Какие напряжения возникают в поперечном сечении при растяжении сжатии

Какие напряжения возникают в поперечном сечении при растяжении сжатии thumbnail

Внутренние усилия при растяжении-сжатии.

Осевое (центральное) растяжение или сжатие прямого бруса вызывается внешними силами, вектор равнодействующей которых совпадает с осью бруса. При растяжении или сжатии в поперечных сечениях бруса возникают только продольные силы N. Продольная сила N в некотором сечении равна алгебраической сумме проекции на ось стержня всех внешних сил, действующих по одну сторону от рассматриваемого сечения. По правилу знаков продольной силы N принято считать, что от растягивающих внешних нагрузок возникают положительные продольные силы N, а от сжимающих — продольные силы N отрицательны (рис. 5).

правило знаков для продольных сил

Чтобы выявить участки стержня или его сечения, где продольная сила имеет наибольшее значение, строят эпюру продольных сил, применяя метод сечений, подробно рассмотренный в статье:
Анализ внутренних силовых факторов в статистически определимых системах
Ещё настоятельно рекомендую взглянуть на статью:
Расчёт статистически определимого бруса
Если разберёте теорию в данной статье и задачи по ссылкам, то станете гуру в теме «Растяжение-сжатие» =)

Напряжения при растяжении-сжатии.

Определенная методом сечений продольная сила N, является равнодействующей внутренних усилий распределенных по поперечному сечению стержня (рис. 2, б). Исходя из определения напряжений, согласно выражению (1), можно записать для продольной силы:

напряжения при растяжении-сжатии

где σ — нормальное напряжение в произвольной точке поперечного сечения стержня.


Чтобы определить нормальные напряжения в любой точке бруса необходимо знать закон их распределения по поперечному сечению бруса. Экспериментальные исследования показывают: если нанести на поверхность стержня ряд взаимно перпендикулярных линий, то после приложения внешней растягивающей нагрузки поперечные линии не искривляются и остаются параллельными друг другу (рис.6, а). Об этом явлении говорит гипотеза плоских сечений (гипотеза Бернулли): сечения, плоские до деформации, остаются плоскими и после деформации.

механизм деформации растяжения

Так как все продольные волокна стержня деформируются одинаково, то и напряжения в поперечном сечении одинаковы, а эпюра напряжений σ по высоте поперечного сечения стержня выглядит, как показано на рис.6, б. Видно, что напряжения равномерно распределены по поперечному сечению стержня, т.е. во всех точках сечения σ = const. Выражение для определения величины напряжения имеет вид:

формула напряжения

Таким образом, нормальные напряжения, возникающие в поперечных сечениях растянутого или сжатого бруса, равны отношению продольной силы к площади его поперечного сечения. Нормальные напряжения принято считать положительными при растяжении и отрицательными при сжатии.

Деформации при растяжении-сжатии.

Рассмотрим деформации, возникающие при растяжении (сжатии) стержня (рис.6, а). Под действием силы F брус удлиняется на некоторую величину Δl называемую абсолютным удлинением, или абсолютной продольной деформацией, которая численно равна разности длины бруса после деформации l1 и его длины до деформации l

абсолютное удлинение

Отношение абсолютной продольной деформации бруса Δl к его первоначальной длине l называют относительным удлинением, или относительной продольной деформацией:

относительное удлинение

При растяжении продольная деформация положительна, а при сжатии – отрицательна. Для большинства конструкционных материалов на стадии упругой деформации выполняется закон Гука (4), устанавливающий линейную зависимость между напряжениями и деформациями:

закон гука

где модуль продольной упругости Е, называемый еще модулем упругости первого рода является коэффициентом пропорциональности, между напряжениями и деформациями. Он характеризует жесткость материала при растяжении или сжатии (табл. 1).

Таблица 1

Модуль продольной упругости для различных материалов

модуль продольной упругости для различных материалов

Абсолютная поперечная деформация бруса равна разности размеров поперечного сечения после и до деформации:

абсолютная поперечная деформация бруса

Соответственно, относительную поперечную деформацию определяют по формуле:

относительная поперечная деформация

При растяжении размеры поперечного сечения бруса уменьшаются, и ε’ имеет отрицательное значение. Опытом установлено, что в пределах действия закона Гука при растяжении бруса поперечная деформация прямо пропорциональна продольной. Отношение поперечной деформации ε’ к продольной деформации ε называется коэффициентом поперечной деформации, или коэффициентом Пуассона μ:

коэффициент пуассона

Экспериментально установлено, что на упругой стадии нагружения любого материала значение μ = const и для различных материалов значения коэффициента Пуассона находятся в пределах от 0 до 0,5 (табл. 2).

Таблица 2

Коэффициент Пуассона.

коэффициент пуассона для материалов

Абсолютное удлинение стержня Δl прямо пропорционально продольной силе N:

абсолютное удлинение стержня

Данной формулой можно пользоваться для вычисления абсолютного удлинения участка стержня длиной l при условии, что в пределах этого участка значение продольной силы постоянно. В случае, когда продольная сила N изменяется в пределах участка стержня, Δl определяют интегрированием в пределах этого участка:

Какие напряжения возникают в поперечном сечении при растяжении сжатии

Произведение (Е·А) называют жесткостью сечения стержня при растяжении (сжатии).

Механические свойства материалов.

Основными механическими свойствами материалов при их деформации являются прочность, пластичность, хрупкость, упругость и твердость.

Прочность — способность материала сопротивляться воздействию внешних сил, не разрушаясь и без появления остаточных деформаций.

Пластичность – свойство материала выдерживать без разрушения большие остаточные деформации. Неисчезающие после снятия внешних нагрузок деформации называются пластическими.

Хрупкость – свойство материала разрушаться при очень малых остаточных деформациях (например, чугун, бетон, стекло).

Идеальная упругость – свойство материала (тела) полностью восстанавливать свою форму и размеры после устранения причин, вызвавших деформацию.

Твердость – свойство материала сопротивляться проникновению в него других тел.

Рассмотрим диаграмму растяжения стержня из малоуглеродистой стали. Пусть круглый стержень длинной l0 и начальным постоянным поперечным сечением площади A0 статически растягивается с обоих торцов силой F.

Читайте также:  Прочность стали на растяжение и изгиб

растягивание стержня до разрушения

Диаграмма сжатия стержня имеет вид (рис. 10, а)

диаграмма растяжения стали

где Δl = l — l0 абсолютное удлинение стержня; ε = Δl / l0 — относительное продольное удлинение стержня; σ = F / A0 — нормальное напряжение; E — модуль Юнга; σп — предел пропорциональности; σуп — предел упругости; σт — предел текучести; σв — предел прочности (временное сопротивление); εост — остаточная деформация после снятия внешних нагрузок. Для материалов, не имеющих ярко выраженную площадку текучести, вводят условный предел текучести σ0,2 — напряжение, при котором достигается 0,2% остаточной деформации. При достижении предела прочности в центре стержня возникает локальное утончение его диаметра («шейка»). Дальнейшее абсолютное удлинение стержня идет в зоне шейки ( зона местной текучести). При достижении напряжением предела текучести σт глянцевая поверхность стержня становится немного матовой – на его поверхности появляются микротрещины (линии Людерса-Чернова), направленные под углом 45° к оси стержня.

примеры разрушения материалов

Расчеты на прочность и жесткость при растяжении и сжатии.

Опасным сечением при растяжении и сжатии называется поперечное сечение бруса, в котором возникает максимальное нормальное напряжение. Допускаемые напряжения вычисляются по формуле:

формула допускаемые напряжения

где σпред — предельное напряжение (σпред = σт — для пластических материалов и σпред = σв — для хрупких материалов); [n] — коэффициент запаса прочности. Для пластических материалов [n] = [nт] = 1,2 … 2,5; для хрупких материалов [n] = [nв] = 2 … 5, а для древесины [n] = 8 ÷ 12.

Расчеты на прочность при растяжении и сжатии.

Целью расчета любой конструкции является использование полученных результатов для оценки пригодности этой конструкции к эксплуатации при минимальном расходе материала, что находит отражение в методах расчета на прочность и жесткость.

Условие прочности стержня при его растяжении (сжатии):

Условие прочности стержня

При проектном расчете определяется площадь опасного сечения стержня:

площадь при проектном расчёте

При определении допускаемой нагрузки рассчитывается допускаемая нормальная сила:

допускаемая нормальная сила

Расчет на жесткость при растяжении и сжатии.

Работоспособность стержня определяется его предельной деформацией [ l ]. Абсолютное удлинение стержня должно удовлетворять условию:

ограничение абсолютного удлинения стержня

Часто дополнительно делают расчет на жесткость отдельных участков стержня.

Следующая важная статья теории:
Изгиб балки

Источник

При растяжении и сжатии в сечении действует только нормаль­ное напряжение.

Напряжения в поперечных сечениях могут рассматриваться как силы, приходящиеся на единицу площади.

Таким образом, направление и знак напряжения в сечении сов­падают с направлением и знаком силы в сечении (рис. 20.3).

Исходя из гипотезы плоских сечений, можно предположить, что напряжения при растяжении и сжатии в пределах каждого сечения не меняются. Поэтому напряжение можно рассчитать по форму­ле

где Nz — продольная сила в сечении; А — площадь поперечного сечения.

Величина напряжения прямо пропорциональна продольной силе и обратно пропорциональна площади поперечного сечения.

Нормальные напряжения действуют при растяжении от сечения (рис. 20.4а), а при сжатии к сечению (рис. 20.4б).

Размерность (единица измерения) напряжений — Н/м2 (Па), од­нако это слишком малая единица, и практически напряжения рас­считывают в Н/мм2 (МПа):

1 МПа = 106 Па =1 Н/мм2.

При определении напряже­ний брус разбивают на участки нагружений, в пределах которых продольные силы не изменяются, и учитывают места изменений площади поперечных сечений.

Рассчитывают напряжения по сечениям, и расчет оформляют в виде эпюры нормальных напряжений.

Строится и оформляется такая эпюра так же, как и эпюра про­дольных сил.

Рассмотрим брус, нагру­женный внешними силами вдоль оси (рис. 20.5).

Обнаруживаем три уча­стка нагружения и определяем величины продольных сил.

Участок 1: N1 = 0. Внут­ренние продольные силы равны нулю.

Участок 2: N2 = 2F. Продольная сила на участке положительна.

Участок 3: N3 = 2F – 3F = — F. Продольная сила на участке отрицательна.

Брус – ступенчатый.

С учетом изменений величин площади поперечного сечения участков напряжений больше.

Строим эпюры продольных сил и нормальных напряжений.

Масштабы эпюр могут быть разными и выбираются исходя из удобства построения.

Примеры решения задач

Пример 1. Ступенчатый брус нагружен вдоль оси двумя силами. Брус за­щемлен с левой стороны (рис. 20.6). Пренебрегая весом бруса, по­строить эпюры продольных сил и нормальных напряжений.

Решение

— Определяем участки нагружения, их два.

— Определяем продольную силу в сечениях 1 и 2.

— Строим эпюру.

— Рассчитываем величины нормальных напряжений и строим эпюру нормальных напряжений в собственном произвольном мас­штабе.

1. Определяем продольные силы.

В обоих сечениях продольные силы положительны.

2. Определяем нормальные напряжения

Сопоставляя участки нагружения с границами изменения пло­щади, видим, что образуется 4 участка напряжений.

Нормальные напряжения в сечениях по участкам:

Откладываем значения напряжений вверх от оси, т. к. значения их положительные (растяжение). Масштаб эпюр продольной силы и нормальных напряжений выбирается отдельно в зависимости от порядка цифр и имеющегося на листе места.

Пример 2. Для заданного бруса (рис. 2.5, а) построить эпюры продольных сил и нормальных напряжений.

Решение

Заданный брус имеет четыре участка I, II, III, IV (рис. 2.5, а). Границами участков являются сечения, в которых приложены внешние силы, а для напряжений также и места изменения размеров поперечного сечения.

Читайте также:  Расчет на жесткость при растяжении

Пользуясь методом сечений, строим эпюру продольных сил (рис. 2.5, б).

Для построения эпюры нормальных напряжений определяем их в поперечных сечениях каждого из участков:

Эпюра σ представлена на рис. 2.5, в.

Пример 3. Определить количество деревянных стоек сечением 10×10 см, необходимых для поддержания, цистерны, вмещающей V = 40 м3 воды. Масса цистерны Мц = 7,2-103 кг. Допускаемое напряжение [σ] = 13 Н/мм3. При расчете считать, что усилия в стойках одинаковы.

Решение

Требуемая площадь поперечного сечения стоек

где (fст — площадь поперечного сечения одной стойки; i — число стоек);

N — усилие, передающееся на стойки.

где — сила тяжести цистерны; = ц = 9,81 * 7,2*103 =70,7*103 Н; — сила тяжести воды; = уV = 10*40 = 400 кН (у = 10 кН/м3 — объемная сила тяжести воды). Подставляя числовые значения, получаем

Тогда

откуда находим требуемое число стоек:

Принимаем i = 4.

Пример 4. Для заданной стержневой системы (рис. 2.6, а) определить из расчета на прочность требуемые площади сечения стержней и подобрать по ГОСТ 8509—72 соответствующий номер угловой равнополочной стали, учитывая, что каждый стержень изготовлен из двух равнополочных уголков.

Для принятых сечений стержней определить расчет­ные напряжения н указать расхождения (в процентах) с допускаемым значением напряжения [σ] = 160 Н/мм3.

Решение

Здесь требуется подобрать сечения стержней исходя из условий:

где N1 и N2 — усилия, возникающие соответственно в стерж­нях 1 и 2.

1. Усилия N1 и N2 во всех поперечных сечениях стерж­ней одинаковы и площади этих сечений постоянны. Таким образом, все сечения каждого стержня равноопасны.

2. Определяем усилия в стержнях из рассмотрения равно­весия узла В, где приложены заданные силы Р1 и Р2 (рис. 2.6, б). Освобождаем эту точку от связей и прикла­дываем их реакции N1 и N2, равные усилиям в стерж­нях. Получаем плоскую систему сходящихся сил. Для упрощения уравнений равновесия координатные оси ху направляем вдоль неизвестных усилий N1 и N2. Состав­ляем уравнения равновесия:

Откуда

Тогда

По таблицам ГОСТ 8509—72 подбираем сечения стерж­ней:

для первого стержня угловую равнополочную сталь 36x36x4

для второго стержня угловую равнополочную сталь 28x28x3

Вычислим напряжения в поперечных сечениях стерж­ней при принятых площадях

что больше [σ] на

такое превышение допустимо;

что меньше [σ] на

Пример 5. Определить размеры поперечных сече­ний стержней (рис. 2.7, а), если допускаемые напря­жения для стали [σсх] = 140 Н/мм2, для дерева [σд] = 13 Н/мм2.

Решение

Рассматри­ваем равновесие шарни­ра А, так как к этому шарниру приложены за­данная нагрузка и иско­мые усилия в стержнях.

1. Освобождаем шарнир А от связей и заменяем их действие реакциями N1 и N2. Действующие на шарнир А нагрузка и ис­комые усилия показаны на рис. 2.7, б. Получили плоскую систему сходящихся сил, которая находится в равновесии.

2. Выбираем систему координат и составляем уравнения равновесия:

откуда

Требуемые площади поперечных сечений стержней

Откуда

Пример 6. Однородная балка АВ поддерживается тремя стальными стержнями1, 2, 3 круглого поперечного сечения d = 20 мм (рис. 2.8). Сила тя­жести балки Q = 10 кН. Найти до­пускаемую интенсив­ность [q] равномерно распределенной на­грузки, если допус­каемое напряжение для материала стерж­ней [σ] =160 Н/мм2.

Решение

1. Определим усилия, возникающие в стержнях. Под действием силы Q, равномерно распределенной на­грузки q и усилий N1, N2 и N3в стержнях балка нахо­дится в равновесии.

2. Составляем уравнения равновесия:

3. Решая полученные уравнения, находим:

N3больше, чем N1 и N2. Следовательно, опасными являются поперечные сечения стержня 3.

4. Условие прочности для стержня 3:

Подставляем значение N3:

5. Решая относительно ц и подставляя числовые значе­ния, получаем:

где

Пример 7. Стальной стержень круглого сечения диаметром d = 20 мм растягивается силой Р = 65 кН. Проверить прочность стержня, если его предел текучести σ = σт = 300 Н/мм2 и требуемый коэффициент запаса [n] = 1,5.

Решение

Напряжения, возникающие в поперечном сечении стержня,

Расчетный коэффициент запаса

Следовательно, можно считать, что прочность стержня достаточна, так как расчетный коэффициент запаса незначительно (на 3%) меньше требуемого.

Контрольные вопросы и задания

  1. Какие внутренние силовые факторы возникают в сечении бру­са при растяжении и сжатии?
  2. Как распределяются по сечению силы упругости при растя­жении и сжатии? (Использовать гипотезу плоских сечений.)
  3. Какого характера напряжения возникают в поперечном сече­нии при растяжении и сжатии: нормальные или касательные?
  4. Как распределены напряжения по сечению при растяжении и сжатии?
  5. Запишите формулу для расчета нормальных напряжений при растяжении и сжатии.
  6. Как назначаются знаки продольной силы и нормального на­пряжения?
  7. Что показывает эпюра продольной силы?
  8. Как изменится величина напряжения, если площадь попереч­ного сечения возрастет в 4 раза?
  9. В каких единицах измеряется напряжение?

ЛЕКЦИЯ 21

Источник

Растяжение  (сжатие) – это такой   вид нагружения стержня, при котором в его поперечном сечении возникает внутренняя продольная сила Ν, действующая вдоль центральной оси z.

Читайте также:  Камфорный спирт при растяжении мышц

Продольная сила Ν – это равнодействующая всех внутренних нормальных сил в сечении. Для вычисления продольной силы применяется метод сечений.

2014-09-07 19-04-45 Скриншот экрана

Продольная сила Ν численно равна алгебраической сумме проекций всех сил, действующих по одну сторону от рассматриваемого сечения,  на продольную ось бруса.

Правило знаков для продольной силы Ν: при растяжении продольная сила положительна, при сжатии – отрицательна.

2014-09-07 19-09-39 Скриншот экрана

График изменения продольных сил по длине стержня называется эпюрой. Эпюра N строится методом сечений на характерных участках бруса. Строится эпюра для использования ее при расчете бруса на прочность. Она дает возможность найти наибольшие значения продольных сил и положение сечений, в которых они возникают.

При растяжении (сжатии) возникают только нормальные напряжения. Согласно гипотезе Я. Бернулли (или гипотеза плоских сечений) в поперечных сечениях, удаленных от места приложения нагрузок, нормальные напряжения распределяются по сечению практически равномерно, а сами сечения, перпендикулярные к оси стержня z, остаются плоскими в процессе нагружения.

Нормальные напряжения в сечении при  растяжении (сжатии) вычисляются по формуле

2014-09-01 21-40-08 Скриншот экрана

где Аплощадь поперечного сечения.

Правило знаков для σ совпадает с правилом знаков для N.

В наклонном сечении, нормаль к которому составляет угол α с осью стержня z,

2014-09-01 21-43-41 Скриншот экрана

При растяжении в продольном направлении стержень удлиняется, а его поперечные размеры уменьшаются, при сжатии, напротив, в продольном направлении стержень укорачивается, а его поперечные размеры увеличиваются; Δℓ — абсолютное удлинение или укорочение участка стержня длиной ℓ, Δbабсолютная поперечная деформация.

Относительное удлинение или укорочение участка стержня длиной ℓ, называемое линейной деформацией, определяется следующим образом

ε=Δℓ/ℓ.

Экспериментально установлено, что в определенной области нагрузок при упругом поведении материала между нормальными напряжениями и линейными деформациями существует линейная зависимость (закон Гука для напряжений)

σ=εЕ,

где Е – модуль продольной упругости или модуль Юнга, это физическая const. Для каждого из материалов величина модуля упругости имеет свое значение:

сталь, Е = 2.105 МПа,

медь, Е = 1.105 МПа,

алюминий, Е = 0,7.105 МПа.

Значение модуля упругости устанавливается экспериментально.

Согласно закону Гука (данную запись называют законом Гука для деформаций)

Δℓ=Νℓ/ЕА

Произведение ЕА – называется жесткостью стержня при растяжении – сжатии.

Перемещение произвольного сечения ступенчатого стержня

w=∑Δℓi

Относительная поперечная деформация:

ε′=Δb/b

где b – поперечный размер стержня.

Эксперименты также показывают, что в упругой стадии деформирования между продольной и поперечной деформациями существует взаимосвязь

μ  =│ε′⁄ε│ — const,

где   μ —  коэффициент Пуассона, берется по модулю ,поскольку у продольной и поперечной деформации разные знаки (при растяжении продольные волокна увеличиваются, а поперечные уменьшаются в размере).

Для твердых материалов имеет значения коэффициент Пуассона

0≤μ ≤0,5

Изменение температуры стержня вызывает его удлинение (при нагревании) или укорочение (при охлаждении)

2014-09-01 22-02-54 Скриншот экрана

где — a- коэффициент линейного температурного расширения; Δtº=(tºк-tºн) — изменение температуры между значениями начальным (tºн) и конечным (tºк).

Статически неопределимыми называют системы, имеющие лишние связи – внешние или внутренние.

Для определения внутренних усилий в таких системах недостаточно рассматривать только уравнения равновесия.

В этом случае требуются дополнительные уравнения, число которых равно количеству лишних связей. Дополнительные уравнения составляются на основе анализа картины деформирования системы и использования законов деформирования ее элементов.

Алгоритм решения подобных задач включает следующее:

1)   Статическая часть. Составляются уравнения равновесия с включением неизвестных усилий, действующих по направлению лишних связей.

2)    Геометрическая часть. Составляются уравнения, описывающие взаимосвязь перемещений характерных точек, удлинений и укорочений отдельных стержней между собой.

3)   Физическая связь. Записываются законы деформирования отдельных стержней системы.

Порядок расчета статически неопределимых брусьев

  1.  Задаться направлениями возможных опорных реакций и составить уравнение      статики для всей системы в целом.
  2. Определить степень статической неопределимости и использовать метод сечений с целью выразить неизвестные усилия через неизвестные опорные реакции. При этом неизвестные продольные силы (N) следует предполагать положительными и поэтому направлять «от сечения».
  3. Сформулировать условие совместности деформаций участков бруса.
  4. В процессе превращения условия совместности в уравнение совместности деформаций различий в характере деформаций участков не учитывать.

Порядок расчета статически неопределимых шарнирно-стержневых систем

  1. Задаться направлениями опорных реакций, но уравнений равновесия для всей системы не составлять, а сразу использовать метод сечений и составить уравнения статики для выделенной части системы.
  2. Определить степень статической неопределимости как разницу между количеством всех неизвестных, оказавшихся в уравнениях статики, и числом самих этих уравнений.
  3. Рассмотреть (изобразить) любую возможную картину деформаций системы и из ее анализа сформулировать условия совместности деформаций стержней системы (столько, какова степень статической неопределимости).
  4. В процессе преобразования условий совместности в уравнения совместности деформаций обязательно учитывать различие в характере деформаций стержней (т.е. вводить удлинение со знаком «плюс», а укорочение со знаком «минус») в соответствии с той картиной деформации, которую мы рассматриваем.

Источник