Какие пигменты образуются в гематоме

Эндоге́нные пигме́нты (хромопротеи́ны) — окрашенные белки и продукты обмена аминокислот, образующиеся в самом организме. В отличие от этого, экзогенными пигментами обозначают окрашенные вещества, поступающие в организм человека из внешней среды.
Классификация[править | править код]
Различают три основные группы эндогенных пигментов:
I. Гемоглобиногенные пигменты
- Ферритин
- Гемосидерин
- Билирубин
- Гематоидин (патологические условия)
- Порфирины (патологические условия)
- Гематины (патологические условия)
II. Протеиногенные пигменты
- Меланин
- Адренохром
- Серотонин и мелатонин («пигмент гранул EC-клеток»)
- Пигмент охроноза.
III. Липопигменты
- Липофусцин
- Цероид
- Липохромы.
Гемоглобиногенные пигменты[править | править код]
Гемоглобиноге́нные пигменты — эндогенные пигменты, образующиеся при катаболизме (распаде) гемоглобина. Выделяют шесть гемоглобиногенных и родственных им пигментов: (1) ферритин, (2) гемосидерин, (3) гематины, (4) порфирины, (5) билирубин и (6) гематоидин.
Традиционно к этой группе относят три пигмента, не являющиеся собственно гемоглобиногенными, то есть образование которых не связано с распадом гемоглобина: (1) анаболический ферритин, (2) анаболический гемосидерин и (3) порфирины. Анаболические ферритин и гемосидерин синтезируются из пищевого (алиментарного) железа, всасывающегося в тонкой кишке, а порфири́ны являются предшественниками гема и, следовательно, гемоглобина.
Классификация гемоглобиногенных и родственных им пигментов[править | править код]
Классификация гемоглобиногенных пигментов выглядит следующим образом:
I. Условия нормы или патологии
- Встречающиеся как в норме, так и в патологических условиях (ферритин и гемосидерин, билирубин, порфирины)
- Встречающиеся только в патологических условиях (гематины, гематоидин).
II. Наличие или отсутствие железа в составе пигментов
- Железосодержащие пигменты (ферритин и гемосидерин, гематины)
- Пигменты, не содержащие железа (билирубин, гематоидин, порфирины).
Железосодержащие гемоглобиногенные пигменты подразделяются на две подгруппы:
I. Пигменты с двухвалентным железом (ферритин и гемосидерин).
II. Пигменты, содержащие трёхвалентное («окисленное») железо (гематины)
- Гемин (солянокислый гематин)
- Гемомеланин (малярийный пигмент)
- Формалиновый пигмент.
Цвет железосодержащих гемоглобиногенных пигментов. Пигменты, содержащие двухвалентное железо, имеют коричневый (бурый) цвет, придающий «ржавый вид» ткани тех органов, где происходит накопление ферритина и гемосидерина. Гематины — пигменты чёрного цвета. Ткань с высоким содержанием гематинов приобретает различные оттенки серого цвета вплоть до насыщенно-серого, почти чёрного («аспидно-серый цвет», «цвет чугуна», «цвет мокрого асфальта»).
Гистохимическое выявление железосодержащих пигментов. Железо в тканевых срезах обнаруживают при помощи реакций Тирмана и Перлса.
1. Реакция Тирмана выявляет все железосодержащие пигменты. Тканевый срез при этом сначала обрабатывается восстановителем (например, сульфидом аммония), после чего окрашивается красной кровяной солью. Трёхвалентное железо гематинов под влиянием восстановителя превращается в двухвалентное, а красная кровяная соль окрашивает все железосодержащие соединения в синий цвет (образовавшееся вещество синего цвета называется турнбуллева синь).
2. Реакция Перлса позволяет обнаружить в тканевом срезе только двухвалентное железо (ферритин и гемосидерин). Срез при этом окрашивают жёлтой кровяной солью, с которой двухвалентное железо образует берлинскую лазурь синего цвета.
Следовательно, если необходимо выявить в ткани гематины, срезы параллельно окрашивают методами Тирмана и Перлса. При сравнении результатов окрасок учитывают те гранулы пигмента, которые окрасились при реакции Тирмана и не были окрашены методом Перлса: эти гранулы и будут гематином. Для выявления ферритина и гемосидерина достаточно только реакции Перлса.
Ферритин и гемосидерин[править | править код]
Ферропротеины феррити́н и гемосидери́н, по существу, представляют собой один пигмент: различие между ними состоит только в величине гранул — гранулы ферритина мелкие, зёрна гемосидерина крупные. Гемосидерин образуется путём объединения гранул ферритина («полимер» ферритина). Перед включением в ферритин или трансферрин двухвалентное железо превращается в трёхвалентное[1]. Белковый компонент ферритина носит название апоферритин.
Различают следующие формы ферритина:
I. Образование в условиях нормы или патологии
- Окисленный ферритин (SS-ферритин)
- Восстановленный ферритин (SH-ферритин).
II. Механизм синтеза
- Анаболический ферритин
- Катаболический ферритин.
- Анаболический ферритин — ферритин, источником которого является алиментарное железо (железо пищи), всасывающееся в тонкой кишке.
- Катаболический ферритин — ферритин, образованный макрофагами из гемоглобина разрушенных эритроцитов. Такие макрофаги носят название сидеробла́сты. Эти же клетки образуют из молекул ферритина гемосидерин. [В гематологии сидеробластами также называют созревающие эритроидные клетки костного мозга, содержащие в цитоплазме гранулы ферритина и гемосидерина.]
- SS-ферритин (окисленный ферритин) — ферритин, присутствующий в организме в нормальных условиях (при достаточном обеспечении тканей кислородом).
- SH-ферритин (восстановленный ферритин) образуется при тяжёлой гипоксии. Он обладает выраженным сосудорасширяющим действием (антагонист адреналина) и способствует развитию артериальной гипотензии (сосудистого коллапса) и шока.
Гемосидерин, аналогично ферритину, подразделяют на (1) анаболический и (2) катаболический, образующиеся из анаболического и катаболического ферритина соответственно.
В норме ферритин и гемосидерин являются формой депонирования (хранения) железа. К основным депо железа относятся костный мозг (эритроидные предшественники), печень (клетки Купфера) и селезёнка (макрофаги красной пульпы).
Гематины[править | править код]
Гемати́ны — гемоглобиногенные пигменты, в состав которых входит трёхвалентное железо. Гематины образуются только в патологических условиях.
Различают два основных гематина: гемин и гемомеланин. К гематинам также относится формалиновый пигмент, однако большого значения в патологии он не имеет, представляя собой артефакт обработки материала (фиксация ткани в кислом формалине).
1. Геми́н (солянокислый гематин) — гематин, образующийся в основном в желудке под влиянием ферментов и соляной кислоты желудочного сока. Он прокрашивает в чёрный цвет дно эрозий и язв желудка и двенадцатиперстной кишки.
2. Гемомелани́н (малярийный пигмент) — продукт разрушения гемоглобина малярийными плазмодиями. У больных малярией гемомеланин, наряду с ферритином и гемосидерином, накапливается в различных органах, но наибольшее его содержание отмечается в органах, богатых макрофагами, контактирующими с кровью (селезёнка, печень, лимфатические узлы, красный костный мозг), а при коме — в головном мозге. Ткань этих органов приобретает тёмно-серый («аспидно-серый»), почти чёрный цвет.
Порфирины[править | править код]
Порфири́ны — предшественники гема в реакциях синтеза гемоглобина. Порфирины образуются во всех клетках организма, что необходимо прежде всего для синтеза цитохромов. Однако основное количество порфиринов и гема синтезируются в эритроидных клетках костного мозга и в гепатоцитах, поэтому наследственные заболевания, связанные с накоплением порфиринов, прежде всего приводят к изменениям эритрокариоцитов и печени (эритропоэтические и печёночные формы порфирий).
Билирубин и гематоидин[править | править код]
Билируби́н — типичный гемоглобиногенный пигмент, не содержащий железа, образуется в результате распада гема. В плазме крови билирубин связан с белками, прежде всего альбуминами. Из организма билирубин выводится не только с мочой, но и с желчью, поэтому он относится к группе «желчных пигментов». Различают (1) неконъюгированный и (2) конъюгированный (с двумя молекулами глюкуроновой кислоты) билирубин. Нормальная концентрация в крови общего билирубина (конъюгированного и неконъюгированного) составляет 8,5—20,5 мкМ/л, конъюгированного — 2,2—5,1 мкМ/л. Билирубин — пигмент жёлтого цвета, накопление его в тканях в высокой концентрации (обычно при уровне билирубинемии, превышающей 35 мкМ/л) приводит к их желтушному окрашиванию (желтушный синдром, «желтуха»).
Кристаллы билирубина, образующегося в центральных участках гематом при спонтанном (без участия макрофагов) распаде гемоглобина, в патологической анатомии традиционно называются гематоиди́ном.
Протеиногенные пигменты[править | править код]
Протеиноге́нные пигменты (тирозиногенные и триптофаногенные пигменты) — пигменты, образующиеся из аминокислот, прежде всего из тирозина и триптофана. К ним относятся (1) меланин, (2) пигмент гранул EC-клеток (энтерохромаффинных клеток), (3) адренохром и (4) пигмент охроноза.
Среди протеиногенных пигментов ведущее значение в патологии человека имеет мелани́н — пигмент тёмно-коричневого или чёрного цвета, синтезируемый из тирозина специализированными клетками нейрогенного происхождения — меланоцитами, расположенными в основном в коже и в тканях глаза. Кроме того, в тканях глаза меланин образуют клетки пигментного эпителия радужки, цилиарного тела и сетчатки. Специфические органеллы меланоцитов, представляющие собой гранулы меланина, носят название меланосом. Меланин защищает поверхностные ткани от избыточной инсоляции, прежде всего ультрафиолетовых лучей.
Пигмент гранул EC-клеток образован серотонином и мелатонином, в патологических условиях он обнаруживается в значительном количестве в опухолях из EC-клеток — карцино́идах). Адренохро́м синтезируется клетками мозгового вещества надпочечников и других симпатических параганглиев, содержится в опухолях из них (феохромоцито́мах). Пигмент охроно́за является продуктом окисления гомогентизиновой кислоты и накапливается в тканях при алкаптонурии (охронозе).
Липопигменты[править | править код]
Липопигме́нты (липидогенные пигменты) — пигменты, содержащие в своём составе липиды, или растворённые в жирах организма.
Ранее выделяли пять липидогенных пигментов: липофусцин, гемофусцин, пигмент недостаточности витамина Е, цероид и липохромы. В дальнейшем пигмент недостаточности витамина Е был отождествлён с липофусцином, а гемофусцин — с цероидом. В настоящее время к липопигментам относят (1) липофусцин, (2) цероид и (3) липохромы.
Липофусцин и цероид[править | править код]
Липофусци́н и церо́ид химически идентичны (липопротеины). Гранулы зрелого липофусцина и цероида представляют собой телолизосомы (остаточные тельца) паренхиматозных клеток (липофусцин) и макрофагов (цероид). Липофусцин наиболее часто обнаруживается в гепатоцитах, кардиомиоцитах и нейронах. Незрелым липофусцином называются собственные органеллы клетки, прежде всего митохондрии, с необратимым повреждением структуры. Такие органеллы затем сливаются с лизосомой и расщепляются её гидролитическими ферментами (аутофагия — лизосомный гидролиз собственных структур клетки). При электронно-микроскопическом исследовании в незрелом липофусцине, как правило, выявляются миелиноподобные тельца — свёрнутые в «рулоны» мембраны деградирующих органелл. Незрелый цероид — фагосомы макрофага с липопротеиновым материалом (гетерофагия — расщепление в лизосомах материала, поглощённого клеткой путём фаго- или пиноцитоза).
Гранулы незрелых липофусцина и цероида жёлтого цвета, зрелые пигменты обычно становятся коричневыми. Особенно тёмный оттенок приобретает зрелый липофусцин в гепатоцитах при болезни Дабина—Джонсона: даже при макроморфологическом исследовании орган выглядит почти чёрным («болезнь чёрной печени»).
Выявление макрофагов с большим количеством гранул цероида помогает диагностировать хроническую фатальную гранулематозную болезнь детей, при которой макрофаги не способны эффективно расщеплять в фаголизосомах поглощаемый материал, прежде всего бактериальные клетки.
Липохромы[править | править код]
Липохро́мами называют растворённые в жирах каротино́иды. Они придают тканям (белая жировая ткань, корковое вещество надпочечников, жёлтые тела в яичниках) и отчасти жидкостям (плазма крови, моча) организма жёлтый цвет. Известно усиление пигментации тканей липохромами алиментарного происхождения (при употреблении в пищу большого количества моркови). Конденсация липохромов в жировой клетчатке обнаруживается при быстро развивающемся похудении. У больных сахарным диабетом липохромы накапливаются не только в жировой ткани, но также в костях и коже.
См. также[править | править код]
- Патологическая анатомия
- Альтеративные процессы
- Деструктивные процессы
- Естественный апоптоз
- Паренхиматозные дистрофии
- Паренхиматозные диспротеинозы
- Мезенхимальные дистрофии
- Мезенхимальные диспротеинозы
- Смешанные дистрофии
- Нарушения кровообращения
- Воспалительный ответ
- Иммунопатологические процессы
- Процессы приспособления и компенсации
- Опухолевый рост
- Этиология злокачественных опухолей
Примечания[править | править код]
Ссылки[править | править код]
- Смирнова Л. А., Марцев С. П. Ферритин и его клиническое значение — Белорусский институт усовершенствования врачей, Институт биоорганической химии АН РБ
Литература[править | править код]
- Авцын А. П., Шахламов В. А. Ультраструктурные основы патологии клетки.— М., 1979.
- Давыдовский И. В. Общая патологическая анатомия. 2-е изд.— М., 1969.
- Калитеевский П. Ф. Макроскопическая дифференциальная диагностика патологических процессов.— М., 1987.
- Микроскопическая техника: Руководство для врачей и лаборантов / Под ред. Д. С. Саркисова и Ю. Л. Перова.— М., 1996.
- Общая патология человека: Руководство для врачей / Под ред. А. И. Струкова, В. В. Серова, Д. С. Саркисова: В 2 т.— Т. 1.— М., 1990.
- Патологическая анатомия болезней плода и ребёнка / Под ред. Т. Е. Ивановской, Б. С. Гусман: В 2 т.— М., 1981.
- Серов В. В., Пауков В. С. Ультраструктурная патология.— М., 1975.
- Струков А. И., Серов В. В. Патологическая анатомия.— М., 1995.
Источник
Ташкентская Медицинская Академия
Кафедра: Нормальная, патологическая физиология и патологическая анатомия
Предмет: Патологическая анатомия
Лекция № 3
Лектор: профессор
Тема: СМЕШАННЫЕ ДИСТРОФИИ
2011-2012 учебный год
Цель: ознакомить с определением, классификацией, клинико-морфологическими проявлениями смешанных дистрофий.
Педагогические задачи:
1. Ознакомить с определением смешанных дистрофий.
2. Дать этиологию и классификацию смешанных дистрофий.
3. Раскрыть патогенетическую и морфологическую картину при нарушениях обмена пигментов и нуклеопротеидов.
Ожидаемый результат:
1. Дают определение смешанных дистрофий.
2. Знают классификацию пигментов по происхождению.
3. Перечисляют виды пигментов встречающихся в норме и при патологии.
4. Знают причины нарушения обмена пигментов и нуклеопротеидов.
5. Знают морфологические проявления нарушения обмена пигментов и нуклеопротеидов.
Методы обучения: лекция.
АННОТАЦИЯ
В лекции приводится определение, классификация смешанных дистрофий. Рассматриваются причины и механизм нарушения обмена сложных белков: хромопротеидов (пигментов), нуклеопртеидов и липопротеидов. Дается классификация гемоглобиногенных пигментов. Изучаются морфологические изменения в органах и тканях при нарушениях обмена сложных белков, устанавливается связь с болезнями.
СМЕШАННЫЕ БЕЛКОВЫЕ ДИСТРОФИИ
В организме человека, кроме простых белков (альбумина, глобулина и др.), имеются сложные белки, находящиеся в тесной взаимосвязи с веществами небелковой природы, так называемой простетической частью, которую составляют нуклеиновые кислоты (нуклеопротеиды), липиды (липопротеиды), полисахариды (гликопротеиды) и пигменты (хромопротеиды). Нарушение обмена этих сложных белков относится к смешанным диспротеинозам, так как в процесс вовлекаются паренхима, строма и стенка сосудов.
НАРУШЕНИЕ ОБМЕНА ХРОМОПРОТЕИДОВ
Все патологические формы пигментации разделяются на эндогенные и экзогенные. Например, к экзогенным пигмента-циям относится антракоз легких, развивающийся вследствие длительного вдыхания угольной пыли. При этом накопление угольной пыли в макрофагах альвеол и’ в лимфатическом русле приводит к их черному окрашиванию. К этой же группе можно отнести бытовые (татуировка) и лекарственные пигментации (например, аргирия, висмутия). В основе эндогенных пигментации (гемосидероз, желтуха, гиперпигментация кожи) лежит нарушение обмена эндогенных пигментов, которые играют важную роль в жизни организма. Так, пигмент кожи меланин предохраняет организм от патогенного действия лучистой энергии; гемоглобин — не только нормальное красящее вещество крови, но и носитель кислорода, то есть с его помощью осуществляется дыхание. Продукты его распада используются для выработки желчных пигментов, которые, как известно, играют важную роль в процессах пищеварения. Обмен пигментов регулируется вегетативной нервной системой, эндокринными железами и тесно связан с функцией органов кроветворения и моноцитарно-макрофагальной системы.
Классификация. Эндогенные пигменты могут возникать из белков или имеющихся в организме растворенных пигментов, связанных с белками. В зависимости от происхождения все эндогенные пигменты можно разделить на три основные группы:
1) гемоглобиногенные, представляющие собой различные производные гемоглобина;
2) протеиногенные (или тирозиногенные), связанные с обменом тирозина;
3) липидогенные (или липопигменты), образующиеся при обмене жиров.
ГЕМОГЛОБИНОГЕННЫЕ ПИГМЕНТЫ
Гемоглобин в норме проходит ряд циклических превращений, связанных с разрушением эритроцитов и постоянным обновлением эритроцитной массы. Деструкция красных кровяных телец происходит путем гемолиза и эритрофагии.
Гемолиз — отщепление гемоглобина от эритроцитов — усиливается при ряде патологических процессов. При этом он может наблюдаться на одном из участков сосудистой сети, например в области стазов (местный гемолиз) или во всем кровяном русле (общий гемолиз). Гемолиз может происходить в циркулирующей крови (интраваскулярный) или вне сосудов (экстраваскулярный). В связи с этим выделяют пигменты, образующиеся внутри кровяного русла (гематопорфирин, желчные пигменты, малярийный пигмент) и пигменты, образующиеся вне кровяного русла (гемосидерин).
Усиленный гемолиз может привести к резкому увеличению количества пигмента, встречающегося в норме, например, гемосидерина, билирубина, а также к образованию и накоплению пигментов, которые не встречаются в норме, например малярийного пигмента.
В связи с накоплением гемоглобиногенных пигментов в тканях могут возникать различные виды эндогенных пигментации, которые лежат в основе ряда заболеваний.
Гемосидерин образуется при расщеплении тема и отличается золотисто-желтым цветом, легко определяется под световым микроскопом в виде зерен или кристаллов. Он представляет собой полимер ферритина и образуется спустя 24 часа от момента кровоизлияния.
Клетки, в которых образуется гемосидерин, называются сидеробластами. В их сидеросомах происходит синтез гранул гемосидерина. Силеробласты могут быть как мезенхимальной, так и эпителиальной природы. гемосидерин постоянно обнаруживаются в ретикулярных и эндотелиальных клетках селезенки, печени, костного мозга и лимфатических узлов.
В межклеточном веществе он подвергаетсяфагоцитозу сидерофагами.
Образование гемосидерина наблюдается как при внутрисосудистом, так и внесосудистом распаде гемоглобина. Гранулы гемосидерина представляют собой скопления мицелл ферритина, которые обнаруживаются только под электронным микроскопом и состоят из белка, известного как апоферритин. Для дифференциальной диагностики гемосидерина с другими пигментами (меланин, липофусцин) следует использовать реакцию с берлинской лазурью, в результате которой гемосидерин окрашивается в синий цвет.
Избыточное отложение гемосидерина называется гемосидерозом, он может быть местным или системным.
Местный гемосидероз обычно возникает при кровоизлияниях в ткани и в полости тела или в результате длительного венозного застоя крови, который ведет к мелким кровоизлияниям. Кровоподтек, возникающий после травмы,— пример локального образования гемосидерина, а изменение его цвета отражает трансформацию гемоглобина. Кровоподтек вначале имеет сине-красный цвет эритроцитов, которые накапливаются в зоне геморрагии. Затем они фагоцитируются макрофагами, которые расщепляют гемоглобин с образованием вначале биливердина (желто-зеленый цвет), затем билирубина (зеленовато-коричневый цвет), в конечном итоге образуется железосодержащий пигмент гемосидерин (золотисто-желтый).
При длительном венозном застое в легких, возникающем вследствие хронической сердечной недостаточности, наблюдаются множественные диапедезные кровоизлияния. Образующийся при этом гемосидерин поглощается мононуклеарными клетками альвеол. Макрофаги, нафаршированные гемосидерином, превращаются в зернистые шары золотисто-желтого цвета и обнаруживаются в большом количестве в альвеолярных перегородках, лимфатических сосудах и лимфатических узлах легких. Зернистые шары появляются, кроме того, в мокроте у больных ревматическим пороком сердца в стадии декомпенсации (отсюда название «клетки сердечного порока»).
В гематоме образуется также пигмент гематоидин. Если исследовать гематому давностью более 7—10 дней, то на периферии и внутри живых клеток удается обнаружить бурый пигмент гемосидерин, а в центре мертвых тканей — кристаллы гематоидина. Иногда гематоидин вообще не образуется. Это бывает в случаях быстрого рассасывания (через несколько дней) гематом в рыхлой мягкой клетчатке, например в мягких тканях под глазами. Наоборот, кровоизлияние в очень плотную ткань, например в твердую мозговую оболочку, не рассасывается десятилетиями.
Гематины представляют собой окисленную форму гемма и образуются при гидролизе оксигемоглобина. К гематинам относят:
-гемомеланин (малярийный пигмент);
-солянокислый гематин (гемин) возникает под действием на гемоглобин ферментов желудочного сока и соляной кислоты;
-формалиновый пигмент, считают производным гематина.
Системный гемосидероз развивается при общем интраваскулярном гемолизе, наиболее частыми причинами которого являются:
1) болезни системы крови (анемии, гемобластозы);
2) переливание иногруппной крови;
3) резус-конфликт между кровью матери и плода;
4) интоксикации гемолитическими ядами (отравление грибами, змеиным ядом и т. п.);
5) некоторые инфекционные заболевания (сепсис, анаэробные инфекции, малярия).
Образующийся вследствие гемолиза гемосидерин вначале поглощается и откладывается в мононуклеарных фагоцитах, затем его можно встретить в паренхиматозных клетках различных органов: поджелудочной железы, печени, почек, эндокринных желез, легких и др. При массивном отложении гемосидерина в межклеточном веществе сидерофаги не успевают поглощать пигмент, в результате коллагеновые и эластические волокна пропитываются железом, что придает органам ржаво-коричневый цвет.
В большинстве случаев внутриклеточное отложение гемосидерина не повреждает клетки, не влияет на функциональное состояние органа и может носить обратимый характер. Однако при более массивных отложениях гемосидерина в органах и тканях возникает гемохроматоз с повреждением клеток, тканей и органов.
Гемохроматоз – это своеобразное, близкое к общему гемосидерозу заболевание, главным отличием которого является степень перегрузки железом и наличие повреждений паренхиматозных клеток. Гемохроматоз может быть первичным (наследственным) и вторичным
Билирубин — важнейший пигмент желчи, встречающийся в норме в растворенном состоянии в желчи и в небольшом количестве в плазме крови. Относится к гемоглобиногенным пигментам, не содержащим железо, имеет желтовато-зеленый цвет. Его происхождение тесно связано с гемом гемоглобина, освобождающегося при разрушении изношенных эритроцитов мононуклеарными фагоцитами. Быстро связываясь с альбумином, билирубин транспортируется кровью в гепатоциты, где он соединяется (конъюгируется) с глюкуроновой кислотой и в виде желчи экспортируется в желчные капилляры.
Из за большого объема этот материал размещен на нескольких страницах: 1 2 3 4 5 |
Источник