Как распределяются нормальные напряжения в поперечном сечении при растяжение

Как распределяются нормальные напряжения в поперечном сечении при растяжение thumbnail

Внутренние усилия при растяжении-сжатии.

Осевое (центральное) растяжение или сжатие прямого бруса вызывается внешними силами, вектор равнодействующей которых совпадает с осью бруса. При растяжении или сжатии в поперечных сечениях бруса возникают только продольные силы N. Продольная сила N в некотором сечении равна алгебраической сумме проекции на ось стержня всех внешних сил, действующих по одну сторону от рассматриваемого сечения. По правилу знаков продольной силы N принято считать, что от растягивающих внешних нагрузок возникают положительные продольные силы N, а от сжимающих — продольные силы N отрицательны (рис. 5).

правило знаков для продольных сил

Чтобы выявить участки стержня или его сечения, где продольная сила имеет наибольшее значение, строят эпюру продольных сил, применяя метод сечений, подробно рассмотренный в статье:
Анализ внутренних силовых факторов в статистически определимых системах
Ещё настоятельно рекомендую взглянуть на статью:
Расчёт статистически определимого бруса
Если разберёте теорию в данной статье и задачи по ссылкам, то станете гуру в теме «Растяжение-сжатие» =)

Напряжения при растяжении-сжатии.

Определенная методом сечений продольная сила N, является равнодействующей внутренних усилий распределенных по поперечному сечению стержня (рис. 2, б). Исходя из определения напряжений, согласно выражению (1), можно записать для продольной силы:

напряжения при растяжении-сжатии

где σ — нормальное напряжение в произвольной точке поперечного сечения стержня.


Чтобы определить нормальные напряжения в любой точке бруса необходимо знать закон их распределения по поперечному сечению бруса. Экспериментальные исследования показывают: если нанести на поверхность стержня ряд взаимно перпендикулярных линий, то после приложения внешней растягивающей нагрузки поперечные линии не искривляются и остаются параллельными друг другу (рис.6, а). Об этом явлении говорит гипотеза плоских сечений (гипотеза Бернулли): сечения, плоские до деформации, остаются плоскими и после деформации.

механизм деформации растяжения

Так как все продольные волокна стержня деформируются одинаково, то и напряжения в поперечном сечении одинаковы, а эпюра напряжений σ по высоте поперечного сечения стержня выглядит, как показано на рис.6, б. Видно, что напряжения равномерно распределены по поперечному сечению стержня, т.е. во всех точках сечения σ = const. Выражение для определения величины напряжения имеет вид:

формула напряжения

Таким образом, нормальные напряжения, возникающие в поперечных сечениях растянутого или сжатого бруса, равны отношению продольной силы к площади его поперечного сечения. Нормальные напряжения принято считать положительными при растяжении и отрицательными при сжатии.

Деформации при растяжении-сжатии.

Рассмотрим деформации, возникающие при растяжении (сжатии) стержня (рис.6, а). Под действием силы F брус удлиняется на некоторую величину Δl называемую абсолютным удлинением, или абсолютной продольной деформацией, которая численно равна разности длины бруса после деформации l1 и его длины до деформации l

абсолютное удлинение

Отношение абсолютной продольной деформации бруса Δl к его первоначальной длине l называют относительным удлинением, или относительной продольной деформацией:

относительное удлинение

При растяжении продольная деформация положительна, а при сжатии – отрицательна. Для большинства конструкционных материалов на стадии упругой деформации выполняется закон Гука (4), устанавливающий линейную зависимость между напряжениями и деформациями:

закон гука

где модуль продольной упругости Е, называемый еще модулем упругости первого рода является коэффициентом пропорциональности, между напряжениями и деформациями. Он характеризует жесткость материала при растяжении или сжатии (табл. 1).

Таблица 1

Модуль продольной упругости для различных материалов

модуль продольной упругости для различных материалов

Абсолютная поперечная деформация бруса равна разности размеров поперечного сечения после и до деформации:

абсолютная поперечная деформация бруса

Соответственно, относительную поперечную деформацию определяют по формуле:

относительная поперечная деформация

При растяжении размеры поперечного сечения бруса уменьшаются, и ε’ имеет отрицательное значение. Опытом установлено, что в пределах действия закона Гука при растяжении бруса поперечная деформация прямо пропорциональна продольной. Отношение поперечной деформации ε’ к продольной деформации ε называется коэффициентом поперечной деформации, или коэффициентом Пуассона μ:

коэффициент пуассона

Экспериментально установлено, что на упругой стадии нагружения любого материала значение μ = const и для различных материалов значения коэффициента Пуассона находятся в пределах от 0 до 0,5 (табл. 2).

Таблица 2

Коэффициент Пуассона.

коэффициент пуассона для материалов

Абсолютное удлинение стержня Δl прямо пропорционально продольной силе N:

абсолютное удлинение стержня

Данной формулой можно пользоваться для вычисления абсолютного удлинения участка стержня длиной l при условии, что в пределах этого участка значение продольной силы постоянно. В случае, когда продольная сила N изменяется в пределах участка стержня, Δl определяют интегрированием в пределах этого участка:

Как распределяются нормальные напряжения в поперечном сечении при растяжение

Произведение (Е·А) называют жесткостью сечения стержня при растяжении (сжатии).

Механические свойства материалов.

Основными механическими свойствами материалов при их деформации являются прочность, пластичность, хрупкость, упругость и твердость.

Прочность — способность материала сопротивляться воздействию внешних сил, не разрушаясь и без появления остаточных деформаций.

Пластичность – свойство материала выдерживать без разрушения большие остаточные деформации. Неисчезающие после снятия внешних нагрузок деформации называются пластическими.

Хрупкость – свойство материала разрушаться при очень малых остаточных деформациях (например, чугун, бетон, стекло).

Читайте также:  Что делать при растяжении руки в локтевом суставе

Идеальная упругость – свойство материала (тела) полностью восстанавливать свою форму и размеры после устранения причин, вызвавших деформацию.

Твердость – свойство материала сопротивляться проникновению в него других тел.

Рассмотрим диаграмму растяжения стержня из малоуглеродистой стали. Пусть круглый стержень длинной l0 и начальным постоянным поперечным сечением площади A0 статически растягивается с обоих торцов силой F.

растягивание стержня до разрушения

Диаграмма сжатия стержня имеет вид (рис. 10, а)

диаграмма растяжения стали

где Δl = l — l0 абсолютное удлинение стержня; ε = Δl / l0 — относительное продольное удлинение стержня; σ = F / A0 — нормальное напряжение; E — модуль Юнга; σп — предел пропорциональности; σуп — предел упругости; σт — предел текучести; σв — предел прочности (временное сопротивление); εост — остаточная деформация после снятия внешних нагрузок. Для материалов, не имеющих ярко выраженную площадку текучести, вводят условный предел текучести σ0,2 — напряжение, при котором достигается 0,2% остаточной деформации. При достижении предела прочности в центре стержня возникает локальное утончение его диаметра («шейка»). Дальнейшее абсолютное удлинение стержня идет в зоне шейки ( зона местной текучести). При достижении напряжением предела текучести σт глянцевая поверхность стержня становится немного матовой – на его поверхности появляются микротрещины (линии Людерса-Чернова), направленные под углом 45° к оси стержня.

примеры разрушения материалов

Расчеты на прочность и жесткость при растяжении и сжатии.

Опасным сечением при растяжении и сжатии называется поперечное сечение бруса, в котором возникает максимальное нормальное напряжение. Допускаемые напряжения вычисляются по формуле:

формула допускаемые напряжения

где σпред — предельное напряжение (σпред = σт — для пластических материалов и σпред = σв — для хрупких материалов); [n] — коэффициент запаса прочности. Для пластических материалов [n] = [nт] = 1,2 … 2,5; для хрупких материалов [n] = [nв] = 2 … 5, а для древесины [n] = 8 ÷ 12.

Расчеты на прочность при растяжении и сжатии.

Целью расчета любой конструкции является использование полученных результатов для оценки пригодности этой конструкции к эксплуатации при минимальном расходе материала, что находит отражение в методах расчета на прочность и жесткость.

Условие прочности стержня при его растяжении (сжатии):

Условие прочности стержня

При проектном расчете определяется площадь опасного сечения стержня:

площадь при проектном расчёте

При определении допускаемой нагрузки рассчитывается допускаемая нормальная сила:

допускаемая нормальная сила

Расчет на жесткость при растяжении и сжатии.

Работоспособность стержня определяется его предельной деформацией [ l ]. Абсолютное удлинение стержня должно удовлетворять условию:

ограничение абсолютного удлинения стержня

Часто дополнительно делают расчет на жесткость отдельных участков стержня.

Следующая важная статья теории:
Изгиб балки

Источник

При растяжении и сжатии в сечении действует только нормаль­ное напряжение.

Напряжения в поперечных сечениях могут рассматриваться как силы, приходящиеся на единицу площади.

Таким образом, направление и знак напряжения в сечении сов­падают с направлением и знаком силы в сечении (рис. 20.3).

Исходя из гипотезы плоских сечений, можно предположить, что напряжения при растяжении и сжатии в пределах каждого сечения не меняются. Поэтому напряжение можно рассчитать по форму­ле

где Nz — продольная сила в сечении; А — площадь поперечного сечения.

Величина напряжения прямо пропорциональна продольной силе и обратно пропорциональна площади поперечного сечения.

Нормальные напряжения действуют при растяжении от сечения (рис. 20.4а), а при сжатии к сечению (рис. 20.4б).

Размерность (единица измерения) напряжений — Н/м2 (Па), од­нако это слишком малая единица, и практически напряжения рас­считывают в Н/мм2 (МПа):

1 МПа = 106 Па =1 Н/мм2.

При определении напряже­ний брус разбивают на участки нагружений, в пределах которых продольные силы не изменяются, и учитывают места изменений площади поперечных сечений.

Рассчитывают напряжения по сечениям, и расчет оформляют в виде эпюры нормальных напряжений.

Строится и оформляется такая эпюра так же, как и эпюра про­дольных сил.

Рассмотрим брус, нагру­женный внешними силами вдоль оси (рис. 20.5).

Обнаруживаем три уча­стка нагружения и определяем величины продольных сил.

Участок 1: N1 = 0. Внут­ренние продольные силы равны нулю.

Участок 2: N2 = 2F. Продольная сила на участке положительна.

Участок 3: N3 = 2F – 3F = — F. Продольная сила на участке отрицательна.

Брус – ступенчатый.

С учетом изменений величин площади поперечного сечения участков напряжений больше.

Строим эпюры продольных сил и нормальных напряжений.

Масштабы эпюр могут быть разными и выбираются исходя из удобства построения.

Примеры решения задач

Пример 1. Ступенчатый брус нагружен вдоль оси двумя силами. Брус за­щемлен с левой стороны (рис. 20.6). Пренебрегая весом бруса, по­строить эпюры продольных сил и нормальных напряжений.

Решение

— Определяем участки нагружения, их два.

— Определяем продольную силу в сечениях 1 и 2.

— Строим эпюру.

Читайте также:  Повязка от растяжения голеностопа

— Рассчитываем величины нормальных напряжений и строим эпюру нормальных напряжений в собственном произвольном мас­штабе.

1. Определяем продольные силы.

В обоих сечениях продольные силы положительны.

2. Определяем нормальные напряжения

Сопоставляя участки нагружения с границами изменения пло­щади, видим, что образуется 4 участка напряжений.

Нормальные напряжения в сечениях по участкам:

Откладываем значения напряжений вверх от оси, т. к. значения их положительные (растяжение). Масштаб эпюр продольной силы и нормальных напряжений выбирается отдельно в зависимости от порядка цифр и имеющегося на листе места.

Пример 2. Для заданного бруса (рис. 2.5, а) построить эпюры продольных сил и нормальных напряжений.

Решение

Заданный брус имеет четыре участка I, II, III, IV (рис. 2.5, а). Границами участков являются сечения, в которых приложены внешние силы, а для напряжений также и места изменения размеров поперечного сечения.

Пользуясь методом сечений, строим эпюру продольных сил (рис. 2.5, б).

Для построения эпюры нормальных напряжений определяем их в поперечных сечениях каждого из участков:

Эпюра σ представлена на рис. 2.5, в.

Пример 3. Определить количество деревянных стоек сечением 10×10 см, необходимых для поддержания, цистерны, вмещающей V = 40 м3 воды. Масса цистерны Мц = 7,2-103 кг. Допускаемое напряжение [σ] = 13 Н/мм3. При расчете считать, что усилия в стойках одинаковы.

Решение

Требуемая площадь поперечного сечения стоек

где (fст — площадь поперечного сечения одной стойки; i — число стоек);

N — усилие, передающееся на стойки.

где — сила тяжести цистерны; = ц = 9,81 * 7,2*103 =70,7*103 Н; — сила тяжести воды; = уV = 10*40 = 400 кН (у = 10 кН/м3 — объемная сила тяжести воды). Подставляя числовые значения, получаем

Тогда

откуда находим требуемое число стоек:

Принимаем i = 4.

Пример 4. Для заданной стержневой системы (рис. 2.6, а) определить из расчета на прочность требуемые площади сечения стержней и подобрать по ГОСТ 8509—72 соответствующий номер угловой равнополочной стали, учитывая, что каждый стержень изготовлен из двух равнополочных уголков.

Для принятых сечений стержней определить расчет­ные напряжения н указать расхождения (в процентах) с допускаемым значением напряжения [σ] = 160 Н/мм3.

Решение

Здесь требуется подобрать сечения стержней исходя из условий:

где N1 и N2 — усилия, возникающие соответственно в стерж­нях 1 и 2.

1. Усилия N1 и N2 во всех поперечных сечениях стерж­ней одинаковы и площади этих сечений постоянны. Таким образом, все сечения каждого стержня равноопасны.

2. Определяем усилия в стержнях из рассмотрения равно­весия узла В, где приложены заданные силы Р1 и Р2 (рис. 2.6, б). Освобождаем эту точку от связей и прикла­дываем их реакции N1 и N2, равные усилиям в стерж­нях. Получаем плоскую систему сходящихся сил. Для упрощения уравнений равновесия координатные оси ху направляем вдоль неизвестных усилий N1 и N2. Состав­ляем уравнения равновесия:

Откуда

Тогда

По таблицам ГОСТ 8509—72 подбираем сечения стерж­ней:

для первого стержня угловую равнополочную сталь 36x36x4

для второго стержня угловую равнополочную сталь 28x28x3

Вычислим напряжения в поперечных сечениях стерж­ней при принятых площадях

что больше [σ] на

такое превышение допустимо;

что меньше [σ] на

Пример 5. Определить размеры поперечных сече­ний стержней (рис. 2.7, а), если допускаемые напря­жения для стали [σсх] = 140 Н/мм2, для дерева [σд] = 13 Н/мм2.

Решение

Рассматри­ваем равновесие шарни­ра А, так как к этому шарниру приложены за­данная нагрузка и иско­мые усилия в стержнях.

1. Освобождаем шарнир А от связей и заменяем их действие реакциями N1 и N2. Действующие на шарнир А нагрузка и ис­комые усилия показаны на рис. 2.7, б. Получили плоскую систему сходящихся сил, которая находится в равновесии.

2. Выбираем систему координат и составляем уравнения равновесия:

откуда

Требуемые площади поперечных сечений стержней

Откуда

Пример 6. Однородная балка АВ поддерживается тремя стальными стержнями1, 2, 3 круглого поперечного сечения d = 20 мм (рис. 2.8). Сила тя­жести балки Q = 10 кН. Найти до­пускаемую интенсив­ность [q] равномерно распределенной на­грузки, если допус­каемое напряжение для материала стерж­ней [σ] =160 Н/мм2.

Решение

1. Определим усилия, возникающие в стержнях. Под действием силы Q, равномерно распределенной на­грузки q и усилий N1, N2 и N3в стержнях балка нахо­дится в равновесии.

2. Составляем уравнения равновесия:

3. Решая полученные уравнения, находим:

N3больше, чем N1 и N2. Следовательно, опасными являются поперечные сечения стержня 3.

4. Условие прочности для стержня 3:

Подставляем значение N3:

5. Решая относительно ц и подставляя числовые значе­ния, получаем:

где

Пример 7. Стальной стержень круглого сечения диаметром d = 20 мм растягивается силой Р = 65 кН. Проверить прочность стержня, если его предел текучести σ = σт = 300 Н/мм2 и требуемый коэффициент запаса [n] = 1,5.

Читайте также:  Лечение растяжений при беге

Решение

Напряжения, возникающие в поперечном сечении стержня,

Расчетный коэффициент запаса

Следовательно, можно считать, что прочность стержня достаточна, так как расчетный коэффициент запаса незначительно (на 3%) меньше требуемого.

Контрольные вопросы и задания

  1. Какие внутренние силовые факторы возникают в сечении бру­са при растяжении и сжатии?
  2. Как распределяются по сечению силы упругости при растя­жении и сжатии? (Использовать гипотезу плоских сечений.)
  3. Какого характера напряжения возникают в поперечном сече­нии при растяжении и сжатии: нормальные или касательные?
  4. Как распределены напряжения по сечению при растяжении и сжатии?
  5. Запишите формулу для расчета нормальных напряжений при растяжении и сжатии.
  6. Как назначаются знаки продольной силы и нормального на­пряжения?
  7. Что показывает эпюра продольной силы?
  8. Как изменится величина напряжения, если площадь попереч­ного сечения возрастет в 4 раза?
  9. В каких единицах измеряется напряжение?

ЛЕКЦИЯ 21

Источник

Определение нормальной силы

Центральное растяжение (сжатие) – одно из наиболее простых видов нагружения. Методом сечений в поперечном сечении бруса обнаруживается только один внутренний силовой фактор – нормальная сила. Ее вектор перпендикулярен к поперечному сечению и направлен вдоль продольной оси бруса. Брус, работающий на растяжение-сжатие, принято называть стержнем.

Согласно методу сечений величина и направление продольной силы определяются из уравнения равновесия, составленного для отсеченной части бруса:

Как распределяются нормальные напряжения в поперечном сечении при растяжение (2.9)

Таким образом, продольная (нормальная) сила о произвольном сечении бруса численно равна алгебраической сулеме проекций па продольную ось всех внешних (активных и реактивных) сил, приложенных к отсеченной части.

В общем случае

Как распределяются нормальные напряжения в поперечном сечении при растяжение (2.10)

где Как распределяются нормальные напряжения в поперечном сечении при растяжение – интенсивность нагрузки, распределенной вдоль оси бруса на участке от 0 до Как распределяются нормальные напряжения в поперечном сечении при растяжение.

Продольная сила Как распределяются нормальные напряжения в поперечном сечении при растяжение считается положительной, если она вызывает растяжение, т.е. направлена от сечения. В поперечном сечении бруса она является равнодействующей внутренних нормальных сил, возникающих в этом сечении.

График функции Как распределяются нормальные напряжения в поперечном сечении при растяжение называется эпюрой нормальных сил. Из выражения (2.10) следует, что

Как распределяются нормальные напряжения в поперечном сечении при растяжение (2.11)

т.е. интенсивность распределенной нагрузки в каждом сечении равна по величине и знаку тангенсу угла наклона касательной к эпюре Как распределяются нормальные напряжения в поперечном сечении при растяжение в соответствующей рассматриваемому сечению точке эпюры.

Нормальные напряжения и деформации

При растяжении (сжатии) бруса в поперечных сечениях возникают только нормальные напряжения. Чтобы задача определения по известным N А имела единственное решение, необходимо установить закон распределения σ(x) по сечению. Для этого используется гипотеза плоских сечений (гипотеза Бернулли): сечения бруса, плоские и нормальные к его оси до деформации, остаются плоскими и нормальными к его оси и при деформации. Поперечные сечения лишь перемещаются вдоль оси, оставаясь параллельными друг другу.

Допустим, брус состоит из бесконечно большого числа продольных волокон. Из гипотезы Бернулли следует, что все волокна деформируются одинаково. Поскольку, согласно закону Гука, равным деформациям соответствуют равные напряжения, то при растяжении (сжатии) бруса нормальные напряжения равномерно распределяются по поперечному сечению, т.е.Как распределяются нормальные напряжения в поперечном сечении при растяжение;.

Как известно,Как распределяются нормальные напряжения в поперечном сечении при растяжение. Так какКак распределяются нормальные напряжения в поперечном сечении при растяжение, то Как распределяются нормальные напряжения в поперечном сечении при растяжение. Отсюда

Как распределяются нормальные напряжения в поперечном сечении при растяжение (2.12)

Положительными считаются направления Как распределяются нормальные напряжения в поперечном сечении при растяжение, соответствующие растяжению.

В сечениях бруса, примыкающих к месту приложения внешних сил и к закреплениям, распределение напряжений зависит

Как распределяются нормальные напряжения в поперечном сечении при растяжение

Рис. 2.7

от способа приложения нагрузки и может быть неравномерным. Поэтому гипотеза плоских сечений в этих местах неверна.

Рассмотрим однородное напряженное состояние бруса, когда напряжения не изменяются по длине (рис. 2.7).

Изменение линейных размеров Как распределяются нормальные напряжения в поперечном сечении при растяжение называется абсолютным удлинением; отношение Как распределяются нормальные напряжения в поперечном сечении при растяжениеотносительным удлинением или линейной деформацией.

В случае неоднородного напряженного состояния линейная деформация определяется выражением Как распределяются нормальные напряжения в поперечном сечении при растяжение, где Как распределяются нормальные напряжения в поперечном сечении при растяжение – приращение отрезка Как распределяются нормальные напряжения в поперечном сечении при растяжение.

Между линейными деформациями Как распределяются нормальные напряжения в поперечном сечении при растяжение и вызывающими их напряжениями Как распределяются нормальные напряжения в поперечном сечении при растяжение существует связь, обусловленная упругими свойствами материала. Эта связь определяется законом Гука:

Как распределяются нормальные напряжения в поперечном сечении при растяжение (2.13)

где Е – модуль упругости материала.

Рассмотрим выражениеКак распределяются нормальные напряжения в поперечном сечении при растяжение. Согласно формуле (2.13) получимКак распределяются нормальные напряжения в поперечном сечении при растяжение; посколькуКак распределяются нормальные напряжения в поперечном сечении при растяжение

Отсюда изменение длины всего бруса

Как распределяются нормальные напряжения в поперечном сечении при растяжение (2.14)

Произведение НА называется жесткостью бруса при растяжении (сжатии).

Если законы изменения N и А различны для отдельных участков бруса, то

Как распределяются нормальные напряжения в поперечном сечении при растяжение (2.15)

где Как распределяются нормальные напряжения в поперечном сечении при растяжение – число участков.

В частном случае, когда N и А постоянны по длине бруса, получаем формулу Гука в виде

Как распределяются нормальные напряжения в поперечном сечении при растяжение (2.16)

Итак, перемещение i-го сечения с координатой х относительно неподвижного сечения

Как распределяются нормальные напряжения в поперечном сечении при растяжение (2.17)

Аналогично можно записать

Как распределяются нормальные напряжения в поперечном сечении при растяжение (2.18)

где Как распределяются нормальные напряжения в поперечном сечении при растяжение – перемещение начального сечения относительно заделки.

Пусть сечение бруса (см. рис. 2.7) имеет форму прямоугольника со сторонами а и b, тогда при растяжении бруса периметр его уменьшится. Величина Как распределяются нормальные напряжения в поперечном сечении при растяжение характеризует относительное изменение периметра поперечного сечения и называется поперечной деформацией. Если сечение круглое, то Как распределяются нормальные напряжения в поперечном сечении при растяжение. Отношение поперечной деформации к линейной величине постоянно для данного материала и называется коэффициентом Пуассона:

Как распределяются нормальные напряжения в поперечном сечении при растяжение (2.19)

Для стали и большинства металлических материалов Как распределяются нормальные напряжения в поперечном сечении при растяжениеКак распределяются нормальные напряжения в поперечном сечении при растяжение. В общем случае Как распределяются нормальные напряжения в поперечном сечении при растяжение.

Источник