольная сила N, является равнодействующей внутренних усилий распределенных по поперечному сечению стержня (рис. 2, б). Исходя из определения напряжений, согласно выражению (1), можно записать для продольной силы:

напряжения при растяжении-сжатии

где σ — нормальное напряжение в произвольной точке поперечного сечения стержня.


Чтобы определить нормальные напряжения в любой точке бруса необходимо знать закон их распределения по поперечному сечению бруса. Экспериментальные исследования показывают: если нанести на поверхность стержня ряд взаимно перпендикулярных линий, то после приложения внешней растягивающей нагрузки поперечные линии не искривляются и остаются параллельными друг другу (рис.6, а). Об этом явлении говорит гипотеза плоских сечений (гипотеза Бернулли): сечения, плоские до деформации, остаются плоскими и после деформации.

механизм деформации растяжения

Так как все продольные волокна стержня деформируются одинаково, то и напряжения в поперечном сечении одинаковы, а эпюра напряжений σ по высоте поперечного сечения стержня выглядит, как показано на рис.6, б. Видно, что напряжения равномерно распределены по поперечному сечению стержня, т.е. во всех точках сечения σ = const. Выражение для определения величины напряжения имеет вид:

формула напряжения

Таким образом, нормальные напряжения, возникающие в поперечных сечениях растянутого или сжатого бруса, равны отношению продольной силы к площади его поперечного сечения. Нормальные напряжения принято считать положительными при растяжении и отрицательными при сжатии.

Деформации при растяжении-сжатии.

Рассмотрим деформации, возникающие при растяжении (сжатии) стержня (рис.6, а). Под действием силы F брус удлиняется на некоторую величину Δl называемую абсолютным удлинением, или абсолютной продольной деформацией, которая численно равна разности длины бруса после деформации l1 и его длины до деформации l

абсолютное удлинение

Отношение абсолютной продольной деформации бруса Δl к его первоначальной длине l называют относительным удлинением, или относительной продольной деформацией:

относительное удлинение

При растяжении продольная деформация положительна, а при сжатии – отрицательна. Для большинства конструкционных материалов на стадии упругой деформации выполняется закон Гука (4), устанавливающий линейную зависимость между напряжениями и деформациями:

закон гука

где модуль продольной упругости Е, называемый еще модулем упругости первого рода является коэффициентом пропорциональности, между напряжениями и деформациями. Он характеризует жесткость материала при растяжении или сжатии (табл. 1).

Таблица 1

Модуль продольной упругости для различных материалов

модуль продольной упругости для различных материалов

Абсолютная поперечная деформация бруса равна разности размеров поперечного сечения после и до деформации:

абсолютная поперечная деформация бруса

Соответственно, относительную поперечную деформацию определяют по формуле:

относительная поперечная деформация

При растяжении размеры поперечного сечения бруса уменьшаются, и ε’ имеет отрицательное значение. Опытом установлено, что в пределах действия закона Гука при растяжении бруса поперечная деформация прямо пропорциональна продольной. Отношение поперечной деформации ε’ к продольной деформации ε называется коэффициентом поперечной деформации, или коэффициентом Пуассона μ:

коэффициент пуассона

Экспериментально установлено, что на упругой стадии нагружения любого материала значение μ = const и для различных материалов значения коэффициента Пуассона находятся в пределах от 0 до 0,5 (табл. 2).

Таблица 2

Коэффициент Пуассона.

коэффициент пуассона для материалов

Абсолютное удлинение стержня Δl прямо пропорционально продольной силе N:

абсолютное удлинение стержня

Данной формулой можно пользоваться для вычисления абсолютного удлинения участка стержня длиной l при условии, что в пределах этого участка значение продольной силы постоянно. В случае, когда продольная сила N изменяется в пределах участка стержня, Δl определяют интегрированием в пределах этого участка:

Какой вид нагружения называют растяжением

Произведение (Е·А) называют жесткостью сечения стержня при растяжении (сжатии).

Механические свойства материалов.

Основными механическими свойствами материалов при их деформации являются прочность, пластичность, хрупкость, упругость и твердость.

Прочность — способность материала сопротивляться воздействию внешних сил, не разрушаясь и без появления остаточных деформаций.

Пластичность – свойство материала выдерживать без разрушения большие остаточные деформации. Неисчезающие после снятия внешних нагрузок деформации называются пластическими.

Хрупкость – свойство материала разрушаться при очень малых остаточных деформациях (например, чугун, бетон, стекло).

Идеальная упругость – свойство материала (тела) полностью восстанавливать свою форму и размеры после устранения причин, вызвавших деформацию.

Твердость – свойство материала сопротивляться проникновению в него других тел.

Читайте также:  Методы испытания на растяжение и изгиб

Рассмотрим диаграмму растяжения стержня из малоуглеродистой стали. Пусть круглый стержень длинной l0 и начальным постоянным поперечным сечением площади A0 статически растягивается с обоих торцов силой F.

растягивание стержня до разрушения

Диаграмма сжатия стержня имеет вид (рис. 10, а)

диаграмма растяжения стали

где Δl = l — l0 абсолютное удлинение стержня; ε = Δl / l0 — относительное продольное удлинение стержня; σ = F / A0 — нормальное напряжение; E — модуль Юнга; σп — предел пропорциональности; σуп — предел упругости; σт — предел текучести; σв — предел прочности (временное сопротивление); εост — остаточная деформация после снятия внешних нагрузок. Для материалов, не имеющих ярко выраженную площадку текучести, вводят условный предел текучести σ0,2 — напряжение, при котором достигается 0,2% остаточной деформации. При достижении предела прочности в центре стержня возникает локальное утончение его диаметра («шейка»). Дальнейшее абсолютное удлинение стержня идет в зоне шейки ( зона местной текучести). При достижении напряжением предела текучести σт глянцевая поверхность стержня становится немного матовой – на его поверхности появляются микротрещины (линии Людерса-Чернова), направленные под углом 45° к оси стержня.

примеры разрушения материалов

Расчеты на прочность и жесткость при растяжении и сжатии.

Опасным сечением при растяжении и сжатии называется поперечное сечение бруса, в котором возникает максимальное нормальное напряжение. Допускаемые напряжения вычисляются по формуле:

формула допускаемые напряжения

где σпред — предельное напряжение (σпред = σт — для пластических материалов и σпред = σв — для хрупких материалов); [n] — коэффициент запаса прочности. Для пластических материалов [n] = [nт] = 1,2 … 2,5; для хрупких материалов [n] = [nв] = 2 … 5, а для древесины [n] = 8 ÷ 12.

Расчеты на прочность при растяжении и сжатии.

Целью расчета любой конструкции является использование полученных результатов для оценки пригодности этой конструкции к эксплуатации при минимальном расходе материала, что находит отражение в методах расчета на прочность и жесткость.

Условие прочности стержня при его растяжении (сжатии):

Условие прочности стержня

При проектном расчете определяется площадь опасного сечения стержня:

площадь при проектном расчёте

При определении допускаемой нагрузки рассчитывается допускаемая нормальная сила:

допускаемая нормальная сила

Расчет на жесткость при растяжении и сжатии.

Работоспособность стержня определяется его предельной деформацией [ l ]. Абсолютное удлинение стержня должно удовлетворять условию:

ограничение абсолютного удлинения стержня

Часто дополнительно делают расчет на жесткость отдельных участков стержня.

Следующая важная статья теории:
Изгиб балки

Источник

Виды нагружения бруса, при котором в его поперечном сечении возникает только один внутренний силовой фактор – , называемый растяжением или сжатием.

Как вычисляется значение продольной силы в произвольном поперечном сечении стержня?

Значение продольной силы в произвольном поперечном сечении стержня вычисляется по формуле N = ∑F

Что такое эпюра продольных сил и как она строится?

Эпюра продольных сил — это график показывающий изменение величины продольных сил сечение бруса по его длине.

Чтобы построить эпюру нужно знать следующий алгоритм построения:

1. Разбиваем брус на участке ограниченными точками приложения сил (разбивка на участке ведётся с незакреплённого участка бруса).

2. Используя метод сечений определяют величину продольных сил сечения каждого участка (резать с незакреплённого участка).

3. Строим эпюру продольных сил, выбрав соответствующий масштаб.

Как распределены нормальные напряжения в поперечных сечениях центрально-растянутого или центрально-сжатого стержня, и по какой формуле они определяются?

Нормальных напряжений S = const. Тогда N = S· F , откуда получим формулу для определения нормальных напряжений в поперечном сечении при растяжении

Что называется удлинением стержня (абсолютной продольной деформацией)? Что такое относительная продольная деформация? Каковы размерности абсолютной и относительной продольных деформаций?

Если же по длине стержня возникает неоднородное напряженное состояние, то для определения его абсолютного удлинения необходимо рассмотреть бесконечно малый элемент длиной dz. При растяжении он увеличит свою длину на величину D dz и его деформация составит: .

относительной продольной деформацией называют деформацией относительно деформируемого предмета

Что называется модулем упругости Е? Как влияет величина Е на деформации стержня?

8.

Модуль упругости — общее название нескольких физических величин, характеризующих способность твёрдого тела упруго деформироваться при приложении к нему силы.

В области упругой деформации модуль упругости тела определяется производной (градиентом) зависимости напряжения от деформации, то есть тангенсом угла наклона диаграммы напряжений-деформаций.

Коэффициент пропорциональности E — модуль продольной упругости, его величина постоянна для каждого материала. Он характеризует жесткость материала, т.е. способность сопротивляться деформированию под действием внешней нагрузки..

Сформулируйте закон Гука. Напишите формулы для абсолютной и относительной продольных деформаций стержня.

В пределах малых удлинений для большинства материалов справедлив закон Гука — нормальные напряжения в поперечном сечении прямо пропорциональны относительной линейной деформации .

Формулы для абсолютной и относительной продольных деформаций стержня: ; ;

Что происходит с поперечными размерами стержня при его растяжении (сжатии)?

Наблюдения показывают, что его удлинение в продольном направлении сопровождается пропорциональным уменьшением поперечных размеров стержня.

Что такое коэффициент Пуассона? В каких пределах он изменяется?

Читайте также:  Снять отек при растяжении связок стопы

Коэффициент Пуассона (обозначается как или ) — абсолютная величина отношения поперечной и продольной относительной деформации образца материала. Этот коэффициент зависит не от размеров тела, а от природы материала, из которого изготовлен образец. Коэффициент Пуассона и модуль Юнга полностью характеризуют упругие свойства изотропного материала.

При приложении к телу растягивающего усилия оно начинает удлиняться (то есть продольная длина увеличивается), а поперечное сечение уменьшается. Коэффициент Пуассона показывает, во сколько раз поперечная деформация деформируемого тела больше продольной деформации, при его растяжении или сжатии. Для абсолютно хрупкого материала коэффициент Пуассона равен 0, для абсолютно несжимаемого — 0,5. Для большинства сталей этот коэффициент лежит в районе 0,3, для резины он примерно равен 0,5.



Источник

РАСТЯЖЕНИЕ И СЖАТИЕ

Нормальные напряжения в поперечном сечении центрально растянутого (сжатого) стержня

Общие понятия о растяжении (сжатии) введены в и. 1.6. Определение продольных сил при растяжении (сжатии) подробно рассматривалось в п. 3.3. Перейдём к определению напряжений. В сечении т-п центрально растянутого стержня методом сечений (рис. 4.1) находим продольную силу N=F.

Какой вид нагружения называют растяжением

Рис. 4.1

Bn. 1.5 установлена зависимость

N = j ctz • dA.

A

Поскольку в соответствии с гипотезой Бернулли поперечные сечения при растяжении (сжатии) остаются плоскими и перемещаются поступательно, волокна, параллельные оси бруса, удлиняются (укорачиваются) одинаково и в них возникают одинаковые нормальные напряжения, то есть в поперечном сечении = o = const. Тогда

получим
Какой вид нагружения называют растяжением

В поперечном сечении при центральном растяжении (сжатии)

Какой вид нагружения называют растяжением

Нормальное напряжение а принимаем положительным, если оно растягивающее, и отрицательным, если — сжимающее.

Напряжения в наклонных сечениях при растяжении (сжатии). Закон парности касательных напряжений

Рассмотрим центрально растянутый стержень постоянного поперечного сечения (рис. 4.2, а). Найдём напряжения на площадке, наклонённой к поперечному сечению под углом а. Этот угол считаем положительным, если его отсчитываем от поперечного сечения до наклонной площадки (от оси стержня до внешней нормали па к наклонной площадке) против часовой стрелки.

Используем метод сечений. Плоскостью, совмещённой с наклонной площадкой, рассечем стержень на две независимые части. Отбросим одну часть стержня. Заменим действие отброшенной части стержня на оставшуюся полными напряжениями ра на наклонной площадке. Площадь поперечного сечения обозначим А, а наклонного

сечения примем Аа=-. Запишем условие равновесия оставлен-

cosa

ной для рассмотрения части стержня (рис. 4.2, 6) и найдём ра:

Какой вид нагружения называют растяжением

Рис. 4.2

Какой вид нагружения называют растяжением

Учитывая формулу (4.1), окончательно получим
Какой вид нагружения называют растяжением

Разложим полное напряжение ра (4.2) на нормальную ста и касательную та составляющие (рис. 4.2, а):

Какой вид нагружения называют растяжением

Правила знаков для aa сохраним те же, что и для а. Касательное напряжение та считаем положительным, если до совмещения с ним внешнюю нормаль па к площадке надо повернуть на 90° по часовой стрелке (на рис. 4.2, а а, аа, та изображены положительными).

На рис. 4.3 изображено наклонное сечение, у которого a а осталось положительным, а напряжение та стало отрицательным. Рассечем стержень двумя параллельными наклонными сечениями (рис. 4.4), на этих наклонных площадках действуют нормальные напряжения aa и касательные напряжения та. Двум видам напряжений соответствуют два вида деформаций: удлинение (укорочение) и сдвиг. Двум видам деформаций соответствуют два вида разрушения: отрыв и срез.

Какой вид нагружения называют растяжением

Рис. 4.3

Какой вид нагружения называют растяжением

Рис. 4.4

При росте угла а от 0 до 90°, как следует из формулы (4.3), aa убывает от а до 0. При росте угла а от 0 до 45°, как следует из формулы (4.4), та растёт от 0 до —; при дальнейшем росте угла а от 45

до 90°, та убывает от ^ до 0. Таким образом, при а = 45° величина та

достигает максимума, равного Этот факт объясняет появление

линий скольжения — линий Людерса — Д.К. Чернова в стальном образце при растяжении во время площадки текучести и в зоне упрочнения, а также появление трещин в чугунном образце при сжатии (об этом более подробно речь пойдет в следующей главе).

Определим касательные напряжения на двух взаимно перпендикулярных площадках (рис. 4.5, а). Касательные напряжения на площадке, наклонённой под углом а к поперечному сечению, определяем по формуле (4.4).

Какой вид нагружения называют растяжением

Найдём касательное напряжение на площадке, перпендикулярной к рассмотренной:

Какой вид нагружения называют растяжением

Формула (4.5) и есть закон парности касательных напряжений. Касательные напряжения на двух взаимно перпендикулярных площадках равны по величине и противоположны по знаку. На рис. 4.5, а та > 0, а та+90°

Заметим, что касательные напряжения на двух взаимно перпендикулярных площадках либо расходятся (рис. 4.5, а), либо сходятся (рис. 4.5, б) к вершине прямого угла, образованного этими площадками (другая формулировка закона парности касательных напряжений). На рис. 4.5, б таа+90° > 0.

Источник

Напряжения и деформации. Коэффициент Пуассона. Закон Гука

Осевое растяжение (рис. 2.1, а) и сжатие (рис. 2.1, б) возникают под действием сил, направленных вдоль оси бруса (стержня). При растяжении (сжатии) в поперечном сечении бруса возникает только одно внутреннее усилие — продольная сила N. На растяжение (сжатие) работают канаты, стержни ферм и т.п. Растяжение (сжатие) могут вызвать сосредоточенные силы и продольная распределенная нагрузка (рис. 2.2). Здесь q — интенсивность продольной распределенной нагрузки, сила, приходящаяся на единицу длины, Н/м, кН/м.

Читайте также:  Связи работающие на растяжение

Осевое растяжение (а) и сжатие (б)

Рис. 2.1. Осевое растяжение (а) и сжатие (б)

Элемент, работающий на растяжение

Рис. 2.2. Элемент, работающий на растяжение

Изобразим стержень, который подвергается центральному растяжению (рис. 2.3). Для определения внутренних сил применим метод сечений. В произвольном сечении стержня покажем внутренние усилия, которые при данном виде нагружения будут совпадать с направлением нормальных напряжений.

Дефрмации при осевом растяжении (а) и равнодействующая внутренних сил (б)

Рис. 2.3. Дефрмации при осевом растяжении (а) и равнодействующая внутренних сил (б): / — исходное состояние; 2 — деформационное состояние

Равнодействующая внутренних усилий будет состоять только из продольной составляющей:
Какой вид нагружения называют растяжением

Она будет приложена в центре тяжести сечения стержня, который совпадает с продольной осью.

Какой вид нагружения называют растяжением

При расчетах по методу сечений будем всегда продольную силу направлять наружу. Если N > 0, то она направлена верно, а если получается, что jV

Составим уравнение равновесия отсеченной части:

Какой вид нагружения называют растяжением

Из гипотезы плоских сечений, высказанной голландским ученым Д. Бернулли, следует, что в пределах действия закона Гука плоские поперечные сечения стержня смещаются при растяжении параллельно начальным положениям, оставаясь плоскими (рис. 2.3, б). Это возможно лишь в случае, если нормальные напряжения во всех точках сечения одинаковы, т.е. О = const. Отсюда следует:

Какой вид нагружения называют растяжением

Под действием осевых растягивающих сил стержень постоянного сечения площадью А удлиняется на величину

Какой вид нагружения называют растяжением

где /j и /0 — длины стержня в деформированном и начальном состояниях;

А/ — абсолютное или полное удлинение.

Относительное удлинение

Какой вид нагружения называют растяжением

При растяжении и сжатии возникает также и поперечная деформация стержня

Какой вид нагружения называют растяжением

где и а ширина стержня в деформированном и первоначальном состояниях; А а — абсолютная поперечная деформация.

Относительная поперечная деформация

Какой вид нагружения называют растяжением

Знак (-) показывает, что при растяжении поперечные размеры стержня уменьшаются.

Коэффициент Пуассона. Отношение поперечной деформации к продольной при растяжении (сжатии), взятое по абсолютной величине, называют коэффициентом Пуассона:

Какой вид нагружения называют растяжением

Значение V для всех материалов находится в пределах 0

Закон Гука. Для подавляющего большинства конструкционных материалов с достаточной для практики точностью можно считать, что в известных пределах нагружения между продольной деформацией и соответствующим (действующим в ее направлении) нормальным напряжением существует пропорциональная (линейная) зависимость. Эта зависимость носит название закона Гука и записывается в виде
Какой вид нагружения называют растяжением

где Е — коэффициент пропорциональности, именуемый модулем упругости первого рода (модуль Юнга).

По физическому смыслу модуль упругости — напряжение, которое вызывает деформацию ? = 1 (удлинение стержня, равное первоначальной длине).

Для статей по данным экспериментов Е = (2…2,2)105 МПа для ста-

N А/

леи. Учитывая, что О = —, ? = —, закон Гука для растянутого стержня можно записать

Какой вид нагружения называют растяжением

где X] =— — коэффициент податливости стержня, показывающий уд-

is • А

линение (укорочение) стержня, вызываемое растягивающей силой F= 1 Н.

Произведение ЕА называют жесткостью сечения стержня при растяжении (сжатии). Для стержней переменного (ступенчатого) сечения удлинения определяют по участкам (ступеням) и результаты суммируют алгебраически:

Какой вид нагружения называют растяжением

где i — номер участка (i = 1, 2,…,«).

При расчете упругих перемещений стержня от нескольких сил часто применяют принцип независимости действия сил: перемещение стержня от действия группы сил может быть получено как сумма перемещений от действия каждой силы в отдельности.

Пример 2.1. Определить полное удлинение стержня (рис. 2.4).

Решение

Определение внутренних сил и построение их эпюрыКакой вид нагружения называют растяжением

Рис. 2.4. Определение внутренних сил и построение их эпюры

Определим с помощью метода сечений значения продольной силы на каждом участке. Для этого сделаем три сечения. Рассмотрим равновесие отсеченных частей:
Какой вид нагружения называют растяжением

Изобразим графически распределение продольных сил по длине стержня. График изменения продольных сил по длине стержня называется эпюрой. Каждая ордината эпюры равна значению N в данном сечении. Эпюру строят на линии, проведенной параллельно оси стержня. Подставив найденные значения N, N2, N3 в формулу, определим общее удлинение стержня

Какой вид нагружения называют растяжением

Пример 2.2. Определить величину напряжения О. возникающего в поперечном сечении, абсолютное удлинение Д/ и относительное укорочение ? стального стержня диаметром d = 40 мм, длиной / = 1,5 м, растягиваемого силой F = 100 кН, если Е = 2,1 • 105 Н/мм2 (рис. 2.5).

К примеру 2.2

Рис. 2.5. К примеру 2.2

Решение

Площадь сечения
Какой вид нагружения называют растяжением Напряжение

Какой вид нагружения называют растяжением

Абсолютное удлинение
Какой вид нагружения называют растяжением Относительное удлинение

Какой вид нагружения называют растяжением

Пример 2.3. Стальная штанга длиной / = 8 м и площадью сечения А = 8 см2 под действием растягивающей нагрузки получила абсолютное удлинение А/ = 5,7 мм. Определить величину нагрузки F и напряжения G, если известно, что модуль упругости материала тяги Е = 2,МО5 МПа (рис. 2.6).

Решение

Относительное удлинение
Какой вид нагружения называют растяжением Величина напряжения

Какой вид нагружения называют растяжением

Величина нагрузки
К примеру 2.3

Какой вид нагружения называют растяжением

Рис. 2.6. К примеру 2.3

Источник