Как найти силу растяжения пружины

Как найти силу растяжения пружины thumbnail

Определение и формула жесткости пружины

Определение

Силу, которая возникает в результате деформации тела и пытающаяся вернуть его в исходное состояние, называют силой упругости.

Чаще всего ее обозначают ${overline{F}}_{upr}$. Сила упругости появляется только при деформации тела и исчезает, если пропадает деформация. Если после снятия внешней нагрузки тело восстанавливает свои размеры и форму полностью, то такая деформация называется упругой.

Современник И. Ньютона Р. Гук установил зависимость силы упругости от величины деформации. Гук долго сомневался в справедливости своих выводов. В одной из своих книг он привел зашифрованную формулировку своего закона. Которая означала: «Ut tensio, sic vis» в переводе с латыни: каково растяжение, такова сила.

Рассмотрим пружину, на которую действует растягивающая сила ($overline{F}$), которая направлена вертикально вниз (рис.1).

Формула жесткости пружины, рисунок 1

Силу $overline{F }$ назовем деформирующей силой. От воздействия деформирующей силы длина пружины увеличивается. В результате в пружине появляется сила упругости (${overline{F}}_u$), уравновешивающая силу $overline{F }$. Если деформация является небольшой и упругой, то удлинение пружины ($Delta l$) прямо пропорционально деформирующей силе:

[overline{F}=kDelta lleft(1right),]

где в коэффициент пропорциональности называется жесткостью пружины (коэффициентом упругости) $k$.

Жесткость (как свойство) — это характеристика упругих свойств тела, которое деформируют. Жесткость считают возможностью тела оказать противодействие внешней силе, способность сохранять свои геометрические параметры. Чем больше жесткость пружины, тем меньше она изменяет свою длину под воздействием заданной силы. Коэффициент жесткости — это основная характеристика жесткости (как свойства тела).

Коэффициент жесткости пружины зависит от материала, из которого сделана пружина и ее геометрических характеристик. Например, коэффициент жесткости витой цилиндрической пружины, которая намотана из проволоки круглого сечения, подвергаемая упругой деформации вдоль своей оси может быть вычислена как:

[k=frac{Gd^4}{8d^3_pn}left(2right),]

где $G$ — модуль сдвига (величина, зависящая от материала); $d$ — диаметр проволоки; $d_p$ — диаметр витка пружины; $n$ — количество витков пружины.

Единицей измерения коэффициента жесткости в Международной системе единиц (Си) является ньютон, деленный на метр:

[left[kright]=left[frac{F_{upr }}{x}right]=frac{left[F_{upr }right]}{left[xright]}=frac{Н}{м}.]

Коэффициент жесткости равен величине силы, которую следует приложить к пружине для изменения ее длины на единицу расстояния.

Формула жесткости соединений пружин

Пусть $N$ пружин соединены последовательно. Тогда жесткость всего соединения равна:

[frac{1}{k}=frac{1}{k_1}+frac{1}{k_2}+dots =sumlimits^N_{ i=1}{frac{1}{k_i}left(3right),}]

где $k_i$ — жесткость $i-ой$ пружины.

При последовательном соединении пружин жесткость системы определяют как:

[k=k_1+k_2+dots +sumlimits^N_{i=1}{k_i}left(4right).]

Примеры задач с решением

Пример 1

Задание. Пружина в отсутствии нагрузки имеет длину $l=0,01$ м и жесткость равную 10 $frac{Н}{м}. $Чему будет равна жесткость пружины и ее длина, если на пружину действовать силой $F$= 2 Н? Считайте деформацию пружины малой и упругой.

Формула жесткости пружины, пример 1

Решение. Жесткость пружины при упругих деформациях является постоянной величиной, значит, в нашей задаче:

[k=k’left(1.1right).]

При упругих деформациях выполняется закон Гука:

[F=kDelta l left(1.2right).]

Из (1.2) найдем удлинение пружины:

[Delta l=frac{F}{k}left(1.3right).]

Длина растянутой пружины равна:

[l’=l+Delta l=l+frac{F}{k}.]

Вычислим новую длину пружины:

[l’=0,01+frac{2}{10}=0,21 left(мright).]

Ответ. 1) $k’=10 frac{Н}{м}$; 2) $l’=0,21$ м

Пример 2

Задание. Две пружины, имеющие жесткости $k_1$ и $k_2$ соединили последовательно. Какой будет удлинение первой пружины (рис.3), если длина второй пружины увеличилась на величину $Delta l_2$?

Формула жесткости пружины, пример 2

Решение. Если пружины соединены последовательно, то деформирующая сила ($overline{F}$), действующая на каждую из пружин одинакова, то есть можно записать для первой пружины:

[F=k_1Delta l_1left(2.1right).]

Для второй пружины запишем:

[F=k_2Delta l_2left(2.2right).]

Если равны левые части выражений (2.1) и (2.2), то можно приравнять и правые части:

[k_1Delta l_1=k_2Delta l_2left(2.3right).]

Из равенства (2.3) получим удлинение первой пружины:

[Delta l_1=frac{k_2Delta l_2}{k_1}.]

Ответ. $Delta l_1=frac{k_2Delta l_2}{k_1}$

Читать дальше: формула закона Архимеда.

Источник

Сила упругости

Любое тело, когда его деформируют и оказывают внешнее воздействие, сопротивляется и стремиться восстановить прежние форму и размеры. Это происходит по причине электромагнитного взаимодействия в теле на молекулярном уровне.

Деформация — изменение положения частиц тела друг относительно друга. Результат деформации — изменение межатомных расстояний и перегруппировка блоков атомов.

Определение. Что такое сила упругости?

Сила упругости — сила, возникающая при деформации в теле и стремящаяся вернуть тело в начальное состояние. 

Рассмотрим простейшие деформации — растяжение и сжатие 

Сила упругости

На рисунке показано, как действует сила упругости, когда мы сжимаем или растягиваем стержень.

Закон Гука

Для малых деформаций x≪ l справедлив закон Гука. 

Закон Гука

Деформация, возникающая в упругом теле, пропорциональна приложенной к телу силе. 

Fупр=-kx

Здесь k — коэффициент пропорциональности, называемый жесткостью. Единица измерения жесткости системе СИ Ньютон на метр. Жесткость зависит от материала тела, его формы и размеров.

Знак минус показывает, что сила упругости противодействует внешней силе и стремится вернуть тело в первоначальное состояние. 

Существуют и другие формы записи закона Гука. Относительной деформацией тела называется отношение ε=xl. Напряжением в теле называется отношение σ=-FупрS.  Здесь S — площадь поперечного сечения деформированного тела.  Вторая формулировка закона Гука: относительная деформация пропорциональна напряжению. 

ε=σE.

Здесь E — так называемый модуль Юнга, который не зависит от формы и размеров тела, а зависит только от свойств материала. Значение модуля Юнга для различных материалов широко варьируется. Например, для стали E≈2·1011 Нм2, а для резины E≈2·106 Нм2

Читайте также:  Пружины растяжения москва продажа

Закон Гука можно обобщить для случая сложных деформаций. Рассмотрим деформацию изгиба стержня. При такой деформации изгиба сила упругости пропорциональна прогибу стержня. 

Закон Гука

Концы стержня лежат на двух опорах, которые действуют на тело с силой N→, называемой силой нормальной реакции опоры. Почему нормальной? Потому что эта сила направлена перпендикулярно (нормально) поверхности соприкосновения. 

Если стержень лежит на столе, сила нормальной реакции опоры направлена вертикально вверх, противоположно силе тяжести, которую она уравновешивает. 

Вес тела — это сила, с которой оно действует на опору. 

Силу упругости часто рассматривают в контексте растяжения или сжатия пружины. Это распространенный пример, который часто встречается не только в теории, но и на практике. Пружины используются для измерения величины сил. Прибор, предназначенный для этого — динамаметр. 

Динамометр — пружина, растяжение которой проградуированно в единицах силы. Характерное свойство пружин заключается в том, что закон Гука для них применим при достаточно большом изменении длины.

При сжатии и растяжении пружины действует закон Гука, возникают упругие силы, пропорциональные изменению длины пружины и ее жесткости (коэффициента k). 

В отличие от пружин стержни и проволоки подчиняются закону Гука в очень узких пределах. Так, при относительной дефомации больше 1% в материале возникают необратимые именения — текучесть и разрушения.

Источник

Рано или поздно при изучении курса физики ученики и студенты сталкиваются с задачами на силу упругости и закон Гука, в которых фигурирует коэффициент жесткости пружины. Что же это за величина, и как она связана с деформацией тел и законом Гука?

Сила упругости и закон Гука

Для начала определим основные термины, которые будут использоваться в данной статье. Известно, если воздействовать на тело извне, оно либо приобретет ускорение, либо деформируется. Деформация — это изменение размеров или формы тела под влиянием внешних сил. Если объект полностью восстанавливается после прекращения нагрузки, то такая деформация считается упругой; если же тело остается в измененном состоянии (например, согнутом, растянутом, сжатым и т. д. ), то деформация пластическая.

Примерами пластических деформаций являются:

  • лепка из глины;
  • погнутая алюминиевая ложка.

В свою очередь, упругими деформациями будут считаться:

  • резинка (можно растянуть ее, после чего она вернется в исходное состояние);
  • пружина (после сжатия снова распрямляется).

В результате упругой деформации тела (в частности, пружины) в нем возникает сила упругости, равная по модулю приложенной силе, но направленная в противоположную сторону. Сила упругости для пружины будет пропорциональна ее удлинению. Математически это можно записать таким образом:

F = — k·x;

где F — сила упругости, x — расстояние, на которое изменилась длина тела в результате растяжения, k — необходимый для нас коэффициент жесткости. Указанная выше формула также является частным случаем закона Гука для тонкого растяжимого стержня. В общей форме этот закон формулируется так: «Деформация, возникшая в упругом теле, будет пропорциональна силе, которая приложена к данному телу». Он справедлив только в тех случаях, когда речь идет о малых деформациях (растяжение или сжатие намного меньше длины исходного тела).

Определение силы упругости

Определение коэффициента жесткости

Коэффициент жесткости (он также имеет названия коэффициента упругости или пропорциональности) чаще всего записывается буквой k, но иногда можно встретить обозначение D или c. Численно жесткость будет равна величине силы, которая растягивает пружину на единицу длины (в случае СИ — на 1 метр). Формула для нахождения коэффициента упругости выводится из частного случая закона Гука:

k = F/x.

Чем больше величина жесткости, тем больше будет сопротивление тела к его деформации. Также коэффициент Гука показывает, насколько устойчиво тело к действию внешней нагрузки. Зависит этот параметр от геометрических параметров (диаметра проволоки, числа витков и диаметра намотки от оси проволоки) и от материала, из которого она изготовлена.

Единица измерения жесткости в СИ — Н/м.

Расчет жесткости системы

Встречаются более сложные задачи, в которых необходим расчет общей жесткости. В таких заданиях пружины соединены последовательно или параллельно.

Последовательное соединение системы пружин

При последовательном соединении общая жесткость системы уменьшается. Формула для расчета коэффициента упругости будет иметь следующий вид:

1/k = 1/k1 + 1/k2 + … + 1/ki,

где k — общая жесткость системы, k1, k2, …, ki — отдельные жесткости каждого элемента, i — общее количество всех пружин, задействованных в системе.

Коэффициент жесткости пружин

Параллельное соединение системы пружин

В случае когда пружины соединены параллельно, величина общего коэффициента упругости системы будет увеличиваться. Формула для расчета будет выглядеть так:

k = k1 + k2 + … + ki.

Измерение жесткости пружины опытным путем — в этом видео.

Вычисление коэффициента жесткости опытным методом

С помощью несложного опыта можно самостоятельно рассчитать, чему будет равен коэффициент Гука. Для проведения эксперимента понадобятся:

  • линейка;
  • пружина;
  • груз с известной массой.

Последовательность действий для опыта такова:

  1. Необходимо закрепить пружину вертикально, подвесив ее к любой удобной опоре. Нижний край должен остаться свободным.
  2. При помощи линейки измеряется ее длина и записывается как величина x1.
  3. На свободный конец нужно подвесить груз с известной массой m.
  4. Длина пружины измеряется в нагруженном состоянии. Обозначается величиной x2.
  5. Подсчитывается абсолютное удлинение: x = x2-x1. Для того чтобы получить результат в международной системе единиц, лучше сразу перевести его из сантиметров или миллиметров в метры.
  6. Сила, которая вызвала деформацию, — это сила тяжести тела. Формула для ее расчета — F = mg, где m — это масса используемого в эксперименте груза (переводится в кг), а g — величина свободного ускорения, равная приблизительно 9,8.
  7. После проведенных расчетов остается найти только сам коэффициент жесткости, формула которого была указана выше: k = F/x.
Читайте также:  Растяжение шеи на тренировке

Примеры задач на нахождение жесткости

Задача 1

На пружину длиной 10 см действует сила F = 100 Н. Длина растянутой пружины составила 14 см. Найти коэффициент жесткости.

  1. Рассчитываем длину абсолютного удлинения: x = 14—10 = 4 см = 0,04 м.
  2. По формуле находим коэффициент жесткости: k = F/x = 100 / 0,04 = 2500 Н/м.

Ответ: жесткость пружины составит 2500 Н/м.

Задача 2

Груз массой 10 кг при подвешивании на пружину растянул ее на 4 см. Рассчитать, на какую длину растянет ее другой груз массой 25 кг.

  1. Найдем силу тяжести, деформирующей пружину: F = mg = 10 · 9.8 = 98 Н.
  2. Определим коэффициент упругости: k = F/x = 98 / 0.04 = 2450 Н/м.
  3. Рассчитаем, с какой силой действует второй груз: F = mg = 25 · 9.8 = 245 Н.
  4. По закону Гука запишем формулу для абсолютного удлинения: x = F/k.
  5. Для второго случая подсчитаем длину растяжения: x = 245 / 2450 = 0,1 м.

Ответ: во втором случае пружина растянется на 10 см.

Видео

Из этого видео вы узнаете, как определить жесткость пружины.

Источник

Сил упругости возникает при деформации физического тела, то есть когда изменяются размеры и форма тела. Эта сила направлена в сторону, противоположную силе, создающей деформацию. На примере пружины выясним как сила упругости связана с величиной деформации. Рассмотрим также причины возникновения упругих сил.

Как найти силу растяжения пружины

Закон Гука

Пружину можно сжимать, растягивать, изгибать или скручивать. В каждом из этих случаев будут возникать силы упругости, стремящиеся вернуть форму и размеры пружины в начальное состояние. Для понимания основных закономерностей будем рассматривать только линейные сжатия и растяжения (вдоль оси х). Для вычисления сил при деформациях изгибов и скручивании требуется применение более сложного математического аппарата.

Деформации растяжения и сжатия пружины:

Рис. 1. Деформации растяжения и сжатия пружины.

Если начальная длина, ненапряженной пружины, равна L0, то для малых деформаций выполняется закон Гука, открытый экспериментально:

$ F_уп = − k * Δх $ (1),

где, в формуле силы упругости пружины:

Fуп — сила упругости пружины, Н;

k — коэффициент жесткости пружины, Н/м;

Δх —величина деформации (дельта икс), м.

Величина малых деформаций должна быть намного меньше начальной длины пружины:

$ Δх

Рис. 2. Портрет Роберта Гука.

Этот фундаментальный закон был открыт английским ученым Робертом Гуком в 1660г. Кроме этого он сделал много других замечательных изобретений и экспериментов:

  • открыл эффект образования цветов тонких пленок, которое в оптике называется явлением интерференции;
  • предложил модель волнообразного распространения света;
  • сформулировал предположение о связи теплоты с движением частиц, из которых состоит тело;
  • изобрел спиральную пружину для регулировки часов, усовершенствовал барометр, гигрометр, анемометр.

Источник силы упругости

Происхождение сил упругости связано с электромагнитным взаимодействием молекул и атомов. Когда происходит увеличение размеров пружины (растяжении), то силы взаимного притяжения “пытаются” восстановить начальные размеры. При сжатии пружины начинают работать силы отталкивания. Когда тело не деформировано, расстояние между молекулами соответствует равенству сил притяжения и отталкивания.

Динамометры

Упругие свойства пружин используются в приборах для измерения силы. Обычно динамометр состоит из двух основных частей: пружины (упругий элемент) и шкалы устройства, на которой нанесены цифровые значения силы или массы, если этот прибор предназначен для бытового применения. Измеряемое усилие прикладывается к пружине, которая деформируется и сдвигает стрелку прибора вдоль отсчетной шкалы.

Как найти силу растяжения пружины

Рис. 3. Пружинные динамометры.

Хотя закон Гука и считается универсальным, но диапазон деформаций в котором он выполняется сильно отличается для разных тел. Например, в металлических проволоках (прямолинейных) и стержнях максимальная величина относительной деформации (отношение Δх к L0), для которой еще будет справедлив закон Гука, составляет не более 1%. При больших деформациях наступают необратимые разрушения материалов.

Что мы узнали?

Итак, мы узнали, что сила упругости пружины прямо пропорциональна величине деформации тела и направлена в сторону, обратную направлению сдвига пружины. Силы упругости связаны с электромагнитным взаимодействием молекул и атомов. При сжатии включается механизм отталкивания электрических одноименных зарядов. При растяжении — начинает работать механизм притяжения разноименных зарядов.

Тест по теме

Оценка доклада

Средняя оценка: 4.7. Всего получено оценок: 76.

Источник

1. Вспоминай формулы по каждой теме

2. Решай новые задачи каждый день

3. Вдумчиво разбирай решения

Сила упругости — это сила, возникающая при упругой деформации тела и направленная в сторону, противоположную смещению частиц тела в процессе деформации. Силы, возникающие при пластических деформациях, не относятся к силам упругости.

Понятие о деформациях

Деформация — это изменение формы и размеров тела.

К деформациям относятся: растяжение, сжатие, кручение, сдвиг, изгиб.

Деформации бывают упругими и пластическими.

Закон Гука

Читайте также:  Растяжение голеностопного сустава врач

Абсолютная величина силы упругости прямо пропорциональна величине деформации. В частности, для пружины, сжатой или растянутой на величину (displaystyle x) (разница между крайними положениями), сила упругости задается формулой [F=kx] где (displaystyle k) — коэффициент жесткости пружины.

Единицы измерения коэффициента жесткости: (k=)[Н/м].

Как найти силу растяжения пружины

Закон Гука о линейной зависимости силы упругости от величины деформации справедлив лишь при малых деформациях тела.

Кубик массой (M = 2) кг, сжатый с боков пружинами, покоится на гладком горизонтальном столе. Первая пружина сжата на 2 см, а вторая сжата на 6 см. Жёсткость первой пружины (k_1 = 1200) Н/м. Чему равна жёсткость второй пружины (k_2)? Ответ выразите в Н/м.

По второму закону Ньютона силы упругости пружин будут уравновешивать друг друга, следовательно: [k_1Delta x_1=k_2Delta x_2] где (Delta x_1) и (Delta x_2) – сжатие первой и второй пружины соответственно.
Откуда жесткость второй пружины [k_2=dfrac{k_1 Delta x_1}{Delta x_2}= dfrac{1200text{ Н/м}cdot 2text{ см}}{6text{ см}}=400text{ Н/м}]

Ответ: 400

На штативе закреплён школьный динамометр. К нему подвесили груз массой 0,1 кг. Пружина динамометра при этом удлинилась на 2,5 см. Чему будет равно удлинение пружины, если масса груза увеличится втрое? (Ответ дайте в сантиметрах)

Согласно закону Гука [F=kDelta x] где k – жесткость пружины, ( Delta x) – удлинение пружины.
Найдем жесткость пружины, зная, что ( Delta x) = 2,5 см = 0,025 м при приложении силы, равно ( F=m_1g=0,1cdot 10=1text{ H} ): [k=dfrac{F}{Delta x}=dfrac{1}{0,025}=40text{ H/кг}] Если массу груза увеличить в 3 раза, то есть, (m_2=0,3) кг, то удлинение пружины будет равно: [Delta x=dfrac{F}{k}=dfrac{m_2g}{k}=dfrac{3cdot0,1cdot10text{ H}}{40text{ H/кг}}=0,075text{ м}=7,5text{ см}]

Ответ: 7,5

К системе из кубика массой M = 3 кг и двух пружин приложена постоянная горизонтальная сила F величиной 20 Н (см. рисунок). Между кубиком и опорой трения нет. Система покоится. Жёсткость первой пружины (k_1 = 400 text{ Н/м}). Жёсткость второй пружины (k_2 = 800 text{ Н/м}). Каково удлинение первой пружины? (Ответ дайте в сантиметрах)

Как найти силу растяжения пружины

Согласно закону Гука удлинение (Delta x) пружины связано с ее жесткостью k и приложенной к ней силе F выражением (F=kDelta x). На первую пружину действует такая же сила F, что и на вторую, так как трения между кубиком и опорой нет. То, что первая пружина соединена со второй через кубик, здесь не имеет никакого значения, соответственно удлинение первой пружины – это величина, равная: [Delta x=dfrac{F}{k_1}=dfrac{20text{ H}}{400text{ H/м}}=0,05 text{ м}=5 text{ см}]

Ответ: 5

Определите силу, под действием которой пружина жёсткостью 200 Н/см удлинится на 5 мм.

Согласно закону Гука ( F=kDelta x ), где k – жесткость пружины, ( Delta x) – удлинение пружины, получаем: [F=kDelta x=(dfrac{200}{0,01})text{H/м}cdot(5cdot10^{-3})text{м}=100text{ H}]

Ответ: 100

Пружина одним концом прикреплена к неподвижной опоре, к другому концу приложили силу равную 1500 Н, при этом пружина растянулась на 0,2 м. Определите жесткость данной пружины. Ответ дать в Н/м.

После растяжения, пружина покоится и на неё действуют 2 силы направленные в противоположные направления: (F_{text{упр}}) – сила упругости и F – приложенная сила.
Тогда по первому закону Ньютона: [F_{text{упр}}=F] По закону Гука: [F_{text{упр}}=kx] Приравниваем эти формулы: [F=kx] Тогда [k=frac{F}{x}=frac{1500}{0,2}=7500 text{ Н/м}]

Ответ: 7500

К потолку прикреплены одним концом две пружины с одинаковой жесткостью. За другой конец первую пружину растягивают с силой (F_{text{1}}), которая в 2,5 раза больше силы (F_{text{2}}), растягивающей вторую пружину. При этом вторая пружина растянулась на 0,4 м. Насколько растянулась первая пружина? Ответ дать в метрах.

После растяжения обе пружины находятся в покое и на них, кроме данных сил действует сила упругости. Тогда по первому закону Ньютона: [F_{text{упр1}}=F_{text{1}}] [F_{text{упр2}}=F_{text{2}}] где (F_{text{упр1}}) – сила упругости, действующая на первую пружина, (F_{text{упр2}}) – на вторую.
По закону Гука: [F_{text{упр}}=kx] Воспользуемся этим законом в вышенаписанных формулах: [kx_{1}=F_{1}quad(1)] [kx_{2}=F_{text{2}}quad(2)] где (x_{1}) – удлинение первой пружины, (x_{2}) – второй. Разделим (1) на (2), получится: [frac{x_{1}}{x_{2}}=frac{F_{text{1}}}{F_{text{2}}}Rightarrow x_{1}=dfrac{F_{text{1}}x_{2}}{F_{text{2}}}=2,5cdot0,4=1text{ м}]

Ответ: 1

К грузу массой (m) аккуратно подвесили другой груз массой (M), при этом пружина с жесткостью 1200 Н/м удлинилась так, как показано на рисунке. Найдите массу (M). Ускорение свободного падения считать равным 10 м/(c^{2}). Ответ дать в кг.

Как найти силу растяжения пружины

Рассмотрим ситуацию до подвешивания груза: система тел “груз и пружина” покоится, на неё действуют 2 силы, направленные в противоположные стороны: сила тяжести и сила упругости.
Тогда по первому закону Ньютона: [mg=F_{text{упр}1}] Рассмотрим ситуацию после подвешивания груза: систама тел “2 груза и пружина” покоится, на неё действуют 2 силы, направленные в противоположные стороны: сила тяжести и сила упругости.
Тогда по первому закону Ньютона: [mg+Mg=F_{text{упр2}}] По закону Гука: [F_{text{упр}}=kx] Воспользуемся этим законом в вышенаписанных формулах: [mg=kx_{1}quad(1)] [mg+Mg=kx_{2}quad(2)] Вычтем (1) из (2), получится: [Mg=k(x_{2}-x_{1})Rightarrow M=dfrac{k(x_{2}-x_{1})}{g}=frac{1200cdot0,03}{10}=3,6text{ кг}]

Ответ: 3,6

Источник