Какие напряжения возникают в поперечном сечении при растяжении сжатии
Внутренние усилия при растяжении-сжатии.
Осевое (центральное) растяжение или сжатие прямого бруса вызывается внешними силами, вектор равнодействующей которых совпадает с осью бруса. При растяжении или сжатии в поперечных сечениях бруса возникают только продольные силы N. Продольная сила N в некотором сечении равна алгебраической сумме проекции на ось стержня всех внешних сил, действующих по одну сторону от рассматриваемого сечения. По правилу знаков продольной силы N принято считать, что от растягивающих внешних нагрузок возникают положительные продольные силы N, а от сжимающих — продольные силы N отрицательны (рис. 5).
Чтобы выявить участки стержня или его сечения, где продольная сила имеет наибольшее значение, строят эпюру продольных сил, применяя метод сечений, подробно рассмотренный в статье:
Анализ внутренних силовых факторов в статистически определимых системах
Ещё настоятельно рекомендую взглянуть на статью:
Расчёт статистически определимого бруса
Если разберёте теорию в данной статье и задачи по ссылкам, то станете гуру в теме «Растяжение-сжатие» =)
Напряжения при растяжении-сжатии.
Определенная методом сечений продольная сила N, является равнодействующей внутренних усилий распределенных по поперечному сечению стержня (рис. 2, б). Исходя из определения напряжений, согласно выражению (1), можно записать для продольной силы:
где σ — нормальное напряжение в произвольной точке поперечного сечения стержня.
Чтобы определить нормальные напряжения в любой точке бруса необходимо знать закон их распределения по поперечному сечению бруса. Экспериментальные исследования показывают: если нанести на поверхность стержня ряд взаимно перпендикулярных линий, то после приложения внешней растягивающей нагрузки поперечные линии не искривляются и остаются параллельными друг другу (рис.6, а). Об этом явлении говорит гипотеза плоских сечений (гипотеза Бернулли): сечения, плоские до деформации, остаются плоскими и после деформации.
Так как все продольные волокна стержня деформируются одинаково, то и напряжения в поперечном сечении одинаковы, а эпюра напряжений σ по высоте поперечного сечения стержня выглядит, как показано на рис.6, б. Видно, что напряжения равномерно распределены по поперечному сечению стержня, т.е. во всех точках сечения σ = const. Выражение для определения величины напряжения имеет вид:
Таким образом, нормальные напряжения, возникающие в поперечных сечениях растянутого или сжатого бруса, равны отношению продольной силы к площади его поперечного сечения. Нормальные напряжения принято считать положительными при растяжении и отрицательными при сжатии.
Деформации при растяжении-сжатии.
Рассмотрим деформации, возникающие при растяжении (сжатии) стержня (рис.6, а). Под действием силы F брус удлиняется на некоторую величину Δl называемую абсолютным удлинением, или абсолютной продольной деформацией, которая численно равна разности длины бруса после деформации l1 и его длины до деформации l
Отношение абсолютной продольной деформации бруса Δl к его первоначальной длине l называют относительным удлинением, или относительной продольной деформацией:
При растяжении продольная деформация положительна, а при сжатии – отрицательна. Для большинства конструкционных материалов на стадии упругой деформации выполняется закон Гука (4), устанавливающий линейную зависимость между напряжениями и деформациями:
где модуль продольной упругости Е, называемый еще модулем упругости первого рода является коэффициентом пропорциональности, между напряжениями и деформациями. Он характеризует жесткость материала при растяжении или сжатии (табл. 1).
Таблица 1
Модуль продольной упругости для различных материалов
Абсолютная поперечная деформация бруса равна разности размеров поперечного сечения после и до деформации:
Соответственно, относительную поперечную деформацию определяют по формуле:
При растяжении размеры поперечного сечения бруса уменьшаются, и ε’ имеет отрицательное значение. Опытом установлено, что в пределах действия закона Гука при растяжении бруса поперечная деформация прямо пропорциональна продольной. Отношение поперечной деформации ε’ к продольной деформации ε называется коэффициентом поперечной деформации, или коэффициентом Пуассона μ:
Экспериментально установлено, что на упругой стадии нагружения любого материала значение μ = const и для различных материалов значения коэффициента Пуассона находятся в пределах от 0 до 0,5 (табл. 2).
Таблица 2
Коэффициент Пуассона.
Абсолютное удлинение стержня Δl прямо пропорционально продольной силе N:
Данной формулой можно пользоваться для вычисления абсолютного удлинения участка стержня длиной l при условии, что в пределах этого участка значение продольной силы постоянно. В случае, когда продольная сила N изменяется в пределах участка стержня, Δl определяют интегрированием в пределах этого участка:
Произведение (Е·А) называют жесткостью сечения стержня при растяжении (сжатии).
Механические свойства материалов.
Основными механическими свойствами материалов при их деформации являются прочность, пластичность, хрупкость, упругость и твердость.
Прочность — способность материала сопротивляться воздействию внешних сил, не разрушаясь и без появления остаточных деформаций.
Пластичность – свойство материала выдерживать без разрушения большие остаточные деформации. Неисчезающие после снятия внешних нагрузок деформации называются пластическими.
Хрупкость – свойство материала разрушаться при очень малых остаточных деформациях (например, чугун, бетон, стекло).
Идеальная упругость – свойство материала (тела) полностью восстанавливать свою форму и размеры после устранения причин, вызвавших деформацию.
Твердость – свойство материала сопротивляться проникновению в него других тел.
Рассмотрим диаграмму растяжения стержня из малоуглеродистой стали. Пусть круглый стержень длинной l0 и начальным постоянным поперечным сечением площади A0 статически растягивается с обоих торцов силой F.
Диаграмма сжатия стержня имеет вид (рис. 10, а)
где Δl = l — l0 абсолютное удлинение стержня; ε = Δl / l0 — относительное продольное удлинение стержня; σ = F / A0 — нормальное напряжение; E — модуль Юнга; σп — предел пропорциональности; σуп — предел упругости; σт — предел текучести; σв — предел прочности (временное сопротивление); εост — остаточная деформация после снятия внешних нагрузок. Для материалов, не имеющих ярко выраженную площадку текучести, вводят условный предел текучести σ0,2 — напряжение, при котором достигается 0,2% остаточной деформации. При достижении предела прочности в центре стержня возникает локальное утончение его диаметра («шейка»). Дальнейшее абсолютное удлинение стержня идет в зоне шейки ( зона местной текучести). При достижении напряжением предела текучести σт глянцевая поверхность стержня становится немного матовой – на его поверхности появляются микротрещины (линии Людерса-Чернова), направленные под углом 45° к оси стержня.
Расчеты на прочность и жесткость при растяжении и сжатии.
Опасным сечением при растяжении и сжатии называется поперечное сечение бруса, в котором возникает максимальное нормальное напряжение. Допускаемые напряжения вычисляются по формуле:
где σпред — предельное напряжение (σпред = σт — для пластических материалов и σпред = σв — для хрупких материалов); [n] — коэффициент запаса прочности. Для пластических материалов [n] = [nт] = 1,2 … 2,5; для хрупких материалов [n] = [nв] = 2 … 5, а для древесины [n] = 8 ÷ 12.
Расчеты на прочность при растяжении и сжатии.
Целью расчета любой конструкции является использование полученных результатов для оценки пригодности этой конструкции к эксплуатации при минимальном расходе материала, что находит отражение в методах расчета на прочность и жесткость.
Условие прочности стержня при его растяжении (сжатии):
При проектном расчете определяется площадь опасного сечения стержня:
При определении допускаемой нагрузки рассчитывается допускаемая нормальная сила:
Расчет на жесткость при растяжении и сжатии.
Работоспособность стержня определяется его предельной деформацией [ l ]. Абсолютное удлинение стержня должно удовлетворять условию:
Часто дополнительно делают расчет на жесткость отдельных участков стержня.
Следующая важная статья теории:
Изгиб балки
Источник
При растяжении и сжатии в сечении действует только нормальное напряжение.
Напряжения в поперечных сечениях могут рассматриваться как силы, приходящиеся на единицу площади.
Таким образом, направление и знак напряжения в сечении совпадают с направлением и знаком силы в сечении (рис. 20.3).
Исходя из гипотезы плоских сечений, можно предположить, что напряжения при растяжении и сжатии в пределах каждого сечения не меняются. Поэтому напряжение можно рассчитать по формуле
где Nz — продольная сила в сечении; А — площадь поперечного сечения.
Величина напряжения прямо пропорциональна продольной силе и обратно пропорциональна площади поперечного сечения.
Нормальные напряжения действуют при растяжении от сечения (рис. 20.4а), а при сжатии к сечению (рис. 20.4б).
Размерность (единица измерения) напряжений — Н/м2 (Па), однако это слишком малая единица, и практически напряжения рассчитывают в Н/мм2 (МПа):
1 МПа = 106 Па =1 Н/мм2.
При определении напряжений брус разбивают на участки нагружений, в пределах которых продольные силы не изменяются, и учитывают места изменений площади поперечных сечений.
Рассчитывают напряжения по сечениям, и расчет оформляют в виде эпюры нормальных напряжений.
Строится и оформляется такая эпюра так же, как и эпюра продольных сил.
Рассмотрим брус, нагруженный внешними силами вдоль оси (рис. 20.5).
Обнаруживаем три участка нагружения и определяем величины продольных сил.
Участок 1: N1 = 0. Внутренние продольные силы равны нулю.
Участок 2: N2 = 2F. Продольная сила на участке положительна.
Участок 3: N3 = 2F – 3F = — F. Продольная сила на участке отрицательна.
Брус – ступенчатый.
С учетом изменений величин площади поперечного сечения участков напряжений больше.
Строим эпюры продольных сил и нормальных напряжений.
Масштабы эпюр могут быть разными и выбираются исходя из удобства построения.
Примеры решения задач
Пример 1. Ступенчатый брус нагружен вдоль оси двумя силами. Брус защемлен с левой стороны (рис. 20.6). Пренебрегая весом бруса, построить эпюры продольных сил и нормальных напряжений.
Решение
— Определяем участки нагружения, их два.
— Определяем продольную силу в сечениях 1 и 2.
— Строим эпюру.
— Рассчитываем величины нормальных напряжений и строим эпюру нормальных напряжений в собственном произвольном масштабе.
1. Определяем продольные силы.
В обоих сечениях продольные силы положительны.
2. Определяем нормальные напряжения
Сопоставляя участки нагружения с границами изменения площади, видим, что образуется 4 участка напряжений.
Нормальные напряжения в сечениях по участкам:
Откладываем значения напряжений вверх от оси, т. к. значения их положительные (растяжение). Масштаб эпюр продольной силы и нормальных напряжений выбирается отдельно в зависимости от порядка цифр и имеющегося на листе места.
Пример 2. Для заданного бруса (рис. 2.5, а) построить эпюры продольных сил и нормальных напряжений.
Решение
Заданный брус имеет четыре участка I, II, III, IV (рис. 2.5, а). Границами участков являются сечения, в которых приложены внешние силы, а для напряжений также и места изменения размеров поперечного сечения.
Пользуясь методом сечений, строим эпюру продольных сил (рис. 2.5, б).
Для построения эпюры нормальных напряжений определяем их в поперечных сечениях каждого из участков:
Эпюра σ представлена на рис. 2.5, в.
Пример 3. Определить количество деревянных стоек сечением 10×10 см, необходимых для поддержания, цистерны, вмещающей V = 40 м3 воды. Масса цистерны Мц = 7,2-103 кг. Допускаемое напряжение [σ] = 13 Н/мм3. При расчете считать, что усилия в стойках одинаковы.
Решение
Требуемая площадь поперечного сечения стоек
где (fст — площадь поперечного сечения одной стойки; i — число стоек);
N — усилие, передающееся на стойки.
где Gц — сила тяжести цистерны; Gц = gтц = 9,81 * 7,2*103 =70,7*103 Н; Gв — сила тяжести воды; Gв = уV = 10*40 = 400 кН (у = 10 кН/м3 — объемная сила тяжести воды). Подставляя числовые значения, получаем
Тогда
откуда находим требуемое число стоек:
Принимаем i = 4.
Пример 4. Для заданной стержневой системы (рис. 2.6, а) определить из расчета на прочность требуемые площади сечения стержней и подобрать по ГОСТ 8509—72 соответствующий номер угловой равнополочной стали, учитывая, что каждый стержень изготовлен из двух равнополочных уголков.
Для принятых сечений стержней определить расчетные напряжения н указать расхождения (в процентах) с допускаемым значением напряжения [σ] = 160 Н/мм3.
Решение
Здесь требуется подобрать сечения стержней исходя из условий:
где N1 и N2 — усилия, возникающие соответственно в стержнях 1 и 2.
1. Усилия N1 и N2 во всех поперечных сечениях стержней одинаковы и площади этих сечений постоянны. Таким образом, все сечения каждого стержня равноопасны.
2. Определяем усилия в стержнях из рассмотрения равновесия узла В, где приложены заданные силы Р1 и Р2 (рис. 2.6, б). Освобождаем эту точку от связей и прикладываем их реакции N1 и N2, равные усилиям в стержнях. Получаем плоскую систему сходящихся сил. Для упрощения уравнений равновесия координатные оси ху направляем вдоль неизвестных усилий N1 и N2. Составляем уравнения равновесия:
Откуда
Тогда
По таблицам ГОСТ 8509—72 подбираем сечения стержней:
для первого стержня угловую равнополочную сталь 36x36x4
для второго стержня угловую равнополочную сталь 28x28x3
Вычислим напряжения в поперечных сечениях стержней при принятых площадях
что больше [σ] на
такое превышение допустимо;
что меньше [σ] на
Пример 5. Определить размеры поперечных сечений стержней (рис. 2.7, а), если допускаемые напряжения для стали [σсх] = 140 Н/мм2, для дерева [σд] = 13 Н/мм2.
Решение
Рассматриваем равновесие шарнира А, так как к этому шарниру приложены заданная нагрузка и искомые усилия в стержнях.
1. Освобождаем шарнир А от связей и заменяем их действие реакциями N1 и N2. Действующие на шарнир А нагрузка и искомые усилия показаны на рис. 2.7, б. Получили плоскую систему сходящихся сил, которая находится в равновесии.
2. Выбираем систему координат и составляем уравнения равновесия:
откуда
Требуемые площади поперечных сечений стержней
Откуда
Пример 6. Однородная балка АВ поддерживается тремя стальными стержнями1, 2, 3 круглого поперечного сечения d = 20 мм (рис. 2.8). Сила тяжести балки Q = 10 кН. Найти допускаемую интенсивность [q] равномерно распределенной нагрузки, если допускаемое напряжение для материала стержней [σ] =160 Н/мм2.
Решение
1. Определим усилия, возникающие в стержнях. Под действием силы Q, равномерно распределенной нагрузки q и усилий N1, N2 и N3в стержнях балка находится в равновесии.
2. Составляем уравнения равновесия:
3. Решая полученные уравнения, находим:
N3больше, чем N1 и N2. Следовательно, опасными являются поперечные сечения стержня 3.
4. Условие прочности для стержня 3:
Подставляем значение N3:
5. Решая относительно ц и подставляя числовые значения, получаем:
где
Пример 7. Стальной стержень круглого сечения диаметром d = 20 мм растягивается силой Р = 65 кН. Проверить прочность стержня, если его предел текучести σ = σт = 300 Н/мм2 и требуемый коэффициент запаса [n] = 1,5.
Решение
Напряжения, возникающие в поперечном сечении стержня,
Расчетный коэффициент запаса
Следовательно, можно считать, что прочность стержня достаточна, так как расчетный коэффициент запаса незначительно (на 3%) меньше требуемого.
Контрольные вопросы и задания
- Какие внутренние силовые факторы возникают в сечении бруса при растяжении и сжатии?
- Как распределяются по сечению силы упругости при растяжении и сжатии? (Использовать гипотезу плоских сечений.)
- Какого характера напряжения возникают в поперечном сечении при растяжении и сжатии: нормальные или касательные?
- Как распределены напряжения по сечению при растяжении и сжатии?
- Запишите формулу для расчета нормальных напряжений при растяжении и сжатии.
- Как назначаются знаки продольной силы и нормального напряжения?
- Что показывает эпюра продольной силы?
- Как изменится величина напряжения, если площадь поперечного сечения возрастет в 4 раза?
- В каких единицах измеряется напряжение?
ЛЕКЦИЯ 21
Источник
Растяжение (сжатие) – это такой вид нагружения стержня, при котором в его поперечном сечении возникает внутренняя продольная сила Ν, действующая вдоль центральной оси z.
Продольная сила Ν – это равнодействующая всех внутренних нормальных сил в сечении. Для вычисления продольной силы применяется метод сечений.
Продольная сила Ν численно равна алгебраической сумме проекций всех сил, действующих по одну сторону от рассматриваемого сечения, на продольную ось бруса.
Правило знаков для продольной силы Ν: при растяжении продольная сила положительна, при сжатии – отрицательна.
График изменения продольных сил по длине стержня называется эпюрой. Эпюра N строится методом сечений на характерных участках бруса. Строится эпюра для использования ее при расчете бруса на прочность. Она дает возможность найти наибольшие значения продольных сил и положение сечений, в которых они возникают.
При растяжении (сжатии) возникают только нормальные напряжения. Согласно гипотезе Я. Бернулли (или гипотеза плоских сечений) в поперечных сечениях, удаленных от места приложения нагрузок, нормальные напряжения распределяются по сечению практически равномерно, а сами сечения, перпендикулярные к оси стержня z, остаются плоскими в процессе нагружения.
Нормальные напряжения в сечении при растяжении (сжатии) вычисляются по формуле
где А – площадь поперечного сечения.
Правило знаков для σ совпадает с правилом знаков для N.
В наклонном сечении, нормаль к которому составляет угол α с осью стержня z,
При растяжении в продольном направлении стержень удлиняется, а его поперечные размеры уменьшаются, при сжатии, напротив, в продольном направлении стержень укорачивается, а его поперечные размеры увеличиваются; Δℓ — абсолютное удлинение или укорочение участка стержня длиной ℓ, Δb – абсолютная поперечная деформация.
Относительное удлинение или укорочение участка стержня длиной ℓ, называемое линейной деформацией, определяется следующим образом
ε=Δℓ/ℓ.
Экспериментально установлено, что в определенной области нагрузок при упругом поведении материала между нормальными напряжениями и линейными деформациями существует линейная зависимость (закон Гука для напряжений)
σ=εЕ,
где Е – модуль продольной упругости или модуль Юнга, это физическая const. Для каждого из материалов величина модуля упругости имеет свое значение:
сталь, Е = 2.105 МПа,
медь, Е = 1.105 МПа,
алюминий, Е = 0,7.105 МПа.
Значение модуля упругости устанавливается экспериментально.
Согласно закону Гука (данную запись называют законом Гука для деформаций)
Δℓ=Νℓ/ЕА
Произведение ЕА – называется жесткостью стержня при растяжении – сжатии.
Перемещение произвольного сечения ступенчатого стержня
w=∑Δℓi
Относительная поперечная деформация:
ε′=Δb/b
где b – поперечный размер стержня.
Эксперименты также показывают, что в упругой стадии деформирования между продольной и поперечной деформациями существует взаимосвязь
μ =│ε′⁄ε│ — const,
где μ — коэффициент Пуассона, берется по модулю ,поскольку у продольной и поперечной деформации разные знаки (при растяжении продольные волокна увеличиваются, а поперечные уменьшаются в размере).
Для твердых материалов имеет значения коэффициент Пуассона
0≤μ ≤0,5
Изменение температуры стержня вызывает его удлинение (при нагревании) или укорочение (при охлаждении)
где — a- коэффициент линейного температурного расширения; Δtº=(tºк-tºн) — изменение температуры между значениями начальным (tºн) и конечным (tºк).
Статически неопределимыми называют системы, имеющие лишние связи – внешние или внутренние.
Для определения внутренних усилий в таких системах недостаточно рассматривать только уравнения равновесия.
В этом случае требуются дополнительные уравнения, число которых равно количеству лишних связей. Дополнительные уравнения составляются на основе анализа картины деформирования системы и использования законов деформирования ее элементов.
Алгоритм решения подобных задач включает следующее:
1) Статическая часть. Составляются уравнения равновесия с включением неизвестных усилий, действующих по направлению лишних связей.
2) Геометрическая часть. Составляются уравнения, описывающие взаимосвязь перемещений характерных точек, удлинений и укорочений отдельных стержней между собой.
3) Физическая связь. Записываются законы деформирования отдельных стержней системы.
Порядок расчета статически неопределимых брусьев
- Задаться направлениями возможных опорных реакций и составить уравнение статики для всей системы в целом.
- Определить степень статической неопределимости и использовать метод сечений с целью выразить неизвестные усилия через неизвестные опорные реакции. При этом неизвестные продольные силы (N) следует предполагать положительными и поэтому направлять «от сечения».
- Сформулировать условие совместности деформаций участков бруса.
- В процессе превращения условия совместности в уравнение совместности деформаций различий в характере деформаций участков не учитывать.
Порядок расчета статически неопределимых шарнирно-стержневых систем
- Задаться направлениями опорных реакций, но уравнений равновесия для всей системы не составлять, а сразу использовать метод сечений и составить уравнения статики для выделенной части системы.
- Определить степень статической неопределимости как разницу между количеством всех неизвестных, оказавшихся в уравнениях статики, и числом самих этих уравнений.
- Рассмотреть (изобразить) любую возможную картину деформаций системы и из ее анализа сформулировать условия совместности деформаций стержней системы (столько, какова степень статической неопределимости).
- В процессе преобразования условий совместности в уравнения совместности деформаций обязательно учитывать различие в характере деформаций стержней (т.е. вводить удлинение со знаком «плюс», а укорочение со знаком «минус») в соответствии с той картиной деформации, которую мы рассматриваем.
Источник