Как найти скорость по растяжению пружины

Как найти скорость по растяжению пружины thumbnail

При колебаниях пружины восстанавливающая сила обусловлена ее упругостью. В определенных пределах, согласно закону Гука, вызванная деформацией сила пропорциональна величине деформации.

Поэтому упругие колебания являются гармоническими. В случае пружин величина жесткости обычно обозначается через k и именуется коэффициентом упругости пружины.

kкоэффициент упругости пружины,Ньютон / метр
Fсила, вызывающая деформацию Δl,Ньютон
Δlудлинение, прогиб или другое изменение формы,метр
ωугловая частота,радиан / секунда
fлинейная частота,Герц
Tпериод, длительность полного колебания,секунда
mмасса колебательной системы, обычно тела, укрепленного на пружине,кг

И в соответствии с (9)

Масса самой пружины в (3, 4, 5) не учитывается. При точных расчетах массу m следует увеличить приблизительно на mпр/ 3 ( mпр — масса пружины).
Величины ω, f и T не зависят от амплитуды.

Для определения устойчивости и сопротивления к внешним нагрузкам используется такой параметр, как жесткость пружины. Также он называется коэффициентом Гука или упругости. По сути, характеристика жесткости пружины определяет степень ее надежности и зависит от используемого материала при производстве.

Измерению коэффициента жесткости подлежат следующие типы пружин:

Изготовление пружин любого типа вы можете заказать здесь.

Какую жесткость имеет пружина

При выборе готовых пружин, например для подвески автомобиля, определить, какую жесткость она имеет, можно по коду продукта либо по маркировке, которая наносится краской. В остальных случаях расчет жесткости производится исключительно экспериментальными методами.

Жесткость пружины по отношению к деформации бывает величиной переменной или постоянной. Изделия, жесткость которых при деформации остается неизменной называются линейными. А те, у которых есть зависимость коэффициента жесткости от изменения положения витков, получили название «прогрессивные».

В автомобилестроении в отношении подвески существует следующая классификация жесткости пружин:

  • Возрастающая (прогрессирующая). Характерна для более жесткого хода автомобиля.
  • Уменьшающаяся (регрессирующая) жесткость. Напротив, обеспечивает, «мягкость» подвески.

Определение величины жесткости зависит от следующих исходных данных:

  • Тип сырья, используемый при изготовлении;
  • Диаметр витков металлической проволоки (Dw);
  • Диаметр пружины (в расчет берется средняя величина) (Dm);
  • Число витков пружины (Na).

Как рассчитать жесткость пружины

Для расчета коэффициента жесткости применяется формула:

k = G * (Dw)^4 / 8 * Na * (Dm)^3,

где G – модуль сдвига. Данную величину можно не рассчитывать, так как она приведена в таблицах к различным материалам. Например, для обыкновенной стали она равна 80 ГПа, для пружинной – 78,5 ГПа. Из формулы понятно, что наибольшее влияние на коэффициент жесткости пружины оказывают оставшиеся три величины: диаметр и число витков, а также диаметр самой пружины. Для достижения необходимых показателей жесткости изменению подлежат именно эти характеристики.

Вычислить коэффициент жесткости экспериментальным путем можно при помощи простейших инструментов: самой пружины, линейки и груза, который будет воздействовать на опытный образец.

Определение коэффициента жесткости растяжения

Для определения коэффициента жесткости растяжения производятся следующие расчеты.

  • Измеряется длина пружины в вертикальном подвесе с одной свободной стороной изделия – L1;
  • Измеряется длина пружины с подвешенным грузом – L2.Если взять груз массой 100гр., то он будет воздействовать силой в 1Н (Ньютон) – величина F;
  • Вычисляется разница между последним и первым показателем длины – L;
  • Рассчитывается коэффициент упругости по формуле: k = F/L.

Определение коэффициента жесткости сжатия производится по этой же формуле. Только вместо подвешивания груз устанавливается на верхнюю часть вертикально установленной пружины.

Подводя итог, делаем вывод, что показатель жесткости пружины является одной из существенных характеристик изделия, которая указывает на качество исходного материала и определяет долговечность использования конечного изделия.

Формулы и способы расчета пружин из стали круглого сечения по ГОСТ 13765

Пружина сжатия Пружина растяжения

Наименование параметраОбозначениеРасчетные формулы и значения
Сила пружины при предварительной деформации, НF 1Принимается в зависимости от нагрузки пружины
Сила пружины при рабочей деформации (соответствует наибольшему принудительному перемещению подвижного звена в механизме), НF 3Принимается в зависимости от нагрузки пружины
Рабочий ход пружины, ммhПринимается в зависимости от нагрузки пружины
Наибольшая скорость перемещения подвижного конца пружины при нагружении или разгрузке, м/сv maxПринимается в зависимости от нагрузки пружины
Выносливость пружины, число циклов до разрушенияN FПринимается в зависимости от нагрузки пружины
Наружный диаметр пружины, ммD 1Предварительно принимаются с учетом конструкции узла. Уточняются по таблицам ГОСТ 13766…ГОСТ 13776
Относительный инерционный зазор пружины сжатия. Для пружин растяжения служит ограничением максимальной деформацииδ δ = 1 — F 2 / F 3 (1)
Для пружин сжатия классов I и II
δ = 0,05 — 0,25
для пружин растяжения
δ = 0,05 — 0,10
для одножильных пружин класса III
δ = 0,10 — 0,40
для трехжильных класса III
δ = 0,15 — 0,40
Сила пружины при максимальной деформации, НF 3

Уточняется по таблицам ГОСТ 13766 ÷ ГОСТ 13776

Сила предварительного напряжения (при навивке из холоднотянутой и термообработанной проволоки), НF(0,1 ÷ 0,25) F 3Диаметр проволоки, ммdВыбирается по таблицам ГОСТ 13764 ÷ ГОСТ 13776Диаметр трехжильного троса, ммd 1Выбирается по таблицам ГОСТ 13764 ÷ ГОСТ 13776Жесткость одного витка пружины, Н/ммc 1Выбирается по таблицам ГОСТ 13764 ÷ ГОСТ 13776Максимальная деформация одного витка пружины, ммs’ (при F = 0)
s» (при F > 0)Выбирается по таблицам ГОСТ 13764 ÷ ГОСТ 13776Максимальное касательное напряжение пружины, МПаτ 3
Для трехжильных пружинКритическая скорость пружины сжатия, м/сv k

Для трехжильных пружин

Модуль сдвига, МПаGДля пружинной стали
G = 7,85 х 10 4Динамическая (гравитационная) плотность материала, Н • с 2 /м 4ρ ρ = γ / g,
где g — ускорение свободного падения, м/с 2
γ — удельный вес, Н/м 3
Для пружинной стали ρ = 8•10 3Жесткость пружины, Н/ммс
Читайте также:  Пена монтажная для герметизации стыков прочность при растяжении

Для пружин с предварительным напряжением

Для трехжильных пружин

Число рабочих витков пружиныnПолное число витков пружиныn 1

где n2 — число опорных витков

Средний диаметр пружины, ммD

Для трехжильных пружин

Индекс пружиныi

Для трехжильных пружин

Рекомендуется назначать от 4 до 12

Коэффициент расплющивания троса в трехжильной пружине, учитывающий увеличение сечения витка вдоль оси пружины после навивкиΔДля трехжильного троса с углом свивки β = 24° определяется по таблице
i4,04,55,05,56,07,0 и
более
Δ1,0291,0211,0151,0101,0051,000
Предварительная деформация пружины, ммs 1Рабочая деформация пружины, ммs 2Максимальная деформация пружины, ммs 3Длина пружины при максимальной деформации, ммl 3

где n3 — число обработанных витков

Для трехжильных пружин

Для пружин растяжения с зацепами

Длина пружины в свободном состоянии, ммlДлина пружины растяжения без зацепов в свободном состоянии, ммl’Длина пружины при предварительной деформации, ммl 1

Для пружин растяжения

Длина пружины при рабочей деформации, ммl 2

Для пружин растяжения

Шаг пружины в свободном состоянии, ммt

Для трехжильных пружин

Для пружин растяжения

Напряжение в пружине при предварительной деформации, МПаτ 1Напряжение в пружине при рабочей деформации, МПаτ 2Коэффициент, учитывающий кривизну витка пружиныk

Для трехжильных пружин

Длина развернутой пружины (для пружин растяжения без зацепов), ммlМасса пружины (для пружин растяжения без зацепов), кгmОбъем, занимаемый пружиной (без учета зацепов пружины), мм 3VЗазор между концом опорного витка и соседним рабочим витком пружины сжатия, ммλУстанавливается в зависимости от формы опорного виткаВнутренний диаметр пружины, ммD 2Временное сопротивление проволоки при растяжении, МПаR mУстанавливается при испытаниях проволоки или по ГОСТ 9389 и ГОСТ 1071Максимальная энергия, накапливаемая пружиной, или работа деформации, мДжДля пружин сжатия и растяжения без предварительного напряжения

Для пружин растяжения с предварительным напряжением

Методика определения размеров пружин

Исходными величинами для определения размеров пружин являются силы F 1 и F 2, рабочий ход h, наибольшая скорость перемещения подвижного конца пружины при нагружении или при разгрузке v max, выносливость N F и наружный диаметр пружины D 1 (предварительный).
Если задана только одна сила F2 , то вместо рабочего хода h для подсчета берут величину рабочей деформации s 2, соответствующую заданной силе

По величине заданной выносливости NF предварительно определяют принадлежность пружины к соответствующему классу

По заданной силе F 2 и крайним значениям инерционного зазора δ вычисляют по формуле (2) значение силы F 3
По значению F 3, пользуясь таблицей, предварительно определяют разряд пружины

По таблицам «Параметры пружин» находят строку, в которой наружный диаметр витка пружины наиболее близок к предварительно заданному значению D 1. В этой же строке находят соответствующие значения силы F 3 и диаметра проволоки d

Для пружин из закаливаемых марок сталей максимальное касательное напряжение τ 3 находят по таблице, для пружин из холоднотянутой и термообработанной проволоки τ 3 вычисляют с учетом значений временного сопротивления Rm . Для холоднотянутой проволоки Rm определяют из ГОСТ 9389, для термообработанной — из ГОСТ 1071

По полученным значениям F 3 и τ 3, а также по заданному значению F 2 по формулам (5) и (5а) вычисляют критическую скорость vK и отношение vmax / vK , подтверждающее или отрицающее принадлежность пружины к предварительно установленному классу.
При несоблюдении условий vmax / vK < 1 пружины I и II классов относят к последующему классу или повторяют расчеты, изменив исходные условия. Если невозможно изменение исходных условий, работоспособность обеспечивается комплектом запасных пружин

По окончательно установленному классу и разряду в соответствующей таблице на параметры витков пружин, помимо ранее найденных величин F3, D1 и d, находят величины c1 и s3 , после чего остальные размеры пружины и габариты узла вычисляют по формулам (6)-(25)

Источник

Определение и формула жесткости пружины

Определение

Силу, которая возникает в результате деформации тела и пытающаяся вернуть его в исходное состояние, называют силой упругости.

Чаще всего ее обозначают ${overline{F}}_{upr}$. Сила упругости появляется только при деформации тела и исчезает, если пропадает деформация. Если после снятия внешней нагрузки тело восстанавливает свои размеры и форму полностью, то такая деформация называется упругой.

Современник И. Ньютона Р. Гук установил зависимость силы упругости от величины деформации. Гук долго сомневался в справедливости своих выводов. В одной из своих книг он привел зашифрованную формулировку своего закона. Которая означала: «Ut tensio, sic vis» в переводе с латыни: каково растяжение, такова сила.

Рассмотрим пружину, на которую действует растягивающая сила ($overline{F}$), которая направлена вертикально вниз (рис.1).

Формула жесткости пружины, рисунок 1

Силу $overline{F }$ назовем деформирующей силой. От воздействия деформирующей силы длина пружины увеличивается. В результате в пружине появляется сила упругости (${overline{F}}_u$), уравновешивающая силу $overline{F }$. Если деформация является небольшой и упругой, то удлинение пружины ($Delta l$) прямо пропорционально деформирующей силе:

[overline{F}=kDelta lleft(1right),]

где в коэффициент пропорциональности называется жесткостью пружины (коэффициентом упругости) $k$.

Жесткость (как свойство) — это характеристика упругих свойств тела, которое деформируют. Жесткость считают возможностью тела оказать противодействие внешней силе, способность сохранять свои геометрические параметры. Чем больше жесткость пружины, тем меньше она изменяет свою длину под воздействием заданной силы. Коэффициент жесткости — это основная характеристика жесткости (как свойства тела).

Коэффициент жесткости пружины зависит от материала, из которого сделана пружина и ее геометрических характеристик. Например, коэффициент жесткости витой цилиндрической пружины, которая намотана из проволоки круглого сечения, подвергаемая упругой деформации вдоль своей оси может быть вычислена как:

[k=frac{Gd^4}{8d^3_pn}left(2right),]

где $G$ — модуль сдвига (величина, зависящая от материала); $d$ — диаметр проволоки; $d_p$ — диаметр витка пружины; $n$ — количество витков пружины.

Читайте также:  Растяжение связки на пальце

Единицей измерения коэффициента жесткости в Международной системе единиц (Си) является ньютон, деленный на метр:

[left[kright]=left[frac{F_{upr }}{x}right]=frac{left[F_{upr }right]}{left[xright]}=frac{Н}{м}.]

Коэффициент жесткости равен величине силы, которую следует приложить к пружине для изменения ее длины на единицу расстояния.

Формула жесткости соединений пружин

Пусть $N$ пружин соединены последовательно. Тогда жесткость всего соединения равна:

[frac{1}{k}=frac{1}{k_1}+frac{1}{k_2}+dots =sumlimits^N_{ i=1}{frac{1}{k_i}left(3right),}]

где $k_i$ — жесткость $i-ой$ пружины.

При последовательном соединении пружин жесткость системы определяют как:

[k=k_1+k_2+dots +sumlimits^N_{i=1}{k_i}left(4right).]

Примеры задач с решением

Пример 1

Задание. Пружина в отсутствии нагрузки имеет длину $l=0,01$ м и жесткость равную 10 $frac{Н}{м}. $Чему будет равна жесткость пружины и ее длина, если на пружину действовать силой $F$= 2 Н? Считайте деформацию пружины малой и упругой.

Формула жесткости пружины, пример 1

Решение. Жесткость пружины при упругих деформациях является постоянной величиной, значит, в нашей задаче:

[k=k’left(1.1right).]

При упругих деформациях выполняется закон Гука:

[F=kDelta l left(1.2right).]

Из (1.2) найдем удлинение пружины:

[Delta l=frac{F}{k}left(1.3right).]

Длина растянутой пружины равна:

[l’=l+Delta l=l+frac{F}{k}.]

Вычислим новую длину пружины:

[l’=0,01+frac{2}{10}=0,21 left(мright).]

Ответ. 1) $k’=10 frac{Н}{м}$; 2) $l’=0,21$ м

Пример 2

Задание. Две пружины, имеющие жесткости $k_1$ и $k_2$ соединили последовательно. Какой будет удлинение первой пружины (рис.3), если длина второй пружины увеличилась на величину $Delta l_2$?

Формула жесткости пружины, пример 2

Решение. Если пружины соединены последовательно, то деформирующая сила ($overline{F}$), действующая на каждую из пружин одинакова, то есть можно записать для первой пружины:

[F=k_1Delta l_1left(2.1right).]

Для второй пружины запишем:

[F=k_2Delta l_2left(2.2right).]

Если равны левые части выражений (2.1) и (2.2), то можно приравнять и правые части:

[k_1Delta l_1=k_2Delta l_2left(2.3right).]

Из равенства (2.3) получим удлинение первой пружины:

[Delta l_1=frac{k_2Delta l_2}{k_1}.]

Ответ. $Delta l_1=frac{k_2Delta l_2}{k_1}$

Читать дальше: формула закона Архимеда.

Источник

ФОРМУЛЫ И СПОСОБЫ РАСЧЕТА ПРУЖИН
ИЗ СТАЛИ КРУГЛОГО СЕЧЕНИЯ
(по ГОСТ 13765-86)

расчет пружин

МЕТОДИКА ОПРЕДЕЛЕНИЯ РАЗМЕРОВ ПРУЖИН ПО ГОСТ 13765-86

    1. Исходными величинами для определения размеров пружин являются силы F1 и F2 , рабочий ход h, наибольшая скорость перемещения подвижного конца пружины при нагружении
или при разгрузке vmax, выносливость Np и наружный диаметр пружины D1 (предварительный).Если задана только одна F2 сила то вместо рабочего хода h для подсчета берут величину рабочей деформации S    2, соответствующую заданной силе.

    2. По величине заданной выносливости Np предварительно определяют принадлежность пружины к соответствующему классу по табл. 1.

    3. По заданной силе F2 и крайним значениям инерционного зазора δ вычисляют по формуле (2) значение силы F3.

    4. По значению F3, пользуясь табл. 2, предварительно определяют разряд пружины.

    5. По табл. 11-17 находят строку, в которой наружный диаметр витка пружины наиболее близок к предварительно заданному значению D1. В этой же строке находят соответствующие значения силы F3 и диаметра проволоки d.

    6. Для пружин из закаливаемых марок сталей максимальное касательное напряжение τ3 находят по табл. 2, для пружин из холоднотянутой и термообработанной τ3 вычисляют с учето значений временного сопротивления Rm. Для холоднотянутой проволоки Rm определяют из ГОСТ 9389-75, для термообработанной — из ГОСТ 1071-81.

    7. По полученным значениям F3и τ3, a также по заданному значению F2 по формулам (5) и (5а) вычисляют критическую скорость vk и
отношение vmax / vk, подтверждающее или отрицающее принадлежность пружины к предварительно установленному классу. При несоблюдении условий vmax / vk < 1 пружины I и II классов относят к последующему классу или повторяют расчеты, изменив исходные условия.
Если невозможно изменение исходных условий, работоспособность обеспечивается комплектом запасных пружин.

    8. По окончательно установленному классу и разряду в соответствующей таблице на параметры витков пружин, помимо ранее найденных величин F3, D1 и d, находят величины c1 и s3, после чего остальные размеры пружины и габариты узла вычисляют по формулам (6)-(25).

КЛАССЫ И РАЗРЯДЫ ПРУЖИН

Ниже рассматриваются винтовые цилиндрические пружины сжатия и растяжения из стали круглого сечения с индексами i = d/D от 4 до 12.

Приводимые данные распространяются на пружины для работы при температурах от -60 до +120°С в неагрессивных средах. Пружины разделяют на классы, виды и разряды (см. ниже).

Класс пружин характеризует режим нагружения и выносливости, а также определяет основные требования к материалам и технологии изготовления.

Разряды пружин отражают сведения о диапазонах сил, марках применяемых пружинных сталей, а также нормативах по допускаемым напряжениям.

Отсутствие соударения витков у пружин сжатия определяется условием vmax / vk < 1,

где,

vmax — наибольшая скорость перемещения подвижного конца пружины при нагружении или при разгрузке, м/с;

vk — критическая скорость пружин сжатия, м/с (соответствует возникновению соударения витков пружины от сил инерции).

ВЫНОСЛИВОСТЬ И СТОЙКОСТЬ ПРУЖИН

При определении размеров пружин необходимо учитывать, что при vmax> vk, помимо касательных напряжений кручения, возникают контактные напряжения от соударения витков, движущихся по инерции после замедления и остановок сопрягаемых с пружинами деталей. Если соударение витков отсутствует, то лучшую выносливость имеют пружины с низкими напряжениями τ3, т.е. пружины класса I по табл. 1, промежуточную — циклические пружины класса II и худшую — пружины класса III.

При наличии интенсивного соударения витков выносливость располагается в обратном порядке, т.е. повышается не с понижением, а с ростом τ3. В таком же порядке располагается и стойкость, т.е. уменьшение остаточных деформаций или осадок пружин в процессе работы.

1. КЛАССЫ ПРУЖИН по ГОСТ 13765-86

Класс пружинВид
пружин
НагружениеВыносливость NF
(установленная безотказная наработка), циклы,
не менее
Инерционное
соударение витков
IСжатия и растяженияЦиклическое1×107Отсутствует
IIЦиклическое и статическое1×105
IIIСжатияЦиклическое2×103Допускается
Читайте также:  Лечение растяжение приводящей мышцы бедра лечение

   Примечание. Указанная выносливость не распространяется на зацепы пружин растяжения.

2. РАЗРЯДЫ ПРУЖИН по ГОСТ 13765-86

Как найти скорость по растяжению пружиныКак найти скорость по растяжению пружиныКак найти скорость по растяжению пружиныСила пружины при максим. деформации F3, HДиаметр проволоки (прутка) d, ммМатериалТвердость после термооб­работки HRCМакси­мальное касательное напряжение при кручении τ3, МПаКак найти скорость по растяжению пружиныКак найти скорость по растяжению пружины
Марка сталиСтандарт на заготовку
I1Как найти скорость по растяжению пружины1 — 8500,2 — 5,0по ГОСТ 1050 и ГОСТ 1435Проволока класса I по ГОСТ 93890,3RmКак найти скорость по растяжению пружиныГОСТ 13766
21 — 800Проволока классов II и IIА по ГОСТ 9389ГОСТ 13767
22,4 — 8001,2 — 5,051ХФА-Ш по ГОСТ 14959Проволока по ГОСТ 10710,32Rm
3140 — 600003,0 — 12,060С2А, 65С2ВА, 70СА3 по ГОСТ 14959Проволока по ГОСТ 1496347,5…53,5560ГОСТ 13768
51ХФА по ГОСТ 14959Проволока по ГОСТ 1496345,5…51,5
42800 — 18000014 — 7060С2А, 65С2ВА, 70С3А, 60С2, 60С2ХА, 60С2ХФА, 51ХФА по ГОСТ 14959Сталь горячекат. круглая по ГОСТ 259044,0…51,5480ГОСТ 13769
II1Как найти скорость по растяжению пружины1,5 — 14000,2 — 5,0по ГОСТ 1050 и ГОСТ 1435Проволока класса I по ГОСТ 93890,5RmГОСТ 13770
21,25 — 1250Проволока класса II и IIA по ГОСТ 9389ГОСТ 13771
37,5 — 12501,2 — 5,051ХФА-Ш по ГОСТ 14959Проволока по ГОСТ 10710,52Rm
3236 — 100003,0 — 12,060С2А, 65С2ВА по ГОСТ 14959Проволока по ГОСТ 1496347,5…53,5960ГОСТ 13772
65Г по ГОСТ 14959Проволока по ГОСТ 2771
51ХФА по ГОСТ 14959Проволока по ГОСТ 1496345,5…51,5
44500 — 28000014 — 7060С2А, 60С2, 65С2ВА, 70С3А, 51ХФА, 65Г, 60С2ХФА, 60С2ХА по ГСТ 14959Сталь горячекат. круглая по ГОСТ 259044,0…51,5800ГОСТ 13773
III1Как найти скорость по растяжению пружины12,5 — 10000,3 — 2,8по ГОСТ 1050 и ГОСТ 1435Проволока класса I по ГОСТ 93890,6RmГОСТ 13774
2Как найти скорость по растяжению пружины315 — 140003,0 — 12,060С2А, 65С2ВА, 70С3А по ГОСТ 14959Проволока по ГОСТ 1496354,5…58,013509Как найти скорость по растяжению пружиныГОСТ 13775
36000 — 2000014 — 2560С2А, 65С2ВА, 70С3А по ГОСТ 14959Сталь горячекат. круглая по ГОСТ 259051,5…56,01050ГОСТ 13776

   Примечания:

1. Максимальное касательное напряжение при кручении приведено с учетом кривизны витков.

2. Rm — предел прочности пружинных материалов

    Средствами регулирования выносливости и стойкости циклических пружин в рамках каждого класса при неизменных заданных значениях рабочего хода служат изменения разности между максимальным касательным напряжением при кручении τ3 и касательным напряжением при рабочей деформации τ2.

    Возрастания разности τ3 — τ2 обусловливают увеличение выносливости и стойкости
циклических пружин всех классов при одновременном возрастании размеров узлов.
Уменьшение разностей τ3 — τ2 сопровождается обратными изменениями служебных качеств и размеров пространств в механизмах для размещения пружин.

   Для пружин I класса расчетные напряжения и свойства металла регламентированы так, что при
νmax/ νk ≤ 1 обусловленная выносливость пружин при действии силы F1 (сила пружины при предварительной деформации) не менее 0,2F3 (сила пружины при максимальной деформации) обеспечивается при всех осуществимых расположениях и величинах рабочих участков на силовых диаграммах разности напряжений τ3 — τ2, и τ2 — τ1, (касательное напряжение при предварительной деформации).

   Циклические пружины II класса при νЕЙ ПРУЖИН СЖАТИЯ И РАСТЯЖЕНИЯ

1. Пружина сжатия из проволоки круглого сечения с неподжатыми и нешлифованными крайними витками.

расчет  пружин

2. Пружина сжатия с поджатыми по 3/4 витка с каждого конца и шлифованными на 3/4 окружности опорными поверхностями.

расчет  пружин

3. Пружины растяжения из проволоки круглого сечения с зацепами, открытыми с одной стороны и расположенными в одной плоскости.

расчет  пружин
ОПОРНЫЕ ВИТКИ ПРУЖИН СЖАТИЯ
расчет  пружин
ДЛИНА ПРУЖИН СЖАТИЯ

Длину пружин сжатия рекомендуется принимать Lo <= (D1 — d).

Можно брать Lo до 5 х (D — d), но тогда пружины должны работать на направляющем стержне или в направляющей гильзе. При этом между пружиной и сопрягаемой деталью выдерживают зазор z в зависимости от величины среднего диаметра D пружины.

Значение зазора z, мм
расчет  пружин

Похожие документы:

чертеж пружины сжатия;

чертеж пружины параболоидной;

расчет пластинчатой пружины изгиба;

расчет пружин кручения из круглой проволоки;

ГОСТ 13764-86 » Пружины винтовые цилиндрические сжатия и растяжения из стали круглого сечения. Классификация»;

ГОСТ 13766-86 «Пружины винтовые цилиндрические сжатия и растяжения 1 класса, разряда 1 из стали круглого сечения. Основные параметры витков»;

ГОСТ 13767-86 «Пружины винтовые цилиндрические сжатия и растяжения 1 класса, разряда 2 из стали круглого сечения. Основные параметры витков»;

ГОСТ 13768-86 «Пружины винтовые цилиндрические сжатия и растяжения 1 класса, разряда 3 из стали круглого сечения. Основные параметры витков»;

ГОСТ 13769-86 «Пружины винтовые цилиндрические сжатия 1 класса, разряда 4 из стали круглого сечения. Основные параметры витков»;

ГОСТ 13770-86 «Пружины винтовые цилиндрические сжатия и растяжения II класса, разряда 1 из стали круглого сечения. Основные параметры витков»;

ГОСТ 13771-86 «Пружины винтовые цилиндрические сжатия и растяжения II класса, разряда 2 из стали круглого сечения. Основные параметры витков»;

ГОСТ 13772-86 «Пружины винтовые цилиндрические сжатия и растяжения II класса, разряда 3 из стали круглого сечения. Основные параметры витков»;

ГОСТ 13773-86 «Пружины винтовые цилиндрические сжатия II класса, разряда 4 из стали круглого сечения. Основные параметры витков»;

ГОСТ 13774-86 «Пружины винтовые цилиндрические сжатия III класса, разряда 1 из стали круглого сечения. Основные параметры витков»;

ГОСТ 13775-86 «Пружины винтовые цилиндрические сжатия III класса, разряда 2 из стали круглого сечения. Основные параметры витков»;

ГОСТ 13776-86 «Пружины винтовые цилиндрические сжатия III класса, разряда 3 из стали круглого сечения. Основные параметры витков».

Источник